14 #ifndef __UNSCALINGLAYER_H__
15 #define __UNSCALINGLAYER_H__
33 #include "../tinyxml2/tinyxml2.h"
114 void set(
const size_t&);
116 void set(
const tinyxml2::XMLDocument&);
128 void set_mean(
const size_t&,
const double&);
173 tinyxml2::XMLDocument*
to_XML(
void)
const;
174 void from_XML(
const tinyxml2::XMLDocument&);
void set_item_statistics(const size_t &, const Statistics< double > &)
Vector< double > calculate_mean_standard_deviation_outputs(const Vector< double > &) const
Matrix< double > arrange_Jacobian(const Vector< double > &) const
Arranges a "Jacobian" matrix from the vector of derivatives.
bool is_empty(void) const
Returns true if the number of unscaling neurons is zero, and false otherwise.
void set_unscaling_method(const UnscalingMethod &)
void initialize_random(void)
std::string write_unscaling_method_text(void) const
bool display
Display warning messages to screen.
Vector< double > calculate_mean_standard_deviation_derivatives(const Vector< double > &) const
Vector< double > arrange_minimums(void) const
void set_minimum(const size_t &, const double &)
virtual ~UnscalingLayer(void)
Destructor.
std::string to_string(void) const
Returns a string representation of the current unscaling layer object.
void set_maximum(const size_t &, const double &)
void prune_unscaling_neuron(const size_t &)
const bool & get_display(void) const
virtual void set_default(void)
Matrix< double > arrange_statistics(void) const
std::string write_unscaling_method(void) const
const UnscalingMethod & get_unscaling_method(void) const
void check_range(const Vector< double > &) const
Vector< double > calculate_second_derivatives(const Vector< double > &) const
Vector< double > calculate_derivatives(const Vector< double > &) const
Vector< double > calculate_mean_standard_deviation_second_derivatives(const Vector< double > &) const
UnscalingMethod unscaling_method
Unscaling method for the output variables.
UnscalingLayer(void)
Default constructor.
void set_mean(const size_t &, const double &)
UnscalingLayer & operator=(const UnscalingLayer &)
void set_statistics(const Vector< Statistics< double > > &)
Vector< Matrix< double > > arrange_Hessian_form(const Vector< double > &) const
Arranges a "Hessian form" vector of matrices from the vector of second derivatives.
std::string write_none_expression(const Vector< std::string > &, const Vector< std::string > &) const
void from_XML(const tinyxml2::XMLDocument &)
std::string write_expression(const Vector< std::string > &, const Vector< std::string > &) const
std::string write_minimum_maximum_expression(const Vector< std::string > &, const Vector< std::string > &) const
size_t get_unscaling_neurons_number(void) const
Returns the number of unscaling neurons in this layer.
Vector< double > calculate_outputs(const Vector< double > &) const
bool operator==(const UnscalingLayer &) const
Vector< Statistics< double > > get_statistics(void) const
Vector< double > calculate_minimum_maximum_second_derivatives(const Vector< double > &) const
Vector< double > calculate_minimum_maximum_outputs(const Vector< double > &) const
void set(void)
Sets the unscaling layer to be empty.
void set_standard_deviation(const size_t &, const double &)
void set_display(const bool &)
tinyxml2::XMLDocument * to_XML(void) const
Vector< double > arrange_maximums(void) const
Vector< Statistics< double > > statistics
Statistics of output variables.
std::string write_mean_stadard_deviation_expression(const Vector< std::string > &, const Vector< std::string > &) const
UnscalingMethod
Enumeration of available methods for input variables, output variables and independent parameters sca...
Vector< double > calculate_minimum_maximum_derivatives(const Vector< double > &) const