Chapter 7. InnoDB Performance and Scalability Enhancements

Table of Contents

7.1. Overview of InnoDB Performance
7.2. Faster Locking for Improved Scalability
7.3. Using Operating System Memory Allocators
7.4. Controlling InnoDB Change Buffering
7.5. Controlling Adaptive Hash Indexing
7.6. Changes Regarding Thread Concurrency
7.7. Changes in the Read-Ahead Algorithm
7.8. Multiple Background I/O Threads
7.9. Asynchronous I/O on Linux
7.10. Group Commit
7.11. Controlling the Master Thread I/O Rate
7.12. Controlling the Flushing Rate of Dirty Pages
7.13. Using the PAUSE Instruction in InnoDB Spin Loops
7.14. Control of Spin Lock Polling
7.15. Making Buffer Pool Scan Resistant
7.16. Improvements to Crash Recovery Performance
7.17. Integration with MySQL PERFORMANCE_SCHEMA
7.18. Improvements to Performance from Multiple Buffer Pools
7.19. Better Scalability with Multiple Rollback Segments
7.20. Better Scalability with Improved Purge Scheduling
7.21. Improved Log Sys Mutex
7.22. Separate Flush List Mutex

This section discusses recent InnoDB enhancements to performance and scalability, covering the performance features in InnoDB 1.1 with MySQL 5.5, and the features in the InnoDB Plugin for MySQL 5.1. This information is useful to any DBA or developer who is concerned with performance and scalability. Although some of the enhancements do not require any action on your part, knowing this information can still help you diagnose performance issues more quickly and modernize systems and applications that rely on older, inefficient behavior.

7.1. Overview of InnoDB Performance

InnoDB has always been highly efficient, and includes several unique architectural elements to assure high performance and scalability. The latest InnoDB storage engine includes new features that take advantage of advances in operating systems and hardware platforms, such as multi-core processors and improved memory allocation systems. In addition, new configuration options let you better control some InnoDB internal subsystems to achieve the best performance with your workload.

Starting with MySQL 5.5 and InnoDB 1.1, the built-in InnoDB storage engine within MySQL is upgraded to the full feature set and performance of the former InnoDB Plugin. This change makes these performance and scalability enhancements available to a much wider audience than before, and eliminates the separate installation step of the InnoDB Plugin. After learning about the InnoDB performance features in this section, continue with Optimization to learn the best practices for overall MySQL performance, and Optimizing for InnoDB Tables in particular for InnoDB tips and guidelines.

7.2. Faster Locking for Improved Scalability

In MySQL and InnoDB, multiple threads of execution access shared data structures. InnoDB synchronizes these accesses with its own implementation of mutexes and read/write locks. InnoDB has historically protected the internal state of a read/write lock with an InnoDB mutex. On Unix and Linux platforms, the internal state of an InnoDB mutex is protected by a Pthreads mutex, as in IEEE Std 1003.1c (POSIX.1c).

On many platforms, there is a more efficient way to implement mutexes and read/write locks. Atomic operations can often be used to synchronize the actions of multiple threads more efficiently than Pthreads. Each operation to acquire or release a lock can be done in fewer CPU instructions, and thus result in less wasted time when threads are contending for access to shared data structures. This in turn means greater scalability on multi-core platforms.

InnoDB implements mutexes and read/write locks with the built-in functions provided by the GNU Compiler Collection (GCC) for atomic memory access instead of using the Pthreads approach previously used. More specifically, an InnoDB that is compiled with GCC version 4.1.2 or later uses the atomic builtins instead of a pthread_mutex_t to implement InnoDB mutexes and read/write locks.

On 32-bit Microsoft Windows, InnoDB has implemented mutexes (but not read/write locks) with hand-written assembler instructions. Beginning with Microsoft Windows 2000, functions for Interlocked Variable Access are available that are similar to the built-in functions provided by GCC. On Windows 2000 and higher, InnoDB makes use of the Interlocked functions. Unlike the old hand-written assembler code, the new implementation supports read/write locks and 64-bit platforms.

Solaris 10 introduced library functions for atomic operations, and InnoDB uses these functions by default. When MySQL is compiled on Solaris 10 with a compiler that does not support the built-in functions provided by the GNU Compiler Collection (GCC) for atomic memory access, InnoDB uses the library functions.

