Previous: , Up: descriptive-pkg   [Contents][Index]

50.4 Functions and Variables for statistical graphs

Function: barsplot (data1, data2, …, option_1, option_2, …)

Plots bars diagrams for discrete statistical variables, both for one or multiple samples.

data can be a list of outcomes representing one sample, or a matrix of m rows and n columns, representing n samples of size m each.

Available options are:

There is also a function wxbarsplot for creating embedded histograms in interfaces wxMaxima and iMaxima. barsplot in a multiplot context.

Examples:

Univariate sample in matrix form. Absolute frequencies.

(%i1) load ("descriptive")$
(%i2) m : read_matrix (file_search ("biomed.data"))$
(%i3) barsplot(
        col(m,2),
        title        = "Ages",
        xlabel       = "years",
        box_width    = 1/2,
        fill_density = 3/4)$

Two samples of different sizes, with relative frequencies and user declared colors.

(%i1) load ("descriptive")$
(%i2) l1:makelist(random(10),k,1,50)$
(%i3) l2:makelist(random(10),k,1,100)$
(%i4) barsplot(
        l1,l2,
        box_width    = 1,
        fill_density = 1,
        bars_colors  = [black, grey],
        frequency = relative,
        sample_keys = ["A", "B"])$

Four non numeric samples of equal size.

(%i1) load ("descriptive")$
(%i2) barsplot(
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        title  = "Asking for something to four groups",
        ylabel = "# of individuals",
        groups_gap   = 3,
        fill_density = 0.5,
        ordering     = ordergreatp)$

Stacked bars.

(%i1) load ("descriptive")$
(%i2) barsplot(
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        title  = "Asking for something to four groups",
        ylabel = "# of individuals",
        grouping     = stacked,
        fill_density = 0.5,
        ordering     = ordergreatp)$

For bars diagrams related options, see barsplot of package draw-pkg See also functions histogram and piechart.

Categories:  Package descriptive Plotting

Function: barsplot_description (…)

Function barsplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects.

Example: barsplot in a multiplot context.

(%i1) load ("descriptive")$
(%i2) l1:makelist(random(10),k,1,50)$
(%i3) l2:makelist(random(10),k,1,100)$
(%i4) bp1 : 
        barsplot_description(
         l1,
         box_width = 1,
         fill_density = 0.5,
         bars_colors = [blue],
         frequency = relative)$
(%i5) bp2 : 
        barsplot_description(
         l2,
         box_width = 1,
         fill_density = 0.5,
         bars_colors = [red],
         frequency = relative)$
(%i6) draw(gr2d(bp1), gr2d(bp2))$

Categories:  Package descriptive Plotting

Function: boxplot (data)
    boxplot (data, option_1, option_2, …)

This function plots box-and-whisker diagrams. Argument data can be a list, which is not of great interest, since these diagrams are mainly used for comparing different samples, or a matrix, so it is possible to compare two or more components of a multivariate statistical variable. But it is also allowed data to be a list of samples with possible different sample sizes, in fact this is the only function in package descriptive that admits this type of data structure.

The box is plotted from the first quartile to the third, with an horizontal segment situated at the second quartile or median. By default, lower and upper whiskers are plotted at the minimum and maximum values, respectively. Option range can be used to indicate that values greater than quantile(x,3/4)+range*(quantile(x,3/4)-quantile(x,1/4)) or less than quantile(x,1/4)-range*(quantile(x,3/4)-quantile(x,1/4)) must be considered as outliers, in which case they are plotted as isolated points, and the whiskers are located at the extremes of the rest of the sample.

Available options are:

There is also a function wxboxplot for creating embedded histograms in interfaces wxMaxima and iMaxima.

Examples:

Box-and-whisker diagram from a multivariate sample.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix(file_search("wind.data"))$
(%i3) boxplot(s2,
        box_width  = 0.2,
        title      = "Windspeed in knots",
        xlabel     = "Stations",
        color      = red,
        line_width = 2)$

Box-and-whisker diagram from three samples of different sizes.

(%i1) load ("descriptive")$
(%i2) A :
       [[6, 4, 6, 2, 4, 8, 6, 4, 6, 4, 3, 2],
        [8, 10, 7, 9, 12, 8, 10],
        [16, 13, 17, 12, 11, 18, 13, 18, 14, 12]]$
(%i3) boxplot (A, box_orientation = horizontal)$

Option range can be used to handle outliers.

(%i1) load ("descriptive")$
(%i2) B: [[7, 15, 5, 8, 6, 5, 7, 3, 1],
          [10, 8, 12, 8, 11, 9, 20],
          [23, 17, 19, 7, 22, 19]] $
(%i3) boxplot (B, range=1)$
(%i4) boxplot (B, range=1.5, box_orientation = horizontal)$
(%i5) draw2d(
        boxplot_description(
          B,
          range            = 1.5,
          line_width       = 3,
          outliers_size    = 2,
          color            = red,
          background_color = light_gray),
        xtics = {["Low",1],["Medium",2],["High",3]}) $

Categories:  Package descriptive Plotting

Function: boxplot_description (…)

Function boxplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects.

Categories:  Package descriptive Plotting

Function: histogram
    histogram (list)
    histogram (list, option_1, option_2, …)
    histogram (one_column_matrix)
    histogram (one_column_matrix, option_1, option_2, …)
    histogram (one_row_matrix)
    histogram (one_row_matrix, option_1, option_2, …)

This function plots an histogram from a continuous sample. Sample data must be stored in a list of numbers or an one dimensional matrix.

