Table of Contents
This chapter gives a detailed description on how a package is
built. Building a package is separated into different
phases (for example fetch
,
build
, install
), all of which are
described in the following sections. Each phase is split into
so-called stages, which take the name of the
containing phase, prefixed by one of pre-
,
do-
or post-
. (Examples are
pre-configure
, post-build
.) Most
of the actual work is done in the do-*
stages.
Never override the regular targets (like
fetch
), if you have to, override the
do-*
ones instead.
The basic steps for building a program are always the same. First the program's source (distfile) must be brought to the local system and then extracted. After any pkgsrc-specific patches to compile properly are applied, the software can be configured, then built (usually by compiling), and finally the generated binaries, etc. can be put into place on the system.
To get more details about what is happening at each step,
you can set the PKG_VERBOSE
variable, or the
PATCH_DEBUG
variable if you are just interested
in more details about the patch step.
Before outlining the process performed by the NetBSD package system in the next section, here's a brief discussion on where programs are installed, and which variables influence this.
The automatic variable PREFIX
indicates
where all files of the final program shall be installed. It is
usually set to LOCALBASE
(/usr/pkg
), or CROSSBASE
for pkgs in the cross
category. The value of
PREFIX
needs to be put
into the various places in the program's source where paths to
these files are encoded. See Section 11.3, “patches/*” and Section 19.3.1, “Shared libraries - libtool” for more details.
When choosing which of these variables to use, follow the following rules:
PREFIX
always points to the location
where the current pkg will be installed. When referring to a
pkg's own installation path, use
“${PREFIX}”.
LOCALBASE
is where all non-X11 pkgs
are installed. If you need to construct a -I or -L argument
to the compiler to find includes and libraries installed by
another non-X11 pkg, use “${LOCALBASE}”. The name
LOCALBASE
stems from FreeBSD, which
installed all packages in /usr/local
. As
pkgsrc leaves /usr/local
for the system
administrator, this variable is a misnomer.
X11BASE
is where the actual X11
distribution (from xsrc, etc.) is installed. When looking for
standard X11 includes (not those
installed by a package), use “${X11BASE}”.
X11-based packages are special in that they may be
installed in either X11BASE
or
LOCALBASE
.
Usually, X11 packages should be installed under
LOCALBASE
whenever possible. Note that you
will need to include
../../mk/x11.buildlink3.mk
in them to
request the presence of X11 and to get the right compilation
flags.
Even though, there are some packages that cannot be installed
under LOCALBASE
: those that come with app-defaults
files. These packages are special and they must be placed under
X11BASE
. To accomplish this, set either
USE_X11BASE
or USE_IMAKE
in
your package.
Some notes: If you need
to find includes or libraries installed by a pkg that has
USE_IMAKE
or USE_X11BASE
in
its pkg Makefile
, you need to look in
both ${X11BASE}
and
${LOCALBASE}
. To force installation of
all X11 packages in LOCALBASE
, the
pkgtools/xpkgwedge
package
is enabled by default.
X11PREFIX
should be used to refer to
the installed location of an X11
package. X11PREFIX
will be set to
X11BASE
if xpkgwedge is not installed, and
to LOCALBASE
if xpkgwedge is
installed.
If xpkgwedge is installed, it is possible to have some
packages installed in X11BASE
and some in
LOCALBASE
. To determine the prefix of an
installed package, the EVAL_PREFIX
definition can be used. It takes pairs in the format
“DIRNAME=<package>”, and the make(1)
variable DIRNAME
will be set to the prefix
of the installed package <package>, or
“${X11PREFIX}” if the package is not
installed.
This is best illustrated by example.
The following lines are taken from
pkgsrc/wm/scwm/Makefile
:
EVAL_PREFIX+= GTKDIR=gtk+ CONFIGURE_ARGS+= --with-guile-prefix=${LOCALBASE:Q} CONFIGURE_ARGS+= --with-gtk-prefix=${GTKDIR:Q} CONFIGURE_ARGS+= --enable-multibyte
Specific defaults can be defined for the packages
evaluated using EVAL_PREFIX
, by using a
definition of the form:
GTKDIR_DEFAULT= ${LOCALBASE}
where GTKDIR
corresponds
to the first definition in
the EVAL_PREFIX
pair.
