JBoss.org Community Documentation

7.3. Applying Aspects in JBoss AOP

To apply an aspect, you define when to execute the aspect code. Those points in execution are called pointcuts. An analogy to a pointcut is a regular expression. Where a regular expression matches strings, a pointcut expression matches events/points within your application. For example, a valid pointcut definition would be "for all calls to the JDBC method executeQuery(), call the aspect that verifies SQL syntax."

An entry point could be a field access, or a method or constructor call. An event could be an exception being thrown. Some AOP implementations use languages akin to queries to specify pointcuts. Others use tags. JBoss AOP uses both. Listing Three shows how to define a pointcut for the metrics example.

The following listing demonstrates defining a pointcut in JBoss AOP

1. <bind pointcut="public void com.mc.BankAccountDAO->withdraw(double amount)">
2.       <interceptor class="com.mc.Metrics"/>
3. </bind >
	
4. <bind pointcut="* com.mc.billing.*->*(..)">
5.       <interceptor class="com.mc.Metrics"/>
6. </bind >]]></programlisting>

Lines 1-3 define a pointcut that applies the metrics aspect to the specific method BankAccountDAO.withdraw(). Lines 4-6 define a general pointcut that applies the metrics aspect to all methods in all classes in the com.mc.billing package. There is also an optional annotation mapping if you do not like XML. See our Reference Guide for more information.

JBoss AOP has a rich set of pointcut expressions that you can use to define various points/events in your Java application so that you can apply your aspects. You can attach your aspects to a specific Java class in your application or you can use more complex compositional pointcuts to specify a wide range of classes within one expression.

With AOP, as this example shows, you're able to pull together crosscutting behavior into one object and apply it easily and simply, without polluting and bloating your code with features that ultimately don't belong mingled with business logic. Instead, common crosscutting concerns can be maintained and extended in one place.

Notice too that the code within the BankAccountDAO class has no idea that it's being profiled. This is what aspect-oriented programmers deem orthogonal concerns. Profiling is an orthogonal concern. In the OOP code snippet in Listing One, profiling was part of the application code. With AOP, you can remove that code. A modern promise of middleware is transparency, and AOP (pardon the pun) clearly delivers.

Just as important, orthogonal behavior could be bolted on after development. In Listing One, monitoring and profiling must be added at development time. With AOP, a developer or an administrator can (easily) add monitoring and metrics as needed without touching the code. This is a very subtle but significant part of AOP, as this separation (obliviousness, some may say) allows aspects to be layered on top of or below the code that they cut across. A layered design allows features to be added or removed at will. For instance, perhaps you snap on metrics only when you're doing some benchmarks, but remove it for production. With AOP, this can be done without editing, recompiling, or repackaging the code.