OpenNN  2.2
Open Neural Networks Library
Public Member Functions | List of all members
OpenNN::RootMeanSquaredError Class Reference

#include <root_mean_squared_error.h>

Inheritance diagram for OpenNN::RootMeanSquaredError:
OpenNN::PerformanceTerm

Public Member Functions

 RootMeanSquaredError (void)
 
 RootMeanSquaredError (NeuralNetwork *)
 
 RootMeanSquaredError (DataSet *)
 
 RootMeanSquaredError (NeuralNetwork *, DataSet *)
 
 RootMeanSquaredError (const tinyxml2::XMLDocument &)
 
virtual ~RootMeanSquaredError (void)
 
void check (void) const
 
double calculate_performance (void) const
 
double calculate_performance (const Vector< double > &) const
 
double calculate_generalization_performance (void) const
 
Vector< double > calculate_gradient (void) const
 
Matrix< double > calculate_Hessian (void) const
 
std::string write_performance_term_type (void) const
 
tinyxml2::XMLDocument * to_XML (void) const
 
void from_XML (const tinyxml2::XMLDocument &)
 
- Public Member Functions inherited from OpenNN::PerformanceTerm
 PerformanceTerm (void)
 
 PerformanceTerm (NeuralNetwork *)
 
 PerformanceTerm (DataSet *)
 
 PerformanceTerm (MathematicalModel *)
 
 PerformanceTerm (NeuralNetwork *, DataSet *)
 
 PerformanceTerm (NeuralNetwork *, MathematicalModel *)
 
 PerformanceTerm (NeuralNetwork *, MathematicalModel *, DataSet *)
 
 PerformanceTerm (const tinyxml2::XMLDocument &)
 
 PerformanceTerm (const PerformanceTerm &)
 
virtual ~PerformanceTerm (void)
 
virtual PerformanceTermoperator= (const PerformanceTerm &)
 
virtual bool operator== (const PerformanceTerm &) const
 
NeuralNetworkget_neural_network_pointer (void) const
 
MathematicalModelget_mathemtaical_model_pointer (void) const
 
DataSetget_data_set_pointer (void) const
 
NumericalDifferentiationget_numerical_differentiation_pointer (void) const
 
const bool & get_display (void) const
 
bool has_neural_network (void) const
 
bool has_mathematical_model (void) const
 
bool has_data_set (void) const
 
bool has_numerical_differentiation (void) const
 
virtual void set (void)
 
virtual void set (NeuralNetwork *)
 
virtual void set (DataSet *)
 
virtual void set (MathematicalModel *)
 
virtual void set (NeuralNetwork *, DataSet *)
 
virtual void set (NeuralNetwork *, MathematicalModel *)
 
virtual void set (NeuralNetwork *, MathematicalModel *, DataSet *)
 
void set (const PerformanceTerm &)
 
virtual void set_neural_network_pointer (NeuralNetwork *)
 
virtual void set_mathematical_model_pointer (MathematicalModel *)
 
virtual void set_data_set_pointer (DataSet *)
 
void set_numerical_differentiation_pointer (NumericalDifferentiation *)
 
virtual void set_default (void)
 
void set_display (const bool &)
 
void construct_numerical_differentiation (void)
 
void delete_numerical_differentiation_pointer (void)
 
Vector< Vector< double > > calculate_layers_delta (const Vector< Vector< double > > &, const Vector< double > &) const
 
Vector< Vector< double > > calculate_layers_delta (const Vector< Vector< double > > &, const Vector< double > &, const Vector< double > &) const
 
Matrix< Matrix< double > > calculate_interlayers_Delta (const Vector< Vector< double > > &, const Vector< Vector< double > > &, const Matrix< Matrix< double > > &, const Vector< double > &, const Matrix< double > &, const Vector< Vector< double > > &) const
 
Vector< double > calculate_point_gradient (const Vector< double > &, const Vector< Vector< double > > &, const Vector< Vector< double > > &) const
 
Vector< double > calculate_point_gradient (const Vector< Matrix< double > > &, const Vector< Vector< double > > &) const
 
Matrix< double > calculate_point_Hessian (const Vector< Vector< double > > &, const Vector< Vector< Vector< double > > > &, const Matrix< Matrix< double > > &, const Vector< Vector< double > > &, const Matrix< Matrix< double > > &) const
 
virtual Vector< double > calculate_gradient (const Vector< double > &) const
 
virtual Matrix< double > calculate_Hessian (const Vector< double > &) const
 
virtual Vector< double > calculate_terms (void) const
 
virtual Vector< double > calculate_terms (const Vector< double > &) const
 
virtual Matrix< double > calculate_terms_Jacobian (void) const
 
virtual PerformanceTerm::FirstOrderTerms calculate_first_order_terms (void) const
 
virtual std::string write_information (void) const
 
virtual std::string to_string (void) const
 
size_t calculate_Kronecker_delta (const size_t &, const size_t &) const
 

Additional Inherited Members

- Protected Attributes inherited from OpenNN::PerformanceTerm
NeuralNetworkneural_network_pointer
 
DataSetdata_set_pointer
 
MathematicalModelmathematical_model_pointer
 
NumericalDifferentiationnumerical_differentiation_pointer
 
bool display
 

Detailed Description

This class represents the root mean squared error performance term. The root mean squared error measures the difference between the outputs from a neural network and the targets in a data set. This functional is used in data modeling problems.