Within ${PREFIX}
, packages should
install files according to hier(7), with the exception that
manual pages go into ${PREFIX}/man
, not
${PREFIX}/share/man
.
When building a package, various directories are used to store source files, temporary files, pkgsrc-internal files, and so on. These directories are explained here.
Some of the directory variables contain relative pathnames. There
are two common base directories for these relative directories:
PKGSRCDIR/PKGPATH
is used for directories that are
pkgsrc-specific. WRKSRC
is used for directories
inside the package itself.
PKGSRCDIR
This is an absolute pathname that points to the pkgsrc root directory. Generally, you don't need it.
PKGDIR
This is an absolute pathname that points to the current package.
PKGPATH
This is a pathname relative to
PKGSRCDIR
that points to the current
package.
WRKDIR
This is an absolute pathname pointing to the directory where all work takes place. The distfiles are extracted to this directory. It also contains temporary directories and log files used by the various pkgsrc frameworks, like buildlink or the wrappers.
WRKSRC
This is an absolute pathname pointing to the directory
where the distfiles are extracted. It is usually a direct subdirectory
of WRKDIR
, and often it's the only directory entry
that isn't hidden. This variable may be changed by a package
Makefile
.
The CREATE_WRKDIR_SYMLINK
definition takes either
the value yes or no and defaults
to no. It indicates whether a symbolic link to the
WRKDIR
is to be created in the pkgsrc entry's directory.
If users would like to have their pkgsrc trees behave in a
read-only manner, then the value of
CREATE_WRKDIR_SYMLINK
should be set to
no.
You can run a particular phase by typing make
phase, where phase is the name of the
phase. This will automatically run all phases that are required for this
phase. The default phase is build
, that is, when you
run make without parameters in a package directory,
the package will be built, but not installed.
The first step in building a package is to fetch the distribution files (distfiles) from the sites that are providing them. This is the task of the fetch phase.
In simple cases, MASTER_SITES
defines all URLs from where the distfile, whose name is
derived from the DISTNAME
variable, is
fetched. The more complicated cases are described
below.
The variable DISTFILES
specifies
the list of distfiles that have to be fetched. Its value
defaults to ${DEFAULT_DISTFILES}
and
its value is ${DISTNAME}${EXTRACT_SUFX}
,
so that most packages don't need to define it at all.
EXTRACT_SUFX
is
.tar.gz
by default, but can be changed
freely. Note that if your package requires additional
distfiles to the default one, you cannot just append the
additional filenames using the +=
operator, but you have write for example:
DISTFILES= ${DEFAULT_DISTFILES} additional-files.tar.gz
Each distfile is fetched from a list of sites, usually
MASTER_SITES
. If the package has multiple
DISTFILES
or multiple
PATCHFILES
from different sites, you can
set
SITES.
to the list of URLs where the file
distfile
(including the suffix) can be found.distfile
DISTFILES= ${DISTNAME}${EXTRACT_SUFX} DISTFILES+= foo-file.tar.gz SITES.foo-file.tar.gz= \ http://www.somewhere.com/somehow/ \ http://www.somewhereelse.com/mirror/somehow/
When actually fetching the distfiles, each item from
MASTER_SITES
or
SITES.*
gets the name of each distfile
appended to it, without an intermediate slash. Therefore,
all site values have to end with a slash or other separator
character. This allows for example to set
MASTER_SITES
to a URL of a CGI script
that gets the name of the distfile as a parameter. In this
case, the definition would look like:
MASTER_SITES= http://www.example.com/download.cgi?file=
The exception to this rule are URLs starting with a dash.
In that case the URL is taken as is, fetched and the result
stored under the name of the distfile. You can use this style
for the case when the download URL style does not match the
above common case. For example, if permanent download URL is a
redirector to the real download URL, or the download file name
is offered by an HTTP Content-Disposition header. In the
following example, foo-1.0.0.tar.gz
will be
created instead of the default
v1.0.0.tar.gz
.
DISTNAME= foo-1.0.0 MASTER_SITES= -http://www.example.com/archive/v1.0.0.tar.gz
There are some predefined values for
MASTER_SITES
, which can be used in
packages. The names of the variables should speak for
themselves.