This change improves the scalability of InnoDB on multi-core systems. This feature is enabled out-of-the-box on the platforms where it is supported. You do not have to set any parameter or option to take advantage of the improved performance. On platforms where the GCC, Windows, or Solaris functions for atomic memory access are not available, InnoDB uses the traditional Pthreads method of implementing mutexes and read/write locks.

When MySQL starts, InnoDB writes a message to the log file indicating whether atomic memory access is used for mutexes, for mutexes and read/write locks, or neither. If suitable tools are used to build InnoDB and the target CPU supports the atomic operations required, InnoDB uses the built-in functions for mutexing. If, in addition, the compare-and-swap operation can be used on thread identifiers (pthread_t), then InnoDB uses the instructions for read-write locks as well.

Note: If you are building from source, ensure that the build process properly takes advantage of your platform capabilities.

For more information about the performance implications of locking, see Optimizing Locking Operations.

7.3. Using Operating System Memory Allocators

When InnoDB was developed, the memory allocators supplied with operating systems and run-time libraries were often lacking in performance and scalability. At that time, there were no memory allocator libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the mem subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB also implements a wrapper interface around the system allocator (malloc and free) that is likewise guarded by a single mutex.

Today, as multi-core systems have become more widely available, and as operating systems have matured, significant improvements have been made in the memory allocators provided with operating systems. New memory allocators perform better and are more scalable than they were in the past. The leading high-performance memory allocators include Hoard, libumem, mtmalloc, ptmalloc, tbbmalloc, and TCMalloc. Most workloads, especially those where memory is frequently allocated and released (such as multi-table joins), benefit from using a more highly tuned memory allocator as opposed to the internal, InnoDB-specific memory allocator.

You can control whether InnoDB uses its own memory allocator or an allocator of the operating system, by setting the value of the system configuration parameter innodb_use_sys_malloc in the MySQL option file (my.cnf or my.ini). If set to ON or 1 (the default), InnoDB uses the malloc and free functions of the underlying system rather than manage memory pools itself. This parameter is not dynamic, and takes effect only when the system is started. To continue to use the InnoDB memory allocator, set innodb_use_sys_malloc to 0.

Note

When the InnoDB memory allocator is disabled, InnoDB ignores the value of the parameter innodb_additional_mem_pool_size. The InnoDB memory allocator uses an additional memory pool for satisfying allocation requests without having to fall back to the system memory allocator. When the InnoDB memory allocator is disabled, all such allocation requests are fulfilled by the system memory allocator.

On Unix-like systems that use dynamic linking, replacing the memory allocator may be as easy as making the environment variable LD_PRELOAD or LD_LIBRARY_PATH point to the dynamic library that implements the allocator. On other systems, some relinking may be necessary. Please refer to the documentation of the memory allocator library of your choice.

Since InnoDB cannot track all memory use when the system memory allocator is used (innodb_use_sys_malloc is ON), the section BUFFER POOL AND MEMORY in the output of the SHOW ENGINE INNODB STATUS command only includes the buffer pool statistics in the Total memory allocated. Any memory allocated using the mem subsystem or using ut_malloc is excluded.

For more information about the performance implications of InnoDB memory usage, see Buffering and Caching.

7.4. Controlling InnoDB Change Buffering

When INSERT, UPDATE, and DELETE operations are done to a table, often the values of indexed columns (particularly the values of secondary keys) are not in sorted order, requiring substantial I/O to bring secondary indexes up to date. InnoDB has an insert buffer that caches changes to secondary index entries when the relevant page is not in the buffer pool, thus avoiding I/O operations by not reading in the page from the disk. The buffered changes are merged when the page is loaded to the buffer pool, and the updated page is later flushed to disk using the normal mechanism. The InnoDB main thread merges buffered changes when the server is nearly idle, and during a slow shutdown.

Because it can result in fewer disk reads and writes, this feature is most valuable for workloads that are I/O-bound, for example applications with a high volume of DML operations such as bulk inserts.

However, the insert buffer occupies a part of the buffer pool, reducing the memory available to cache data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few secondary indexes, it may be useful to disable insert buffering. If the working set entirely fits in the buffer pool, insert buffering does not impose any extra overhead, because it only applies to pages that are not in the buffer pool.

You can control the extent to which InnoDB performs insert buffering with the system configuration parameter innodb_change_buffering. You can turn on and off buffering for inserts, delete operations (when index records are initially marked for deletion) and purge operations (when index records are physically deleted). An update operation is represented as a combination of an insert and a delete. In MySQL 5.5 and higher, the default value is changed from inserts to all.

