# -*- coding: utf-8 -*-
# Natural Language Toolkit: Language Model Unit Tests
#
# Copyright (C) 2001-2019 NLTK Project
# Author: Ilia Kurenkov <[email protected]>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
from __future__ import division
import math
import sys
import unittest
from six import add_metaclass
from nltk.lm import (
Vocabulary,
MLE,
Lidstone,
Laplace,
WittenBellInterpolated,
KneserNeyInterpolated,
)
from nltk.lm.preprocessing import padded_everygrams
def _prepare_test_data(ngram_order):
return (
Vocabulary(["a", "b", "c", "d", "z", "<s>", "</s>"], unk_cutoff=1),
[
list(padded_everygrams(ngram_order, sent))
for sent in (list("abcd"), list("egadbe"))
],
)
[docs]@add_metaclass(ParametrizeTestsMeta)
class MleBigramTests(unittest.TestCase):
"""unit tests for MLENgramModel class"""
score_tests = [
("d", ["c"], 1),
# Unseen ngrams should yield 0
("d", ["e"], 0),
# Unigrams should also be 0
("z", None, 0),
# N unigrams = 14
# count('a') = 2
("a", None, 2.0 / 14),
# count('y') = 3
("y", None, 3.0 / 14),
]
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(2)
self.model = MLE(2, vocabulary=vocab)
self.model.fit(training_text)
[docs] def test_logscore_zero_score(self):
# logscore of unseen ngrams should be -inf
logscore = self.model.logscore("d", ["e"])
self.assertTrue(math.isinf(logscore))
[docs] def test_entropy_perplexity_seen(self):
# ngrams seen during training
trained = [
("<s>", "a"),
("a", "b"),
("b", "<UNK>"),
("<UNK>", "a"),
("a", "d"),
("d", "</s>"),
]
# Ngram = Log score
# <s>, a = -1
# a, b = -1
# b, UNK = -1
# UNK, a = -1.585
# a, d = -1
# d, </s> = -1
# TOTAL logscores = -6.585
# - AVG logscores = 1.0975
H = 1.0975
perplexity = 2.1398
self.assertAlmostEqual(H, self.model.entropy(trained), places=4)
self.assertAlmostEqual(perplexity, self.model.perplexity(trained), places=4)
[docs] def test_entropy_perplexity_unseen(self):
# In MLE, even one unseen ngram should make entropy and perplexity infinite
untrained = [("<s>", "a"), ("a", "c"), ("c", "d"), ("d", "</s>")]
self.assertTrue(math.isinf(self.model.entropy(untrained)))
self.assertTrue(math.isinf(self.model.perplexity(untrained)))
[docs] def test_entropy_perplexity_unigrams(self):
# word = score, log score
# <s> = 0.1429, -2.8074
# a = 0.1429, -2.8074
# c = 0.0714, -3.8073
# UNK = 0.2143, -2.2224
# d = 0.1429, -2.8074
# c = 0.0714, -3.8073
# </s> = 0.1429, -2.8074
# TOTAL logscores = -21.6243
# - AVG logscores = 3.0095
H = 3.0095
perplexity = 8.0529
text = [("<s>",), ("a",), ("c",), ("-",), ("d",), ("c",), ("</s>",)]
self.assertAlmostEqual(H, self.model.entropy(text), places=4)
self.assertAlmostEqual(perplexity, self.model.perplexity(text), places=4)
[docs]@add_metaclass(ParametrizeTestsMeta)
class MleTrigramTests(unittest.TestCase):
"""MLE trigram model tests"""
score_tests = [
# count(d | b, c) = 1
# count(b, c) = 1
("d", ("b", "c"), 1),
# count(d | c) = 1
# count(c) = 1
("d", ["c"], 1),
# total number of tokens is 18, of which "a" occured 2 times
("a", None, 2.0 / 18),
# in vocabulary but unseen
("z", None, 0),
# out of vocabulary should use "UNK" score
("y", None, 3.0 / 18),
]
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(3)
self.model = MLE(3, vocabulary=vocab)
self.model.fit(training_text)
[docs]@add_metaclass(ParametrizeTestsMeta)
class LidstoneBigramTests(unittest.TestCase):
"""unit tests for Lidstone class"""
score_tests = [