${MASTER_SITE_APACHE} ${MASTER_SITE_BACKUP} ${MASTER_SITE_CYGWIN} ${MASTER_SITE_DEBIAN} ${MASTER_SITE_FREEBSD} ${MASTER_SITE_FREEBSD_LOCAL} ${MASTER_SITE_GENTOO} ${MASTER_SITE_GNOME} ${MASTER_SITE_GNU} ${MASTER_SITE_GNUSTEP} ${MASTER_SITE_HASKELL_HACKAGE} ${MASTER_SITE_IFARCHIVE} ${MASTER_SITE_KDE} ${MASTER_SITE_MOZILLA} ${MASTER_SITE_MOZILLA_ALL} ${MASTER_SITE_MOZILLA_ESR} ${MASTER_SITE_MYSQL} ${MASTER_SITE_NETLIB} ${MASTER_SITE_OPENOFFICE} ${MASTER_SITE_PERL_CPAN} ${MASTER_SITE_PGSQL} ${MASTER_SITE_RUBYGEMS} ${MASTER_SITE_R_CRAN} ${MASTER_SITE_SOURCEFORGE} ${MASTER_SITE_SOURCEFORGE_JP} ${MASTER_SITE_SUNSITE} ${MASTER_SITE_SUSE} ${MASTER_SITE_TEX_CTAN} ${MASTER_SITE_XCONTRIB} ${MASTER_SITE_XEMACS} ${MASTER_SITE_XORG}
Some explanations for the less self-explaining ones:
MASTER_SITE_BACKUP
contains backup sites
for packages that are maintained in ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/${DIST_SUBDIR}. MASTER_SITE_LOCAL
contains local
package source distributions that are maintained in ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/LOCAL_PORTS/.
If you choose one of these predefined sites, you may want to specify a subdirectory of that site. Since these macros may expand to more than one actual site, you must use the following construct to specify a subdirectory:
MASTER_SITES= ${MASTER_SITE_GNU:=subdirectory/name/} MASTER_SITES= ${MASTER_SITE_SOURCEFORGE:=project_name/}
Note the trailing slash after the subdirectory name.
The fetch phase makes sure that
all the distfiles exist in a local directory
(DISTDIR
, which can be set by the pkgsrc
user). If the files do not exist, they are fetched using
commands of the form
${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FETCH_AFTER_ARGS}
where ${site}
varies through
several possibilities in turn: first,
MASTER_SITE_OVERRIDE
is tried, then the
sites specified in either SITES.file
if
defined, else MASTER_SITES
or
PATCH_SITES
, as applies, then finally the
value of MASTER_SITE_BACKUP
. The order of
all except the first and the last can be optionally sorted
by the user, via setting either
MASTER_SORT_RANDOM
, and
MASTER_SORT_AWK
or
MASTER_SORT_REGEX
.
The specific command and arguments used depend on the
FETCH_USING
parameter. The example above is
for FETCH_USING=custom
.
The distfiles mirror run by the NetBSD Foundation uses the
mirror-distfiles target to mirror the
distfiles, if they are freely distributable. Packages setting
NO_SRC_ON_FTP
(usually to
“${RESTRICTED}”) will not have their distfiles
mirrored.
After the distfile(s) are fetched, their checksum is generated and compared with the checksums stored in the distinfo file. If the checksums don't match, the build is aborted. This is to ensure the same distfile is used for building, and that the distfile wasn't changed, e.g. by some malign force, deliberately changed distfiles on the master distribution site or network lossage.
When the distfiles are present on the local system, they need to be extracted, as they usually come in the form of some compressed archive format.
By default, all DISTFILES
are
extracted. If you only need some of them, you can set the
EXTRACT_ONLY
variable to the list of those
files.
Extracting the files is usually done by a little
program, mk/extract/extract
, which
already knows how to extract various archive formats, so most
likely you will not need to change anything here. But if you
need, the following variables may help you:
EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}
Use these variables to override the default
options for an extract command, which are defined in
mk/extract/extract
.
EXTRACT_USING
This variable can be set to
bsdtar
, gtar
, nbtar
(which is the default value), pax
, or an
absolute pathname pointing to the command with which tar
archives should be extracted. It is preferred to choose bsdtar over gtar
if NetBSD's pax-as-tar is not good enough.