The allowed values of innodb_change_buffering are:

  • all

    The default value: buffer inserts, delete-marking operations, and purges.

  • none

    Do not buffer any operations.

  • inserts

    Buffer insert operations.

  • deletes

    Buffer delete-marking operations.

  • changes

    Buffer both inserts and delete-marking.

  • purges

    Buffer the physical deletion operations that happen in the background.

You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege. Changing the setting affects the buffering of new operations; the merging of already buffered entries is not affected.

For more information about speeding up INSERT, UPDATE, and DELETE statements, see Optimizing DML Statements.

7.5. Controlling Adaptive Hash Indexing

If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash indexes rather than B-tree lookups. MySQL monitors searches on each index defined for an InnoDB table. If it notices that certain index values are being accessed frequently, it automatically builds an in-memory hash table for that index. See Adaptive Hash Indexes for background information and usage guidelines for the adaptive hash index feature and the innodb_adaptive_hash_index configuration option.

7.6. Changes Regarding Thread Concurrency

InnoDB uses operating system threads to process requests from user transactions. (Transactions may issue many requests to InnoDB before they commit or roll back.) On modern operating systems and servers with multi-core processors, where context switching is efficient, most workloads run well without any limit on the number of concurrent threads. Scalability improvements in MySQL 5.5 and up reduce the need to limit the number of concurrently executing threads inside InnoDB.

In situations where it is helpful to minimize context switching between threads, InnoDB can use a number of techniques to limit the number of concurrently executing operating system threads (and thus the number of requests that are processed at any one time). When InnoDB receives a new request from a user session, if the number of threads concurrently executing is at a pre-defined limit, the new request sleeps for a short time before it tries again. A request that cannot be rescheduled after the sleep is put in a first-in/first-out queue and eventually is processed. Threads waiting for locks are not counted in the number of concurrently executing threads.

You can limit the number of concurrent threads by setting the configuration parameter innodb_thread_concurrency. Once the number of executing threads reaches this limit, additional threads sleep for a number of microseconds, set by the configuration parameter innodb_thread_sleep_delay, before being placed into the queue.

The default value for innodb_thread_concurrency and the implied default limit on the number of concurrent threads has been changed in various releases of MySQL and InnoDB. Currently, the default value of innodb_thread_concurrency is 0, so that by default there is no limit on the number of concurrently executing threads, as shown in Table 7.1, “Changes to innodb_thread_concurrency.

Table 7.1. Changes to innodb_thread_concurrency

InnoDB VersionMySQL VersionDefault valueDefault limit of concurrent threadsValue to allow unlimited threads
Built-inEarlier than 5.1.1120No limit20 or higher
Built-in5.1.11 and newer880
InnoDB before 1.0.3(corresponding to Plugin)880
InnoDB 1.0.3 and newer(corresponding to Plugin)0No limit0

Note that InnoDB causes threads to sleep only when the number of concurrent threads is limited. When there is no limit on the number of threads, all contend equally to be scheduled. That is, if innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads, InnoDB reduces context switching overhead by permitting multiple requests made during the execution of a single SQL statement to enter InnoDB without observing the limit set by innodb_thread_concurrency. Since an SQL statement (such as a join) may comprise multiple row operations within InnoDB, InnoDB assigns tickets that allow a thread to be scheduled repeatedly with minimal overhead.

When a new SQL statement starts, a thread has no tickets, and it must observe innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned a number of tickets that it can use for subsequently entering InnoDB. If the tickets run out, innodb_thread_concurrency is observed again and further tickets are assigned. The number of tickets to assign is specified by the global option innodb_concurrency_tickets, which is 500 by default. A thread that is waiting for a lock is given one ticket once the lock becomes available.

The correct values of these variables depend on your environment and workload. Try a range of different values to determine what value works for your applications. Before limiting the number of concurrently executing threads, review configuration options that may improve the performance of InnoDB on multi-core and multi-processor computers, such as innodb_use_sys_malloc and innodb_adaptive_hash_index.

For general performance information about MySQL thread handling, see How MySQL Uses Threads for Client Connections.