# count(d | c) = 1
# *count(d | c) = 1.1
# Count(w | c for w in vocab) = 1
# *Count(w | c for w in vocab) = 1.8
("d", ["c"], 1.1 / 1.8),
# Total unigrams: 14
# Vocab size: 8
# Denominator: 14 + 0.8 = 14.8
# count("a") = 2
# *count("a") = 2.1
("a", None, 2.1 / 14.8),
# in vocabulary but unseen
# count("z") = 0
# *count("z") = 0.1
("z", None, 0.1 / 14.8),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
# *count("<UNK>") = 3.1
("y", None, 3.1 / 14.8),
]
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(2)
self.model = Lidstone(0.1, 2, vocabulary=vocab)
self.model.fit(training_text)
[docs] def test_gamma(self):
self.assertEqual(0.1, self.model.gamma)
[docs] def test_entropy_perplexity(self):
text = [
("<s>", "a"),
("a", "c"),
("c", "<UNK>"),
("<UNK>", "d"),
("d", "c"),
("c", "</s>"),
]
# Unlike MLE this should be able to handle completely novel ngrams
# Ngram = score, log score
# <s>, a = 0.3929, -1.3479
# a, c = 0.0357, -4.8074
# c, UNK = 0.0(5), -4.1699
# UNK, d = 0.0263, -5.2479
# d, c = 0.0357, -4.8074
# c, </s> = 0.0(5), -4.1699
# TOTAL logscore: −24.5504
# - AVG logscore: 4.0917
H = 4.0917
perplexity = 17.0504
self.assertAlmostEqual(H, self.model.entropy(text), places=4)
self.assertAlmostEqual(perplexity, self.model.perplexity(text), places=4)
[docs]@add_metaclass(ParametrizeTestsMeta)
class LidstoneTrigramTests(unittest.TestCase):
score_tests = [
# Logic behind this is the same as for bigram model
("d", ["c"], 1.1 / 1.8),
# if we choose a word that hasn't appeared after (b, c)
("e", ["c"], 0.1 / 1.8),
# Trigram score now
("d", ["b", "c"], 1.1 / 1.8),
("e", ["b", "c"], 0.1 / 1.8),
]
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(3)
self.model = Lidstone(0.1, 3, vocabulary=vocab)
self.model.fit(training_text)
[docs]@add_metaclass(ParametrizeTestsMeta)
class LaplaceBigramTests(unittest.TestCase):
"""unit tests for Laplace class"""
score_tests = [
# basic sanity-check:
# count(d | c) = 1
# *count(d | c) = 2
# Count(w | c for w in vocab) = 1
# *Count(w | c for w in vocab) = 9
("d", ["c"], 2.0 / 9),
# Total unigrams: 14
# Vocab size: 8
# Denominator: 14 + 8 = 22
# count("a") = 2
# *count("a") = 3
("a", None, 3.0 / 22),
# in vocabulary but unseen
# count("z") = 0
# *count("z") = 1
("z", None, 1.0 / 22),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
# *count("<UNK>") = 4
("y", None, 4.0 / 22),
]
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(2)
self.model = Laplace(2, vocabulary=vocab)
self.model.fit(training_text)
[docs] def test_gamma(self):
# Make sure the gamma is set to 1
self.assertEqual(1, self.model.gamma)
[docs] def test_entropy_perplexity(self):
text = [
("<s>", "a"),
("a", "c"),
("c", "<UNK>"),
("<UNK>", "d"),
("d", "c"),
("c", "</s>"),
]
# Unlike MLE this should be able to handle completely novel ngrams
# Ngram = score, log score
# <s>, a = 0.2, -2.3219
# a, c = 0.1, -3.3219
# c, UNK = 0.(1), -3.1699
# UNK, d = 0.(09), 3.4594
# d, c = 0.1 -3.3219
# c, </s> = 0.(1), -3.1699
# Total logscores: −18.7651
# - AVG logscores: 3.1275
H = 3.1275
perplexity = 8.7393
self.assertAlmostEqual(H, self.model.entropy(text), places=4)
self.assertAlmostEqual(perplexity, self.model.perplexity(text), places=4)
[docs]@add_metaclass(ParametrizeTestsMeta)
class WittenBellInterpolatedTrigramTests(unittest.TestCase):
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(3)
self.model = WittenBellInterpolated(3, vocabulary=vocab)
self.model.fit(training_text)