If the extract
program doesn't
serve your needs, you can also override the
EXTRACT_CMD
variable, which holds the
command used for extracting the files. This command is
executed in the ${WRKSRC}
directory. During execution of this command, the shell
variable extract_file
holds the absolute
pathname of the file that is going to be extracted.
And if that still does not suffice, you can override the
do-extract
target in the package
Makefile.
After extraction, all the patches named by the
PATCHFILES
, those present in the patches
subdirectory of the package as well as in
$LOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png
) are
applied. Patchfiles ending in .Z
or
.gz
are uncompressed before they are
applied, files ending in .orig
or
.rej
are ignored. Any special options to
patch(1) can be handed in
PATCH_DIST_ARGS
. See Section 11.3, “patches/*” for more details.
By default patch(1) is given special args to make it fail if the patches apply with some lines of fuzz. Please fix (regen) the patches so that they apply cleanly. The rationale behind this is that patches that don't apply cleanly may end up being applied in the wrong place, and cause severe harm there.
This is covered in Chapter 18, Tools needed for building or running.
This phase creates wrapper programs for the compilers and linkers. The following variables can be used to tweak the wrappers.
ECHO_WRAPPER_MSG
The command used to print progress
messages. Does nothing by default. Set to
${ECHO}
to see the progress
messages.
WRAPPER_DEBUG
This variable can be set to
yes
(default) or no
,
depending on whether you want additional information in the
wrapper log file.
WRAPPER_UPDATE_CACHE
This variable can be set to
yes
or no
, depending
on whether the wrapper should use its cache, which will
improve the speed. The default value is
yes
, but is forced to
no
if the platform does not support
it.
WRAPPER_REORDER_CMDS
A list of reordering commands. A reordering
command has the form
reorder:l:
.
It ensures that that
lib1
:lib2
-l
occurs
before lib1
-l
.
lib2
WRAPPER_TRANSFORM_CMDS
A list of transformation commands. [TODO: investigate further]
Most pieces of software need information on the header files, system calls, and library routines which are available on the platform they run on. The process of determining this information is known as configuration, and is usually automated. In most cases, a script is supplied with the distfiles, and its invocation results in generation of header files, Makefiles, etc.
If the package contains a configure script, this can be
invoked by setting HAS_CONFIGURE
to
“yes”. If the configure script is a GNU autoconf
script, you should set GNU_CONFIGURE
to
“yes” instead. What happens in the
configure phase is roughly:
.for d in ${CONFIGURE_DIRS} cd ${WRKSRC} \ && cd ${d} \ && env ${CONFIGURE_ENV} ${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS} .endfor
CONFIGURE_DIRS
(default:
“.”) is a list of pathnames relative to
WRKSRC
. In each of these directories, the
configure script is run with the environment
CONFIGURE_ENV
and arguments
CONFIGURE_ARGS
. The variables
CONFIGURE_ENV
,
CONFIGURE_SCRIPT
(default:
“./configure”) and
CONFIGURE_ARGS
may all be changed by the
package.
If the program uses the Perl way of configuration (mainly Perl
modules, but not only), i.e. a file called
Makefile.PL
, it should include
../../lang/perl5/module.mk
. To set any parameter for
Makefile.PL
use the MAKE_PARAMS
variable (e.g., MAKE_PARAMS+=foo=bar
If the program uses an Imakefile
for configuration, the appropriate steps can be invoked by
setting USE_IMAKE
to
“yes”. (If you only want the package installed in
${X11PREFIX}
but xmkmf not being run, set
USE_X11BASE
instead.) You can add variables to
xmkmf's environment by adding them to the
SCRIPTS_ENV
variable.
If the program uses cmake
for configuration, the appropriate steps can be invoked by
setting USE_CMAKE
to “yes”.
You can add variables to cmake's environment by adding them to the
CONFIGURE_ENV
variable and arguments to cmake
by adding them to the CMAKE_ARGS
variable.
The top directory argument is given by the
CMAKE_ARG_PATH
variable, that defaults to
“.” (relative to CONFIGURE_DIRS
)
If there is no configure step at all, set
NO_CONFIGURE
to “yes”.
