Interface covering basic clustering functionality.
|
cluster(self,
vectors,
assign_clusters=False)
Assigns the vectors to clusters, learning the clustering parameters
from the data. |
source code
|
|
|
classify(self,
token)
Classifies the token into a cluster, setting the token's CLUSTER
parameter to that cluster identifier. |
source code
|
|
|
likelihood(self,
vector,
label)
Returns the likelihood (a float) of the token having the
corresponding cluster. |
source code
|
|
|
classification_probdist(self,
vector)
Classifies the token into a cluster, returning a probability
distribution over the cluster identifiers. |
source code
|
|
|
num_clusters(self)
Returns the number of clusters. |
source code
|
|
|
cluster_names(self)
Returns the names of the clusters. |
source code
|
|
|
cluster_name(self,
index)
Returns the names of the cluster at index. |
source code
|
|