Available options are:

There is also a function wxhistogram for creating embedded histograms in interfaces wxMaxima and iMaxima.

Examples:

A simple with eight classes:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (
           s1,
           nclasses     = 8,
           title        = "pi digits",
           xlabel       = "digits",
           ylabel       = "Absolute frequency",
           fill_color   = grey,
           fill_density = 0.6)$

Setting the limits of the histogram to -2 and 12, with 3 classes. Also, we introduce predefined tics:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (
           s1,
           nclasses     = [-2,12,3],
           htics        = ["A", "B", "C"],
           terminal     = png,
           fill_color   = "#23afa0",
           fill_density = 0.6)$

Bounds for varying bin widths.

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (s1, nclasses = {0,3,6,7,11})$

Freedmann - Diakonis robust method for optimal search of the number of classes.

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram(s1, nclasses=fd) $

Categories:  Package descriptive Plotting

Function: histogram_description (…)

Function histogram_description creates a graphic object suitable for creating complex scenes, together with other graphic objects. We make use of histogram_description for setting the xrange and adding an explicit curve into the scene:

(%i1) load ("descriptive")$
(%i2) ( load("distrib"),
        m: 14, s: 2,
        s2: random_normal(m, s, 1000) ) $
(%i3) draw2d(
        grid   = true,
        xrange = [5, 25],
        histogram_description(
          s2,
          nclasses     = 9,
          frequency    = density,
          fill_density = 0.5),
        explicit(pdf_normal(x,m,s), x, m - 3*s, m + 3* s))$

Categories:  Package descriptive Plotting

Function: piechart
    piechart (list)
    piechart (list, option_1, option_2, …)
    piechart (one_column_matrix)
    piechart (one_column_matrix, option_1, option_2, …)
    piechart (one_row_matrix)
    piechart (one_row_matrix, option_1, option_2, …)

Similar to barsplot, but plots sectors instead of rectangles.

Available options are:

There is also a function wxpiechart for creating embedded histograms in interfaces wxMaxima and iMaxima.

Example:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) piechart(
        s1,
        xrange  = [-1.1, 1.3],
        yrange  = [-1.1, 1.1],
        title   = "Digit frequencies in pi")$

See also function barsplot.

Categories:  Package descriptive Plotting

Function: piechart_description (…)

Function piechart_description creates a graphic object suitable for creating complex scenes, together with other graphic objects.

Categories:  Package descriptive Plotting

Function: scatterplot
    scatterplot (list)
    scatterplot (list, option_1, option_2, …)
    scatterplot (matrix)
    scatterplot (matrix, option_1, option_2, …)

Plots scatter diagrams both for univariate (list) and multivariate (matrix) samples.

Available options are the same admitted by histogram.

There is also a function wxscatterplot for creating embedded histograms in interfaces wxMaxima and iMaxima.

Examples:

Univariate scatter diagram from a simulated Gaussian sample.

(%i1) load ("descriptive")$
(%i2) load ("distrib")$
(%i3) scatterplot(
        random_normal(0,1,200),
        xaxis      = true,
        point_size = 2,
        dimensions = [600,150])$

Two dimensional scatter plot.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(
       submatrix(s2, 1,2,3),
       title      = "Data from stations #4 and #5",
       point_type = diamant,
       point_size = 2,
       color      = blue)$

Three dimensional scatter plot.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(submatrix (s2, 1,2), nclasses=4)$

Five dimensional scatter plot, with five classes histograms.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(
        s2,
        nclasses     = 5,
        frequency    = relative,
        fill_color   = blue,
        fill_density = 0.3,
        xtics        = 5)$

For plotting isolated or line-joined points in two and three dimensions, see points. See also histogram.

Categories:  Package descriptive Plotting

Function: scatterplot_description (…)

Function scatterplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects.

Categories:  Package descriptive Plotting

Function: starplot (data1, data2, …, option_1, option_2, …)

Plots star diagrams for discrete statistical variables, both for one or multiple samples.

data can be a list of outcomes representing one sample, or a matrix of m rows and n columns, representing n samples of size m each.

Available options are:

There is also a function wxstarplot for creating embedded histograms in interfaces wxMaxima and iMaxima.

Example:

Plot based on absolute frequencies. Location and radius defined by the user.

(%i1) load ("descriptive")$
(%i2) l1: makelist(random(10),k,1,50)$
(%i3) l2: makelist(random(10),k,1,200)$
(%i4) starplot(
        l1, l2,
        stars_colors = [blue,red],
        sample_keys = ["1st sample", "2nd sample"],
        star_center = [1,2],
        star_radius = 4,
        proportional_axes = xy,
        line_width = 2 ) $ 

Categories:  Package descriptive Plotting

Function: starplot_description (…)

Function starplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects.

Categories:  Package descriptive Plotting

Function: stemplot
    stemplot (data)
    stemplot (data, option)

Plots stem and leaf diagrams.

Unique available option is:

Example:

(%i1) load ("descriptive")$
(%i2) load(distrib)$
(%i3) stemplot(
        random_normal(15, 6, 100),
        leaf_unit = 0.1);
-5|4
 0|37
 1|7
 3|6
 4|4
 5|4
 6|57
 7|0149
 8|3
 9|1334588
10|07888
11|01144467789
12|12566889
13|24778
14|047
15|223458
16|4
17|11557
18|000247
19|4467799
20|00
21|1
22|2335
23|01457
24|12356
25|455
27|79
key: 6|3 =  6.3
(%o3)                  done

Categories:  Package descriptive Plotting


Previous: , Up: descriptive-pkg   [Contents][Index]