For building a package, a rough equivalent of the following code is executed.
.for d in ${BUILD_DIRS} cd ${WRKSRC} \ && cd ${d} \ && env ${MAKE_ENV} \ ${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \ -f ${MAKE_FILE} \ ${BUILD_TARGET} .endfor
BUILD_DIRS
(default:
“.”) is a list of pathnames relative to
WRKSRC
. In each of these directories,
MAKE_PROGRAM
is run with the environment
MAKE_ENV
and arguments
BUILD_MAKE_FLAGS
. The variables
MAKE_ENV
,
BUILD_MAKE_FLAGS
,
MAKE_FILE
and
BUILD_TARGET
may all be changed by the
package.
The default value of MAKE_PROGRAM
is
“gmake” if USE_TOOLS
contains
“gmake”, “make” otherwise. The
default value of MAKE_FILE
is
“Makefile”, and BUILD_TARGET
defaults to “all”.
If there is no build step at all, set
NO_BUILD
to “yes”.
Once the build stage has completed, the final step is to install the software in public directories, so users can access the programs and files.
In the install phase, a rough equivalent of the following code is executed. Additionally, before and after this code, much magic is performed to do consistency checks, registering the package, and so on.
.for d in ${INSTALL_DIRS} cd ${WRKSRC} \ && cd ${d} \ && env ${MAKE_ENV} \ ${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \ -f ${MAKE_FILE} \ ${INSTALL_TARGET} .endfor
The variable's meanings are analogous to the ones in the
build phase.
INSTALL_DIRS
defaults to
BUILD_DIRS
. INSTALL_TARGET
is “install” by default, plus
“install.man” if USE_IMAKE
is
defined and NO_INSTALL_MANPAGES
is not
defined.
In the install phase, the following
variables are useful. They are all variations of the
install(1) command that have the owner, group and
permissions preset. INSTALL
is the plain
install command. The specialized variants, together with their
intended use, are:
INSTALL_PROGRAM_DIR
directories that contain binaries
INSTALL_SCRIPT_DIR
directories that contain scripts
INSTALL_LIB_DIR
directories that contain shared and static libraries
INSTALL_DATA_DIR
directories that contain data files
INSTALL_MAN_DIR
directories that contain man pages
INSTALL_PROGRAM
binaries that can be stripped from debugging symbols
INSTALL_SCRIPT
binaries that cannot be stripped
INSTALL_GAME
game binaries
INSTALL_LIB
shared and static libraries
INSTALL_DATA
data files
INSTALL_GAME_DATA
data files for games
INSTALL_MAN
man pages
Some other variables are:
INSTALLATION_DIRS
A list of directories relative to
PREFIX
that are created by pkgsrc at the
beginning of the install phase.
The package is supposed to create all needed directories itself
before installing files to it and list all other directories here.
In the rare cases that a package shouldn't install anything,
set NO_INSTALL
to “yes”. This is
mostly relevant for packages in the regress
category.
Once the install stage has completed, a binary package of the installed files can be built. These binary packages can be used for quick installation without previous compilation, e.g. by the make bin-install or by using pkg_add.
By default, the binary packages are created in
${PACKAGES}/All
and symlinks are created in
${PACKAGES}/
,
one for each category in the category
CATEGORIES
variable. PACKAGES
defaults to
pkgsrc/packages
.
Once you're finished with a package, you can clean the work directory by running make clean. If you want to clean the work directories of all dependencies too, use make clean-depends.
For any of the main targets described in the previous section, two auxiliary targets exist with “pre-” and “post-” used as a prefix for the main target's name. These targets are invoked before and after the main target is called, allowing extra configuration or installation steps be performed from a package's Makefile, for example, which a program's configure script or install target omitted.
Should one of the main targets do the wrong thing, and should there be no variable to fix this, you can redefine it with the do-* target. (Note that redefining the target itself instead of the do-* target is a bad idea, as the pre-* and post-* targets won't be called anymore, etc.) You will not usually need to do this.
If you did a make install and you noticed some file was not installed properly, you can repeat the installation with this target, which will ignore the “already installed” flag.
This is the default value of
DEPENDS_TARGET
except in the case of
make update and make
package, where the defaults are
“package” and “update”,
respectively.
