com.rapidminer.gui.new_plotter.configuration
Class EquidistantFixedBinCountBinning
java.lang.Object
com.rapidminer.gui.new_plotter.configuration.AbstractValueGrouping
com.rapidminer.gui.new_plotter.configuration.EquidistantFixedBinCountBinning
- All Implemented Interfaces:
- ValueGrouping
public class EquidistantFixedBinCountBinning
- extends AbstractValueGrouping
Defines a binning with a fixed number of equal width bins between a min and max value. Can be either categorical or numerical.
If the binning is categorical, each created ValueRange delivers an integer idx as identifier, otherwise
the mean value of upper and lower bound.
If this binning is categorical, overflow and underflow bins are created for values which are greater/lesser
than minValue/maxValue.
- Author:
- Marius Helf, Nils Woehler
Methods inherited from class com.rapidminer.gui.new_plotter.configuration.AbstractValueGrouping |
addListener, applyAdaptiveVisualRounding, fireGroupingChanged, forceDataTableColumn, getDataTableColumn, getDateFormat, getDomainType, getGroupingModel, isCategorical, removeListener, setCategorical, setDataTableColumn, setDateFormat |
Methods inherited from class java.lang.Object |
finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
EquidistantFixedBinCountBinning
public EquidistantFixedBinCountBinning(int binCount,
double minValue,
double maxValue,
DataTableColumn dataTableColumn,
boolean categorical,
java.text.DateFormat dateFormat)
throws ChartConfigurationException
- Parameters:
binCount
- minValue
- The left value of the left-most normal (non-overflow) bin. If NaN, the left-most point in the data is chosen. Infinity is not allowed.maxValue
- The right value of the right-most normal (non-overflow) bin. If NaN, the right-most point in the data is chosen. Infinity is not allowed.dataTableColumn
- categorical
-
- Throws:
ChartConfigurationException
- if dataTableColumn is nominal
EquidistantFixedBinCountBinning
public EquidistantFixedBinCountBinning(EquidistantFixedBinCountBinning other)
- Copy ctor.
getBinCount
public int getBinCount()
- Returns:
- the binCount
setBinCount
public void setBinCount(int binCount)
- Parameters:
binCount
- the binCount to set
getMinValue
public double getMinValue()
- Returns:
- the minValue
setMinValue
public void setMinValue(double minValue)
- Parameters:
minValue
- the minValue to set
getMaxValue
public double getMaxValue()
- Returns:
- the maxValue
setMaxValue
public void setMaxValue(double maxValue)
- Parameters:
maxValue
- the maxValue to set
createGroupingModel
protected java.util.List<ValueRange> createGroupingModel(DataTable data,
double userDefinedUpperDimensionBound,
double userDefinedLowerDimensionBound)
- Description copied from class:
AbstractValueGrouping
- Returns an up-to-date grouping model without cumulation applied.
Does not need to implement caching, since this is handled in AbstractValueGrouping.
- Specified by:
createGroupingModel
in class AbstractValueGrouping
getGroupingType
public ValueGrouping.GroupingType getGroupingType()
- Description copied from interface:
ValueGrouping
- Returns the type of the grouping, like Distinct values or Equal data fraction grouping.
clone
public ValueGrouping clone()
- Specified by:
clone
in interface ValueGrouping
- Specified by:
clone
in class AbstractValueGrouping
isAutoRanging
public boolean isAutoRanging()
- Returns:
- the autoRange
setAutoRange
public void setAutoRange(boolean autoRange)
- Parameters:
autoRange
- the autoRange to set
equals
public boolean equals(java.lang.Object obj)
- Specified by:
equals
in interface ValueGrouping
- Specified by:
equals
in class AbstractValueGrouping
definesUpperLowerBounds
public boolean definesUpperLowerBounds()
- Description copied from interface:
ValueGrouping
- Returns true iff this ValueGrouping guarantees that each ValueRange in each possible resulting
grouping model defines upper and lower bounds.
Copyright © 2001-2009 by Rapid-I