Unit Testing¶
Testing Base Julia¶
Julia is under rapid development and has an extensive test suite to
verify functionality across multiple platforms. If you build Julia
from source, you can run this test suite with make test
. In a
binary install, you can run the test suite using Base.runtests()
.
-
runtests
([tests=["all"][, numcores=ceil(Integer, Sys.CPU_CORES / 2)]])¶ Run the Julia unit tests listed in
tests
, which can be either a string or an array of strings, usingnumcores
processors. (not exported)
Basic Unit Tests¶
The Base.Test
module provides simple unit testing functionality.
Unit testing is a way to see if your code is correct by checking that
the results are what you expect. It can be helpful to ensure your code
still works after you make changes, and can be used when developing as
a way of specifying the behaviors your code should have when complete.
Simple unit testing can be performed with the @test()
and @test_throws()
macros:
-
@test ex
Tests that the expression
ex
evaluates totrue
. Returns aPass
Result
if it does, aFail
Result
if it isfalse
, and anError
Result
if it could not be evaluated.
-
@test_throws extype ex
Tests that the expression
ex
throws an exception of typeextype
.
For example, suppose we want to check our new function foo(x)
works
as expected:
julia> using Base.Test
julia> foo(x) = length(x)^2
foo (generic function with 1 method)
If the condition is true, a Pass
is returned:
julia> @test foo("bar") == 9
Test Passed
Expression: foo("bar") == 9
Evaluated: 9 == 9
julia> @test foo("fizz") >= 10
Test Passed
Expression: foo("fizz") >= 10
Evaluated: 16 >= 10
If the condition is false, then a Fail
is returned and an
exception is thrown:
julia> @test foo("f") == 20
Test Failed
Expression: foo("f") == 20
Evaluated: 1 == 20
ERROR: There was an error during testing
in record at test.jl:268
in do_test at test.jl:191
If the condition could not be evaluated because an exception was thrown,
which occurs in this case because length()
is not defined for
symbols, an Error
object is returned and an exception is thrown:
julia> @test foo(:cat) == 1
Error During Test
Test threw an exception of type MethodError
Expression: foo(:cat) == 1
MethodError: `length` has no method matching length(::Symbol)
in foo at none:1
in anonymous at test.jl:159
in do_test at test.jl:180
ERROR: There was an error during testing
in record at test.jl:268
in do_test at test.jl:191
If we expect that evaluating an expression should throw an exception,
then we can use @test_throws()
to check that this occurs:
julia> @test_throws MethodError foo(:cat)
Test Passed
Expression: foo(:cat)
Evaluated: MethodError
Working with Test Sets¶
Typically a large of number of tests are used to make sure functions work correctly over a range of inputs. In the event a test fails, the default behavior is to throw an exception immediately. However, it is normally preferable to run the rest of the tests first to get a better picture of how many errors there are in the code being tested.
The @testset()
macro can be used to group tests into sets.
All the tests in a test set will be run, and at the end of the test set
a summary will be printed. If any of the tests failed, or could not be
evaluated due to an error, the test set will then throw a TestSetException
.
-
@testset [CustomTestSet] [option=val ...] ["description"] begin ... end
-
@testset [CustomTestSet] [option=val ...] ["description $v"] for v in (...) ... end
-
@testset [CustomTestSet] [option=val ...] ["description $v, $w"] for v in (...), w in (...) ... end
Starts a new test set, or multiple test sets if a
for
loop is provided.If no custom testset type is given it defaults to creating a
DefaultTestSet
.DefaultTestSet
records all the results and, and if there are anyFail
s orError
s, throws an exception at the end of the top-level (non-nested) test set, along with a summary of the test results.Any custom testset type (subtype of
AbstractTestSet
) can be given and it will also be used for any nested@testset
invocations. The given options are only applied to the test set where they are given. The default test set type does not take any options.The description string accepts interpolation from the loop indices. If no description is provided, one is constructed based on the variables.
By default the
@testset
macro will return the testset object itself, though this behavior can be customized in other testset types. If afor
loop is used then the macro collects and returns a list of the return values of thefinish
method, which by default will return a list of the testset objects used in each iteration.
We can put our tests for the foo(x)
function in a test set:
julia> @testset "Foo Tests" begin
@test foo("a") == 1
@test foo("ab") == 4
@test foo("abc") == 9
end
Test Summary: | Pass Total
Foo Tests | 3 3
Test sets can also be nested:
julia> @testset "Foo Tests" begin
@testset "Animals" begin
@test foo("cat") == 9
@test foo("dog") == foo("cat")
end
@testset "Arrays $i" for i in 1:3
@test foo(zeros(i)) == i^2
@test foo(ones(i)) == i^2
end
end
Test Summary: | Pass Total
Foo Tests | 8 8
In the event that a nested test set has no failures, as happened here, it will be hidden in the summary. If we do have a test failure, only the details for the failed test sets will be shown:
julia> @testset "Foo Tests" begin
@testset "Animals" begin
@testset "Felines" begin
@test foo("cat") == 9
end
@testset "Canines" begin
@test foo("dog") == 9
end
end
@testset "Arrays" begin
@test foo(zeros(2)) == 4
@test foo(ones(4)) == 15
end
end
Arrays: Test Failed
Expression: foo(ones(4)) == 15
Evaluated: 16 == 15
in record at test.jl:297
in do_test at test.jl:191
Test Summary: | Pass Fail Total
Foo Tests | 3 1 4
Animals | 2 2
Arrays | 1 1 2
ERROR: Some tests did not pass: 3 passed, 1 failed, 0 errored, 0 broken.
in finish at test.jl:362
Other Test Macros¶
As calculations on floating-point values can be imprecise, you can
perform approximate equality checks using either @test a ≈ b
(where ≈
, typed via tab completion of \approx
,
is the isapprox()
function) or use isapprox()
directly.