This target does a pkg_delete(1) in the current directory, effectively de-installing the package. The following variables can be used to tune the behaviour:
PKG_VERBOSE
Add a "-v" to the pkg_delete(1) command.
DEINSTALLDEPENDS
Remove all packages that require (depend on)
the given package. This can be used to remove any
packages that may have been pulled in by a given
package, e.g. if make deinstall
DEINSTALLDEPENDS=1 is done in
pkgsrc/x11/kde
, this is
likely to remove whole KDE. Works by adding
“-R” to the pkg_delete(1)
command line.
Install a binary package from local disk and via FTP
from a list of sites (see the
BINPKG_SITES
variable), and do a
make package if no binary package is
available anywhere. The arguments given to
pkg_add can be set via
BIN_INSTALL_FLAGS
e.g., to do verbose
operation, etc.
This target causes the current package to be
updated to the latest version. The package and all
depending packages first get de-installed, then current
versions of the corresponding packages get compiled and
installed. This is similar to manually noting which
packages are currently installed, then performing a
series of make deinstall and
make install (or whatever
UPDATE_TARGET
is set to) for these
packages.
You can use the “update” target to
resume package updating in case a previous make
update was interrupted for some reason.
However, in this case, make sure you don't call
make clean or otherwise remove the
list of dependent packages in WRKDIR
.
Otherwise, you lose the ability to automatically update
the current package along with the dependent packages
you have installed.
Resuming an interrupted make update will only work as long as the package tree remains unchanged. If the source code for one of the packages to be updated has been changed, resuming make update will most certainly fail!
The following variables can be used either on the
command line or in mk.conf
to
alter the behaviour of make
update:
UPDATE_TARGET
Install target to recursively use for the
updated package and the dependent packages.
Defaults to DEPENDS_TARGET
if
set, “install” otherwise for
make update. Other good
targets are “package” or
“bin-install”. Do not set this to
“update” or you will get stuck in an
endless loop!
NOCLEAN
Don't clean up after updating. Useful if you want to leave the work sources of the updated packages around for inspection or other purposes. Be sure you eventually clean up the source tree (see the “clean-update” target below) or you may run into troubles with old source code still lying around on your next make or make update.
REINSTALL
Deinstall each package before installing
(making DEPENDS_TARGET
). This
may be necessary if the
“clean-update” target (see below) was
called after interrupting a running make
update.
DEPENDS_TARGET
Allows you to disable recursion and hardcode
the target for packages. The default is
“update” for the update target,
facilitating a recursive update of prerequisite
packages. Only set
DEPENDS_TARGET
if you want to
disable recursive updates. Use
UPDATE_TARGET
instead to just
set a specific target for each package to be
installed during make update
(see above).
Clean the source tree for all packages that would
get updated if make update was called
from the current directory. This target should not be
used if the current package (or any of its depending
packages) have already been de-installed (e.g., after
calling make update) or you may lose
some packages you intended to update. As a rule of
thumb: only use this target before
the first time you run make update
and only if you have a dirty package tree (e.g., if you
used NOCLEAN
).
If you are unsure about whether your tree is clean, you can either perform a make clean at the top of the tree, or use the following sequence of commands from the directory of the package you want to update (before running make update for the first time, otherwise you lose all the packages you wanted to update!):
#
make clean-update
#
make clean CLEANDEPENDS=YES
#
make update
The following variables can be used either on the
command line or in mk.conf
to alter the behaviour of
make clean-update:
CLEAR_DIRLIST
After make clean, do not
reconstruct the list of directories to update for
this package. Only use this if make
update successfully installed all
packages you wanted to update. Normally, this is
done automatically on make
update, but may have been suppressed by
the NOCLEAN
variable (see
above).
Update the installation of the current package. This
differs from update in that it does not replace dependent
packages. You will need to install pkgtools/pkg_tarup
for this
target to work.
Be careful when using this target! There are no guarantees that dependent packages will still work, in particular they will most certainly break if you make replace a library package whose shared library major version changed between your installed version and the new one. For this reason, this target is not officially supported and only recommended for advanced users.
This target invokes pkg_info(1) for the current package. You can use this to check which version of a package is installed.