7.7. Changes in the Read-Ahead Algorithm

A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously, in anticipation that these pages will be needed soon. InnoDB uses or has used two read-ahead algorithms to improve I/O performance:

Linear read-ahead is based on the access pattern of the pages in the buffer pool, not just their number. You can control when InnoDB performs a read-ahead operation by adjusting the number of sequential page accesses required to trigger an asynchronous read request, using the configuration parameter innodb_read_ahead_threshold. Before this parameter was added, InnoDB would only calculate whether to issue an asynchronous prefetch request for the entire next extent when it read in the last page of the current extent.

Random read-ahead is a former technique that has now been removed as of MySQL 5.5. If a certain number of pages from the same extent (64 consecutive pages) were found in the buffer pool, InnoDB asynchronously issued a request to prefetch the remaining pages of the extent. Random read-ahead added unnecessary complexity to the InnoDB code and often resulted in performance degradation rather than improvement. This feature is no longer part of InnoDB, and users should generally see equivalent or improved performance.

If the number of pages read from an extent of 64 pages is greater or equal to innodb_read_ahead_threshold, InnoDB initiates an asynchronous read-ahead operation of the entire following extent. Thus, this parameter controls how sensitive InnoDB is to the pattern of page accesses within an extent in deciding whether to read the following extent asynchronously. The higher the value, the more strict the access pattern check. For example, if you set the value to 48, InnoDB triggers a linear read-ahead request only when 48 pages in the current extent have been accessed sequentially. If the value is 8, InnoDB would trigger an asynchronous read-ahead even if as few as 8 pages in the extent were accessed sequentially.

The new configuration parameter innodb_read_ahead_threshold can be set to any value from 0-64. The default value is 56, meaning that an asynchronous read-ahead is performed only when 56 of the 64 pages in the extent are accessed sequentially. You can set the value of this parameter in the MySQL option file (my.cnf or my.ini), or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.

The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate the effectiveness of the read-ahead algorithm. See Section 8.8, “More Read-Ahead Statistics” for more information.

For more information about I/O performance, see Optimizing InnoDB Disk I/O and Optimizing Disk I/O.

7.8. Multiple Background I/O Threads

InnoDB uses background threads to service various types of I/O requests. You can configure the number of background threads that service read and write I/O on data pages, using the configuration parameters innodb_read_io_threads and innodb_write_io_threads. These parameters signify the number of background threads used for read and write requests respectively. They are effective on all supported platforms. You can set the value of these parameters in the MySQL option file (my.cnf or my.ini); you cannot change them dynamically. The default value for these parameters is 4 and the permissible values range from 1-64.

These parameters replace innodb_file_io_threads from earlier versions of MySQL. If you try to set a value for this obsolete parameter, a warning is written to the log file and the value is ignored. This parameter only applied to Windows platforms. (On non-Windows platforms, there was only one thread each for read and write.)

The purpose of this change is to make InnoDB more scalable on high end systems. Each background thread can handle up to 256 pending I/O requests. A major source of background I/O is theread-ahead requests. InnoDB tries to balance the load of incoming requests in such way that most of the background threads share work equally. InnoDB also attempts to allocate read requests from the same extent to the same thread to increase the chances of coalescing the requests together. If you have a high end I/O subsystem and you see more than 64 × innodb_read_io_threads pending read requests in SHOW ENGINE INNODB STATUS, you might gain by increasing the value of innodb_read_io_threads.

For more information about InnoDB I/O performance, see Optimizing InnoDB Disk I/O.

7.9. Asynchronous I/O on Linux

Starting in InnoDB 1.1 with MySQL 5.5, the asynchronous I/O capability that InnoDB has had on Windows systems is now available on Linux systems. (Other Unix-like systems continue to use synchronous I/O calls.) This feature improves the scalability of heavily I/O-bound systems, which typically show many pending reads/writes in the output of the command SHOW ENGINE INNODB STATUS\G.

Running with a large number of InnoDB I/O threads, and especially running multiple such instances on the same server machine, can exceed capacity limits on Linux systems. In this case, you can fix the error:

EAGAIN: The specified maxevents exceeds the user's limit of available events. 

by writing a higher limit to /proc/sys/fs/aio-max-nr.

In general, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting, set the option innodb_use_native_aio=0 in the configuration file. This new configuration option applies to Linux systems only, and cannot be changed once the server is running.

For more information about InnoDB I/O performance, see Optimizing InnoDB Disk I/O.