score_tests = [
# For unigram scores by default revert to MLE
# Total unigrams: 18
# count('c'): 1
("c", None, 1.0 / 18),
# in vocabulary but unseen
# count("z") = 0
("z", None, 0.0 / 18),
# out of vocabulary should use "UNK" score
# count("<UNK>") = 3
("y", None, 3.0 / 18),
# gamma(['b']) = 0.1111
# mle.score('c', ['b']) = 0.5
# (1 - gamma) * mle + gamma * mle('c') ~= 0.45 + .3 / 18
("c", ["b"], (1 - 0.1111) * 0.5 + 0.1111 * 1 / 18),
# building on that, let's try 'a b c' as the trigram
# gamma(['a', 'b']) = 0.0667
# mle("c", ["a", "b"]) = 1
("c", ["a", "b"], (1 - 0.0667) + 0.0667 * ((1 - 0.1111) * 0.5 + 0.1111 / 18)),
]
[docs]@add_metaclass(ParametrizeTestsMeta)
class KneserNeyInterpolatedTrigramTests(unittest.TestCase):
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(3)
self.model = KneserNeyInterpolated(3, vocabulary=vocab)
self.model.fit(training_text)
score_tests = [
# For unigram scores revert to uniform
# Vocab size: 8
# count('c'): 1
("c", None, 1.0 / 8),
# in vocabulary but unseen, still uses uniform
("z", None, 1 / 8),
# out of vocabulary should use "UNK" score, i.e. again uniform
("y", None, 1.0 / 8),
# alpha = count('bc') - discount = 1 - 0.1 = 0.9
# gamma(['b']) = discount * number of unique words that follow ['b'] = 0.1 * 2
# normalizer = total number of bigrams with this context = 2
# the final should be: (alpha + gamma * unigram_score("c"))
("c", ["b"], (0.9 + 0.2 * (1 / 8)) / 2),
# building on that, let's try 'a b c' as the trigram
# alpha = count('abc') - discount = 1 - 0.1 = 0.9
# gamma(['a', 'b']) = 0.1 * 1
# normalizer = total number of trigrams with prefix "ab" = 1 => we can ignore it!
("c", ["a", "b"], 0.9 + 0.1 * ((0.9 + 0.2 * (1 / 8)) / 2)),
]
[docs]class NgramModelTextGenerationTests(unittest.TestCase):
"""Using MLE estimator, generate some text."""
[docs] def setUp(self):
vocab, training_text = _prepare_test_data(3)
self.model = MLE(3, vocabulary=vocab)
self.model.fit(training_text)
[docs] def test_generate_one_no_context(self):
self.assertEqual(self.model.generate(random_seed=3), "<UNK>")
[docs] def test_generate_one_limiting_context(self):
# We don't need random_seed for contexts with only one continuation
self.assertEqual(self.model.generate(text_seed=["c"]), "d")
self.assertEqual(self.model.generate(text_seed=["b", "c"]), "d")
self.assertEqual(self.model.generate(text_seed=["a", "c"]), "d")
[docs] def test_generate_one_varied_context(self):
# When context doesn't limit our options enough, seed the random choice
self.assertEqual(
self.model.generate(text_seed=("a", "<s>"), random_seed=2), "a"
)
[docs] def test_generate_no_seed_unigrams(self):
self.assertEqual(
self.model.generate(5, random_seed=3),
["<UNK>", "</s>", "</s>", "</s>", "</s>"],
)
[docs] def test_generate_with_text_seed(self):
self.assertEqual(
self.model.generate(5, text_seed=("<s>", "e"), random_seed=3),
["<UNK>", "a", "d", "b", "<UNK>"],
)
[docs] def test_generate_oov_text_seed(self):
self.assertEqual(
self.model.generate(text_seed=("aliens",), random_seed=3),
self.model.generate(text_seed=("<UNK>",), random_seed=3),
)
[docs] def test_generate_None_text_seed(self):
# should crash with type error when we try to look it up in vocabulary
with self.assertRaises(TypeError):
self.model.generate(text_seed=(None,))
# This will work
self.assertEqual(
self.model.generate(text_seed=None, random_seed=3),
self.model.generate(random_seed=3),
)