Definition at line 42 of file root_mean_squared_error.h.

Constructor & Destructor Documentation

OpenNN::RootMeanSquaredError::RootMeanSquaredError ( void  )
explicit

Default constructor. It creates a root mean squared error performance term object not associated to any neural network and not measured on any data set. It also initializes all the rest of class members to their default values.

Definition at line 29 of file root_mean_squared_error.cpp.

OpenNN::RootMeanSquaredError::RootMeanSquaredError ( NeuralNetwork new_neural_network_pointer)
explicit

Neural network constructor. It creates a root mean squared error associated to a neural network object but not to a data set object. It also initializes all the rest of class members to their default values.

Parameters
new_neural_network_pointerPointer to a neural network object.

Definition at line 41 of file root_mean_squared_error.cpp.

OpenNN::RootMeanSquaredError::RootMeanSquaredError ( DataSet new_data_set_pointer)
explicit

Data set constructor. It creates a root mean squared error associated to a data set object but not to a neural network object. It also initializes all the rest of class members to their default values.

Parameters
new_data_set_pointerPointer to a data set object.

Definition at line 54 of file root_mean_squared_error.cpp.

OpenNN::RootMeanSquaredError::RootMeanSquaredError ( NeuralNetwork new_neural_network_pointer,
DataSet new_data_set_pointer 
)
explicit

Neural network and data set constructor. It creates a root mean squared error performance term object associated to a neural network and measured on a data set. It also initializes all the rest of class members to their default values.

Parameters
new_neural_network_pointerPointer to a neural network object.
new_data_set_pointerPointer to a data set object.

Definition at line 69 of file root_mean_squared_error.cpp.

OpenNN::RootMeanSquaredError::RootMeanSquaredError ( const tinyxml2::XMLDocument &  root_mean_squared_error_document)
explicit

XML constructor. This constructor creates a root mean squared object neither associated to a neural network nor a data set. It also loads the member data from a XML document.

Parameters
root_mean_squared_error_documentTinyXML document with the object members.

Definition at line 82 of file root_mean_squared_error.cpp.

Member Function Documentation

Matrix< double > OpenNN::RootMeanSquaredError::calculate_Hessian ( void  ) const
virtual
Todo:

Reimplemented from OpenNN::PerformanceTerm.

Definition at line 579 of file root_mean_squared_error.cpp.

double OpenNN::RootMeanSquaredError::calculate_performance ( void  ) const
virtual

Returns the performance value of a neural network according to the root mean squared error on the training instances of a data set.

Implements OpenNN::PerformanceTerm.

Definition at line 195 of file root_mean_squared_error.cpp.

double OpenNN::RootMeanSquaredError::calculate_performance ( const Vector< double > &  parameters) const
virtual

Returns which would be the performance of a multilayer perceptron for an hypothetical vector of parameters. It does not set that vector of parameters to the multilayer perceptron.

Parameters
parametersVector of potential parameters for the multilayer perceptron associated to the performance term.

Implements OpenNN::PerformanceTerm.

Definition at line 278 of file root_mean_squared_error.cpp.

void OpenNN::RootMeanSquaredError::check ( void  ) const
virtual

Checks that there are a neural network and a data set associated to the root mean squared error, and that the numbers of inputs and outputs in the neural network are equal to the numbers of inputs and targets in the data set. If some of the above conditions is not hold, the method throws an exception.

Reimplemented from OpenNN::PerformanceTerm.

Definition at line 105 of file root_mean_squared_error.cpp.

void OpenNN::RootMeanSquaredError::from_XML ( const tinyxml2::XMLDocument &  document)
virtual

Loads a root mean squared error object from a XML document.

Parameters
documentTinyXML document containing the members of the object.

Reimplemented from OpenNN::PerformanceTerm.

Definition at line 635 of file root_mean_squared_error.cpp.

tinyxml2::XMLDocument * OpenNN::RootMeanSquaredError::to_XML ( void  ) const
virtual

Serializes the root mean squared error object into a XML document of the TinyXML library. See the OpenNN manual for more information about the format of this element.

Reimplemented from OpenNN::PerformanceTerm.

Definition at line 602 of file root_mean_squared_error.cpp.


The documentation for this class was generated from the following files: