14 #ifndef __MODELSELECTION_H__
15 #define __MODELSELECTION_H__
31 #include "performance_functional.h"
33 #include "training_strategy.h"
37 #include "../tinyxml2/tinyxml2.h"
163 void check(
void)
const;
177 tinyxml2::XMLDocument*
to_XML(
void)
const;
178 void from_XML(
const tinyxml2::XMLDocument&);
180 void print(
void)
const;
181 void save(
const std::string&)
const;
182 void load(
const std::string&);
const bool & get_reserve_performance_data(void) const
Returns true if the performance functional performances are to be reserved, and false otherwise...
Vector< Vector< size_t > > inputs_indices
Indices for selecting the input variables.
void from_XML(const tinyxml2::XMLDocument &)
const Vector< size_t > & get_hidden_perceptrons_numbers(void) const
Returns the complexities of the neural networks given by the numbers of hidden perceptrons.
InputsSelectionMethod
Enumeration of available methods for inputs selection.
const InputsSelectionMethod & get_inputs_selection_method(void) const
Returns the method for selecting those inputs which have more impact on the targets.
Matrix< double > generalization_performance_data
Generalization performance of the different neural networks.
void perform_maximum_linear_correlation_inputs_selection(void) const
void set_assays_numbers(const size_t &, const size_t &)
ModelSelectionResults perform_model_selection(void) const
bool reserve_generalization_performance_data
True if the generalization performance of all neural networks are to be reserved. ...
const bool & get_reserve_performance_data_statistics(void) const
Returns true if the statistics of the performance data are to be inclued in the model selection resul...
void perform_maximum_logistic_correlation_inputs_selection(void) const
TrainingStrategy * get_training_strategy_pointer(void) const
Returns a pointer to the training strategy object.
bool reserve_minimal_parameters
True if the vector parameters of the neural network presenting minimum generalization performance is ...
size_t parameters_assays_number
Number of trials for each neural network.
void set_reserve_generalization_performance_data_statistics(const bool &)
const bool & get_reserve_model_order_selection_plot(void) const
Returns true if the necessary data for plotting the model selection results is to be included in the ...
const size_t & get_parameters_assays_number(void) const
Returns the number of trials for each network architecture.
Vector< Vector< double > > performance_data_statistics
Statistics of the performance functional performance for the different neural networks.
const bool & get_reserve_generalization_performance_data(void) const
Returns true if the performance functional generalization performances are to be reserved, and false otherwise.
bool display
Display messages to screen.
void set_reserve_model_order_selection_plot(const bool &)
Vector< Vector< double > > generalization_performance_data_statistics
Statistics of the generalization performance for the different neural networks.
void load(const std::string &)
const bool & get_reserve_parameters_data(void) const
Returns true if the neural network parameters are to be reserved, and false otherwise.
bool reserve_parameters_data
True if the parameters of all neural networks are to be reserved.
void set_inputs_selection_method(const InputsSelectionMethod &)
void check(void) const
Checks that the different pointers needed for performing the model selection are not NULL...
void set_reserve_performance_data(const bool &)
void set_reserve_parameters_data(const bool &)
void set_reserve_performance_data_statistics(const bool &)
void perform_inputs_selection(void) const
void perform_exhaustive_inputs_selection(void) const
double correlation_goal
Goal value for a single input-target correlation.
bool reserve_performance_data
True if the performance of all neural networks are to be reserved.
const bool & get_reserve_generalization_performance_data_statistics(void) const
Returns true if the statistics of the generalization performance data are to be inclued in the model ...
Vector< double > minimal_parameters
Vector of parameters for the neural network with minimum generalization performance.
bool reserve_performance_data_statistics
True if the statistics of the different performances are to be reserved.
bool reserve_model_order_selection_plot
True if the data needed to plot the results from the model selection plot is to be reserved...
Matrix< Vector< double > > parameters_data
Parameters of the different neural networks.
void set_training_strategy_pointer(TrainingStrategy *)
Matrix< double > performance_data
Performance performance of the different neural networks.
ModelSelection(void)
Default constructor.
ModelSelectionResults perform_order_selection(void) const
tinyxml2::XMLDocument * to_XML(void) const
TrainingStrategy * training_strategy_pointer
Pointer to a training strategy object.
virtual ~ModelSelection(void)
Destructor.
Matrix< double > calculate_linear_correlations(void) const
void save(const std::string &) const
void set_parameters_assays_number(const size_t &)
Matrix< double > calculate_logistic_correlations(void) const
const bool & get_display(void) const
void set_reserve_minimal_parameters(const bool &)
void print(void) const
Prints to the screen the XML representation of this model selection object.
void set_display(const bool &)
void set_reserve_generalization_performance_data(const bool &)
InputsSelectionMethod inputs_selection_method
Inputs selection method variable.
bool reserve_generalization_performance_data_statistics
True if the statistics of the different generalization performances are to be reserved.
const bool & get_reserve_minimal_parameters(void) const
Returns true if the parameters vector of the neural network with minimum performance functional perfo...
Vector< size_t > hidden_perceptrons_numbers
Complexities for selecting the network architecture.
void set_hidden_perceptrons_numbers(const Vector< size_t > &)