7.10. Group Commit

InnoDB, like any other ACID-compliant database engine, flushes the redo log of a transaction before it is committed. Historically, InnoDB used group commit functionality to group multiple such flush requests together to avoid one flush for each commit. With group commit, InnoDB issues a single write to the log file to perform the commit action for multiple user transactions that commit at about the same time, significantly improving throughput.

Group commit in InnoDB worked until MySQL 4.x, and works once again with MySQL 5.1 with the InnoDB Plugin, and MySQL 5.5 and higher. The introduction of support for the distributed transactions and Two Phase Commit (2PC) in MySQL 5.0 interfered with the InnoDB group commit functionality. This issue is now resolved.

The group commit functionality inside InnoDB works with the Two Phase Commit protocol in MySQL. Re-enabling of the group commit functionality fully ensures that the ordering of commit in the MySQL binlog and the InnoDB logfile is the same as it was before. It means it is totally safe to use MySQL Enterprise Backup with InnoDB 1.0.4 (that is, the InnoDB Plugin with MySQL 5.1) and above. When the binlog is enabled, you typically also set the configuration option sync_binlog=0, because group commit for the binary log is only supported if it is set to 0.

Group commit is transparent; you do not need to do anything to take advantage of this significant performance improvement.

For more information about performance of COMMIT and other transactional operations, see Optimizing InnoDB Transaction Management.

7.11. Controlling the Master Thread I/O Rate

The master thread in InnoDB is a thread that performs various tasks in the background. Most of these tasks are I/O related, such as flushing dirty pages from the buffer pool or writing changes from the insert buffer to the appropriate secondary indexes. The master thread attempts to perform these tasks in a way that does not adversely affect the normal working of the server. It tries to estimate the free I/O bandwidth available and tune its activities to take advantage of this free capacity. Historically, InnoDB has used a hard coded value of 100 IOPs (input/output operations per second) as the total I/O capacity of the server.

The parameter innodb_io_capacity indicates the overall I/O capacity available to InnoDB. This parameter should be set to approximately the number of I/O operations that the system can perform per second. The value depends on your system configuration. When innodb_io_capacity is set, the master threads estimates the I/O bandwidth available for background tasks based on the set value. Setting the value to 100 reverts to the old behavior.

You can set the value of innodb_io_capacity to any number 100 or greater. The default value is 200, reflecting that the performance of typical modern I/O devices is higher than in the early days of MySQL. Typically, values around the previous default of 100 are appropriate for consumer-level storage devices, such as hard drives up to 7200 RPMs. Faster hard drives, RAID configurations, and SSDs benefit from higher values.

You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.

For more information about InnoDB I/O performance, see Optimizing InnoDB Disk I/O.

7.12. Controlling the Flushing Rate of Dirty Pages

InnoDB performs certain tasks in the background, including flushing of dirty pages (those pages that have been changed but are not yet written to the database files) from the buffer pool, a task performed by the master thread. Currently, InnoDB aggressively flushes buffer pool pages if the percentage of dirty pages in the buffer pool exceeds innodb_max_dirty_pages_pct.

InnoDB uses a new algorithm to estimate the required rate of flushing, based on the speed of redo log generation and the current rate of flushing. The intent is to smooth overall performance by ensuring that buffer flush activity keeps up with the need to keep the buffer pool clean. Automatically adjusting the rate of flushing can help to avoid steep dips in throughput, when excessive buffer pool flushing limits the I/O capacity available for ordinary read and write activity.

InnoDB uses its log files in a circular fashion. Before reusing a portion of a log file, InnoDB flushes to disk all dirty buffer pool pages whose redo entries are contained in that portion of the log file, a process known as a sharp checkpoint. If a workload is write-intensive, it generates a lot of redo information, all written to the log file. If all available space in the log files is used up, a sharp checkpoint occurs, causing a temporary reduction in throughput. This situation can happen even though innodb_max_dirty_pages_pct is not reached.

InnoDB uses a heuristic-based algorithm to avoid such a scenario, by measuring the number of dirty pages in the buffer pool and the rate at which redo is being generated. Based on these numbers, InnoDB decides how many dirty pages to flush from the buffer pool each second. This self-adapting algorithm is able to deal with sudden changes in the workload.

Internal benchmarking has also shown that this algorithm not only maintains throughput over time, but can also improve overall throughput significantly.

Because adaptive flushing is a new feature that can significantly affect the I/O pattern of a workload, a new configuration parameter lets you turn off this feature. The default value of the boolean parameter innodb_adaptive_flushing is TRUE, enabling the new algorithm. You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.

For more information about InnoDB I/O performance, see Optimizing InnoDB Disk I/O.

7.13. Using the PAUSE Instruction in InnoDB Spin Loops

Synchronization inside InnoDB frequently involves the use of spin loops: while waiting, InnoDB executes a tight loop of instructions repeatedly to avoid having the InnoDB process and threads be rescheduled by the operating system. If the spin loops are executed too quickly, system resources are wasted, imposing a performance penalty on transaction throughput. Most modern processors implement the PAUSE instruction for use in spin loops, so the processor can be more efficient.

InnoDB uses a PAUSE instruction in its spin loops on all platforms where such an instruction is available. This technique increases overall performance with CPU-bound workloads, and has the added benefit of minimizing power consumption during the execution of the spin loops.

You do not have to do anything to take advantage of this performance improvement.

For performance considerations for InnoDB locking operations, see Optimizing Locking Operations.

7.14. Control of Spin Lock Polling

Many InnoDB mutexes and rw-locks are reserved for a short time. On a multi-core system, it can be more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a while before sleeping. If the mutex or rw-lock becomes available during this polling period, the thread can continue immediately, in the same time slice. However, too-frequent polling by multiple threads of a shared object can cause cache ping pong, different processors invalidating portions of each others' cache. InnoDB minimizes this issue by waiting a random time between subsequent polls. The delay is implemented as a busy loop.

You can control the maximum delay between testing a mutex or rw-lock using the parameter innodb_spin_wait_delay. The duration of the delay loop depends on the C compiler and the target processor. (In the 100MHz Pentium era, the unit of delay was one microsecond.) On a system where all processor cores share a fast cache memory, you might reduce the maximum delay or disable the busy loop altogether by setting innodb_spin_wait_delay=0. On a system with multiple processor chips, the effect of cache invalidation can be more significant and you might increase the maximum delay.

The default value of innodb_spin_wait_delay is 6. The spin wait delay is a dynamic global parameter that you can specify in the MySQL option file (my.cnf or my.ini) or change at runtime with the command SET GLOBAL innodb_spin_wait_delay=delay, where delay is the desired maximum delay. Changing the setting requires the SUPER privilege.

For performance considerations for InnoDB locking operations, see Optimizing Locking Operations.

7.15. Making Buffer Pool Scan Resistant

Rather than using a strictly LRU algorithm, InnoDB uses a technique to minimize the amount of data that is brought into the buffer pool and never accessed again. The goal is to make sure that frequently accessed (hot) pages remain in the buffer pool, even as read-ahead and full table scans bring in new blocks that might or might not be accessed afterward.

Newly read blocks are inserted into the middle of the list representing the buffer pool. of the LRU list. All newly read pages are inserted at a location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list (the most-recently used end) when they are accessed in the buffer pool for the first time. Thus pages that are never accessed never make it to the front portion of the LRU list, and age out sooner than with a strict LRU approach. This arrangement divides the LRU list into two segments, where the pages downstream of the insertion point are considered old and are desirable victims for LRU eviction.

For an explanation of the inner workings of the InnoDB buffer pool and the specifics of its LRU replacement algorithm, see The InnoDB Buffer Pool.

You can control the insertion point in the LRU list, and choose whether InnoDB applies the same optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter innodb_old_blocks_pct controls the percentage of old blocks in the LRU list. The default value of innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5 (new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot pages, making the algorithm close to the familiar LRU strategy).

The optimization that keeps the buffer pool from being churned by read-ahead can avoid similar problems due to table or index scans. In these scans, a data page is typically accessed a few times in quick succession and is never touched again. The configuration parameter innodb_old_blocks_time specifies the time window (in milliseconds) after the first access to a page during which it can be accessed without being moved to the front (most-recently used end) of the LRU list. The default value of innodb_old_blocks_time is 0, corresponding to the original behavior of moving a page to the most-recently used end of the buffer pool list when it is first accessed in the buffer pool. Increasing this value makes more and more blocks likely to age out faster from the buffer pool.

Both the new parameters innodb_old_blocks_pct and innodb_old_blocks_time are dynamic, global and can be specified in the MySQL option file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL command. Changing the setting requires the SUPER privilege.

To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS command reports additional statistics. The BUFFER POOL AND MEMORY section now looks like:

Total memory allocated 1107296256; in additional pool allocated 0
Dictionary memory allocated 80360
Buffer pool size   65535
Free buffers       0
Database pages     63920
Old database pages 23600
Modified db pages  34969
Pending reads 32
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 414946, not young 2930673
1274.75 youngs/s, 16521.90 non-youngs/s
Pages read 486005, created 3178, written 160585
2132.37 reads/s, 3.40 creates/s, 323.74 writes/s
Buffer pool hit rate 950 / 1000, young-making rate 30 / 1000 not 392 / 1000
Pages read ahead 1510.10/s, evicted without access 0.00/s
LRU len: 63920, unzip_LRU len: 0
I/O sum[43690]:cur[221], unzip sum[0]:cur[0]
  • Old database pages is the number of pages in the old segment of the LRU list.

  • Pages made young and not young is the total number of old pages that have been made young or not respectively.

  • youngs/s and non-young/s is the rate at which page accesses to the old pages have resulted in making such pages young or otherwise respectively since the last invocation of the command.

  • young-making rate and not provides the same rate but in terms of overall buffer pool accesses instead of accesses just to the old pages.

Because the effects of these parameters can vary widely based on your hardware configuration, your data, and the details of your workload, always benchmark to verify the effectiveness before changing these settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help keep the working set of the normal workload in the buffer pool.

When scanning large tables that cannot fit entirely in the buffer pool, setting innodb_old_blocks_pct to a small value keeps the data that is only read once from consuming a significant portion of the buffer pool. For example, setting innodb_old_blocks_pct=5 restricts this data that is only read once to 5% of the buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around within the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even higher, such as innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To arrive at an optimal value, conduct your own benchmarks if the performance improvement from adjusting innodb_old_blocks_pct is not sufficient.

For more information about the InnoDB buffer pool, see The InnoDB Buffer Pool.

7.16. Improvements to Crash Recovery Performance

A number of optimizations speed up certain steps of the recovery that happens on the next startup after a crash. In particular, scanning the redo log and applying the redo log are faster than in MySQL 5.1 and earlier, due to improved algorithms for memory management. You do not need to take any actions to take advantage of this performance enhancement. If you kept the size of your redo log files artificially low because recovery took a long time, you can consider increasing the file size.

For more information about InnoDB recovery, see The InnoDB Recovery Process.

7.17. Integration with MySQL PERFORMANCE_SCHEMA

Starting with InnoDB 1.1 with MySQL 5.5, you can profile certain internal InnoDB operations using the MySQL Performance Schema feature. This type of tuning is primarily for expert users, those who push the limits of MySQL performance, read the MySQL source code, and evaluate optimization strategies to overcome performance bottlenecks. DBAs can also use this feature for capacity planning, to see whether their typical workload encounters any performance bottlenecks with a particular combination of CPU, RAM, and disk storage; and if so, to judge whether performance can be improved by increasing the capacity of some part of the system.

To use this feature to examine InnoDB performance:

  • You must be running MySQL 5.5 or higher. You must build the database server from source, enabling the Performance Schema feature by building with the --with-perfschema option. Since the Performance Schema feature introduces some performance overhead, you should use it on a test or development system rather than on a production system.

  • You must be running InnoDB 1.1 or higher.

  • You must be generally familiar with how to use the Performance Schema feature, for example to query tables in the performance_schema database.

  • Examine the following kinds of InnoDB objects by querying the appropriate performance_schema tables. The items associated with InnoDB all contain the substring innodb in the NAME column.

    For the definitions of the *_instances tables, see Performance Schema Instance Tables. For the definitions of the *_summary_* tables, see Performance Schema Summary Tables. For the definition of the thread table, see Performance Schema Miscellaneous Tables. For the definition of the *_current_* and *_history_* tables, see Performance Schema Wait Event Tables.

    • Mutexes in the mutex_instances table. (Mutexes and RW-locks related to the InnoDB buffer pool are not included in this coverage; the same applies to the output of the SHOW ENGINE INNODB MUTEX command.)

    • RW-locks in the rwlock_instances table.

    • RW-locks in the rwlock_instances table.

    • File I/O operations in the file_instances, file_summary_by_event_name, and file_summary_by_instance tables.

    • Threads in the PROCESSLIST table.

  • During performance testing, examine the performance data in the events_waits_current and events_waits_history_long tables. If you are interested especially in InnoDB-related objects, use the clause where name like "%innodb%" to see just those entries; otherwise, examine the performance statistics for the overall MySQL server.

  • You must be running MySQL 5.5, with the Performance Schema enabled by building with the --with-perfschema build option.

For more information about the MySQL Performance Schema, see MySQL Performance Schema.

7.18. Improvements to Performance from Multiple Buffer Pools

This performance enhancement is primarily useful for people with a large buffer pool size, typically in the multi-gigabyte range. To take advantage of this speedup, you must set the new innodb_buffer_pool_instances configuration option, and you might also adjust the innodb_buffer_pool_size value.

When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory. You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. Starting in InnoDB 1.1 and MySQL 5.5, you can enable multiple buffer pools to minimize this contention. Each page that is stored in or read from the buffer pool is assigned to one of the buffer pools randomly, using a hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data structures connected to a buffer pool, and is protected by its own buffer pool mutex.

To enable this feature, set the innodb_buffer_pool_instances configuration option to a value greater than 1 (the default) up to 64 (the maximum). This option takes effect only when you set the innodb_buffer_pool_size to a size of 1 gigabyte or more. The total size you specify is divided among all the buffer pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool instance is at least 1 gigabyte.

For more information about the InnoDB buffer pool, see The InnoDB Buffer Pool.

7.19. Better Scalability with Multiple Rollback Segments

Starting in InnoDB 1.1 with MySQL 5.5, the limit on concurrent transactions is greatly expanded, removing a bottleneck with the InnoDB rollback segment that affected high-capacity systems. The limit applies to concurrent transactions that change any data; read-only transactions do not count against that maximum.

The single rollback segment is now divided into 128 segments, each of which can support up to 1023 transactions that perform writes, for a total of approximately 128K concurrent transactions. The original transaction limit was 1023.

Each transaction is assigned to one of the rollback segments, and remains tied to that rollback segment for the duration. This enhancement improves both scalability (higher number of concurrent transactions) and performance (less contention when different transactions access the rollback segments).

To take advantage of this feature, you do not need to create any new database or tables, or reconfigure anything. You must do a slow shutdown before upgrading from MySQL 5.1 or earlier, or some time afterward. InnoDB makes the required changes inside the system tablespace automatically, the first time you restart after performing a slow shutdown.

For more information about performance of InnoDB under high transactional load, see Optimizing InnoDB Transaction Management.

7.20. Better Scalability with Improved Purge Scheduling

Starting in InnoDB 1.1 with MySQL 5.5, the purge operations (a type of garbage collection) that InnoDB performs automatically can be done in a separate thread, rather than as part of the master thread. This change improves scalability, because the main database operations run independently from maintenance work happening in the background.

To enable this feature, set the configuration option innodb_purge_threads=1, as opposed to the default of 0, which combines the purge operation into the master thread.

You might not notice a significant speedup, because the purge thread might encounter new types of contention; the single purge thread really lays the groundwork for further tuning and possibly multiple purge threads in the future. There is another new configuration option, innodb_purge_batch_size with a default of 20 and maximum of 5000. This option is mainly intended for experimentation and tuning of purge operations, and should not be interesting to typical users.

For more information about InnoDB I/O performance, see Optimizing InnoDB Disk I/O.

7.21. Improved Log Sys Mutex

This is another performance improvement that comes for free, with no user action or configuration needed. The details here are intended for performance experts who delve into the InnoDB source code, or interpret reports with keywords such as mutex and log_sys.

The mutex known as the log sys mutex has historically done double duty, controlling access to internal data structures related to log records and the LSN, as well as pages in the buffer pool that are changed when a mini-transaction is committed. Starting in InnoDB 1.1 with MySQL 5.5, these two kinds of operations are protected by separate mutexes, with a new log_buf mutex controlling writes to buffer pool pages due to mini-transactions.

For performance considerations for InnoDB locking operations, see Optimizing Locking Operations.

7.22. Separate Flush List Mutex

Starting with InnoDB 1.1 with MySQL 5.5, concurrent access to the buffer pool is faster. Operations involving the flush list, a data structure related to the buffer pool, are now controlled by a separate mutex and do not block access to the buffer pool. You do not need to configure anything to take advantage of this speedup; it is fully automatic.

For more information about the InnoDB buffer pool, see The InnoDB Buffer Pool.