An alternative is the @test_approx_eq
macro (which differs from
isapprox
in that it treats NaN values as equal and has a smaller
default tolerance) or @test_approx_eq_eps
(which takes an extra
argument indicating the relative tolerance):
julia> @test 1 ≈ 0.999999999
julia> @test 1 ≈ 0.999999
ERROR: test failed: 1 isapprox 0.999999
in expression: 1 ≈ 0.999999
in error at error.jl:21
in default_handler at test.jl:30
in do_test at test.jl:53
julia> @test_approx_eq 1. 0.999999999
ERROR: assertion failed: |1.0 - 0.999999999| < 2.220446049250313e-12
1.0 = 1.0
0.999999999 = 0.999999999
in test_approx_eq at test.jl:75
in test_approx_eq at test.jl:80
julia> @test_approx_eq 1. 0.9999999999999
julia> @test_approx_eq_eps 1. 0.999 1e-2
julia> @test_approx_eq_eps 1. 0.999 1e-3
ERROR: assertion failed: |1.0 - 0.999| <= 0.001
1.0 = 1.0
0.999 = 0.999
difference = 0.0010000000000000009 > 0.001
in error at error.jl:22
in test_approx_eq at test.jl:68
Note that these macros will fail immediately, and are not compatible
with @testset()
, so using @test isapprox
is encouraged when
writing new tests.
-
@test_approx_eq
(a, b)¶ Test two floating point numbers
a
andb
for equality taking into account small numerical errors.
-
@test_approx_eq_eps
(a, b, tol)¶ Test two floating point numbers
a
andb
for equality taking into account a margin of tolerance given bytol
.
-
@inferred f(x)
Tests that the call expression
f(x)
returns a value of the same type inferred by the compiler. It is useful to check for type stability.f(x)
can be any call expression. Returns the result off(x)
if the types match, and anError
Result
if it finds different types.julia> using Base.Test julia> f(a,b,c) = b > 1 ? 1 : 1.0 f (generic function with 1 method) julia> typeof(f(1,2,3)) Int64 julia> @code_warntype f(1,2,3) ... Body: begin unless (Base.slt_int)(1,b::Int64)::Bool goto 3 return 1 3: return 1.0 end::UNION{FLOAT64,INT64} julia> @inferred f(1,2,3) ERROR: return type Int64 does not match inferred return type Union{Float64,Int64} in error(::String) at ./error.jl:21 ... julia> @inferred max(1,2) 2
Broken Tests¶
If a test fails consistently it can be changed to use the @test_broken()
macro. This will denote the test as Broken
if the test continues to fail
and alerts the user via an Error
if the test succeeds.
-
@test_broken ex
Indicates a test that should pass but currently consistently fails. Tests that the expression
ex
evaluates tofalse
or causes an exception. Returns aBroken
Result
if it does, or anError
Result
if the expression evaluates totrue
.
@test_skip()
is also available to skip a test without evaluation, but
counting the skipped test in the test set reporting. The test will not run but
gives a Broken
Result
.
-
@test_skip ex
Marks a test that should not be executed but should be included in test summary reporting as
Broken
. This can be useful for tests that intermittently fail, or tests of not-yet-implemented functionality.
Creating Custom AbstractTestSet
Types¶
Packages can create their own AbstractTestSet
subtypes by implementing the
record
and finish
methods. The subtype should have a one-argument
constructor taking a description string, with any options passed in as keyword
arguments.
-
record
(ts::AbstractTestSet, res::Result)¶ Record a result to a testset. This function is called by the
@testset
infrastructure each time a contained@test
macro completes, and is given the test result (which could be anError
). This will also be called with anError
if an exception is thrown inside the test block but outside of a@test
context.
-
finish
(ts::AbstractTestSet)¶ Do any final processing necessary for the given testset. This is called by the
@testset
infrastructure after a test block executes. One common use for this function is to record the testset to the parent’s results list, usingget_testset
.
Base.Test
takes responsibility for maintaining a stack of nested testsets as
they are executed, but any result accumulation is the responsibility of the
AbstractTestSet
subtype. You can access this stack with the get_testset
and
get_testset_depth
methods. Note that these functions are not exported.
-
get_testset
()¶ Retrieve the active test set from the task’s local storage. If no test set is active, use the fallback default test set.
-
get_testset_depth
()¶ Returns the number of active test sets, not including the defaut test set
Base.Test
also makes sure that nested @testset
invocations use the same
AbstractTestSet
subtype as their parent unless it is set explicitly. It does
not propagate any properties of the testset. Option inheritance behavior can be
implemented by packages using the stack infrastructure that Base.Test
provides.
Defining a basic AbstractTestSet
subtype might look like:
import Base.Test: record, finish
using Base.Test: AbstractTestSet, Result, Pass, Fail, Error
using Base.Test: get_testset_depth, get_testset
immutable CustomTestSet <: Base.Test.AbstractTestSet
description::AbstractString
foo::Int
results::Vector
# constructor takes a description string and options keyword arguments
CustomTestSet(desc; foo=1) = new(desc, foo, [])
end
record(ts::CustomTestSet, child::AbstractTestSet) = push!(ts.results, child)
record(ts::CustomTestSet, res::Result) = push!(ts.results, res)
function finish(ts::CustomTestSet)
# just record if we're not the top-level parent
if get_testset_depth() > 0
record(get_testset(), ts)
end
ts
end
And using that testset looks like:
@testset CustomTestSet foo=4 "custom testset inner 2" begin
# this testset should inherit the type, but not the argument.
@testset "custom testset inner" begin
@test true
end
end