This is a top-level command, i.e. it should be used in
the pkgsrc
directory. It creates a
database of all packages in the local pkgsrc tree, including
dependencies, comment, maintainer, and some other useful
information. Individual entries are created by running
make describe in the packages'
directories. This index file is saved as
pkgsrc/INDEX
. It can be displayed in
verbose format by running make
print-index. You can search in it with
make search
key=something
. You can
extract a list of all packages that depend on a particular
one by running make show-deps
PKG=somepackage
.
Running this command takes a very long time, some hours even on fast machines!
This target generates a
README.html
file, which can be
viewed using a browser such as www/firefox
or www/links
. The generated files
contain references to any packages which are in the
PACKAGES
directory on the local
host. The generated files can be made to refer to URLs
based on FTP_PKG_URL_HOST
and
FTP_PKG_URL_DIR
. For example, if I
wanted to generate README.html
files which pointed to binary packages on the local
machine, in the directory
/usr/packages
, set
FTP_PKG_URL_HOST=file://localhost
and
FTP_PKG_URL_DIR=/usr/packages
. The
${PACKAGES}
directory and its
subdirectories will be searched for all the binary
packages.
The target can be run at the toplevel or in category directories, in which case it descends recursively.
This is a top-level command, run it in
pkgsrc
. Use this target to create a
file README-all.html
which contains a
list of all packages currently available in the NetBSD
Packages Collection, together with the category they belong
to and a short description. This file is compiled from the
pkgsrc/*/README.html
files, so be sure
to run this after a make
readme.
This is very much the same as the
“readme” target (see above), but is to be
used when generating a pkgsrc tree to be written to a
CD-ROM. This target also produces
README.html
files, and can be made
to refer to URLs based on
CDROM_PKG_URL_HOST
and
CDROM_PKG_URL_DIR
.
This target shows which distfiles and patchfiles
are needed to build the package
(ALLFILES
, which contains all
DISTFILES
and
PATCHFILES
, but not
patches/*
).
This target shows nothing if the package is not installed. If a version of this package is installed, but is not the version provided in this version of pkgsrc, then a warning message is displayed. This target can be used to show which of your installed packages are downlevel, and so the old versions can be deleted, and the current ones added.
This target shows the directory in the pkgsrc hierarchy from which the package can be built and installed. This may not be the same directory as the one from which the package was installed. This target is intended to be used by people who may wish to upgrade many packages on a single host, and can be invoked from the top-level pkgsrc Makefile by using the “show-host-specific-pkgs” target.
This target shows which installed packages match
the current package's DEPENDS
. Useful
if out of date dependencies are causing build
problems.
After a package is installed, check all its
binaries and (on ELF platforms) shared libraries to see
if they find the shared libs they need. Run by default
if PKG_DEVELOPER
is set in mk.conf
.
After a “make install” from a new or
upgraded pkg, this prints out an attempt to generate a
new PLIST
from a find
-newer work/.extract_done. An attempt is made
to care for shared libs etc., but it is
strongly recommended to review the
result before putting it into
PLIST
. On upgrades, it's useful to
diff the output of this command against an already
existing PLIST
file.
If the package installs files via tar(1) or
other methods that don't update file access times, be
sure to add these files manually to your
PLIST
, as the “find
-newer” command used by this target won't catch
them!
See Section 13.3, “Tweaking output of make print-PLIST” for more information on this target.
Used to do bulk builds. If an appropriate binary
package already exists, no action is taken. If not, this
target will compile, install and package it (and its
depends, if PKG_DEPENDS
is set
properly. See Chapter 7, Creating binary packages for everything in pkgsrc (bulk
builds)).
After creating the binary package, the sources, the
just-installed package and its required packages are
removed, preserving free disk space.
Beware that this target may deinstall all packages installed on a system!
Used during bulk-installs to install required packages. If an up-to-date binary package is available, it will be installed via pkg_add(1). If not, make bulk-package will be executed, but the installed binary won't be removed.
A binary package is considered “up-to-date” to be installed via pkg_add(1) if:
None of the package's files
(Makefile
, ...) were modified
since it was built.
None of the package's required (binary) packages were modified since it was built.
Beware that this target may deinstall all packages installed on a system!