14 #ifndef __NORMALIZEDSQUAREDERROR_H__
15 #define __NORMALIZEDSQUAREDERROR_H__
29 #include "performance_term.h"
34 #include "../tinyxml2/tinyxml2.h"
85 void check(
void)
const;
116 tinyxml2::XMLDocument*
to_XML(
void)
const;
118 void from_XML(
const tinyxml2::XMLDocument&);
double calculate_normalization_coefficient(const Matrix< double > &, const Vector< double > &) const
Vector< size_t > calculate_maximal_errors(const size_t &=10) const
NormalizedSquaredError(void)
std::string write_information(void) const
Matrix< double > calculate_Hessian(void) const
double calculate_generalization_performance(void) const
Returns an performance of the performance term for generalization purposes.
tinyxml2::XMLDocument * to_XML(void) const
virtual ~NormalizedSquaredError(void)
Destructor.
void from_XML(const tinyxml2::XMLDocument &)
PerformanceTerm::FirstOrderTerms calculate_first_order_terms(void) const
Matrix< double > calculate_terms_Jacobian(void) const
Vector< double > training_target_mean
Mean values of all the target variables.
double calculate_performance(void) const
Returns the performance value of a neural network according to the normalized squared error on a data...
Vector< double > calculate_squared_errors(void) const
Returns the squared errors of the training instances.
std::string write_performance_term_type(void) const
Returns a string with the name of the normalized squared error performance type, "NORMALIZED_SQUARED_...
Vector< double > calculate_gradient(void) const
Vector< double > calculate_terms(void) const