sun.com docs.sun.com My Sun Worldwide Sites

Previous Previous     Contents     Index     Next Next

Network Access Identifier (NAI)

Authentication, authorization, and accounting (AAA) servers, in use within the Internet, provide authentication and authorization services for dialup computers. These services are likely to be equally valuable for mobile nodes that use Mobile IP when the nodes attempt to connect to foreign domains with AAA servers. AAA servers use the Network Access Identifier (NAI) to identify clients. A mobile node can identify itself by including the NAI in the Mobile IP registration request.

Because the NAI is typically used to uniquely identify the mobile node, the home address of the mobile node is not always necessary to provide that function. Thus, a mobile node can authenticate itself. Consequently, a mobile node can be authorized for connection to the foreign domain without even having a home address. To request that a home address be assigned, a message that contains the mobile node NAI extension can set the home address field to zero in the registration request.

Mobile IP Message Authentication

Each mobile node, foreign agent, and home agent supports a mobility security association between the various Mobile IP components. The security association is indexed by the security parameter index (SPI) and IP address. In the instance of the mobile node, this address is the home address of the mobile node. Registration messages between a mobile node and the home agent are authenticated with the mobile-home authentication extension. In addition to mobile-home authentication, which is mandatory, you can use the optional mobile-foreign agent and home-foreign agent authentications.

Mobile Node Registration Request

A mobile node uses a registration request message to register with the home agent. Thus, the home agent can create or modify a mobility binding for that mobile node (for example, with a new lifetime). The foreign agent can relay the registration request to the home agent. However, if the mobile node is registering a colocated care-of address, then the mobile node can send the registration request directly to the home agent. If the foreign agent advertises that registration messages must be sent to the foreign agent, then the mobile node must send the registration request to the foreign agent.

Registration Reply Message

A mobility agent returns a registration reply message to a mobile node that has sent a registration request message. If the mobile node requests service from a foreign agent, that foreign agent receives the reply from the home agent. Subsequently, the foreign agent relays the reply to the mobile node. The reply message contains the necessary codes to inform the mobile node and the foreign agent about the status of the registration request. The message also contains the lifetime that is granted by the home agent. The lifetime can be smaller than the original request. The registration reply can also contain a dynamic home address assignment.

Foreign Agent Considerations

The foreign agent plays a mostly passive role in Mobile IP registration. The foreign agent adds all mobile nodes that are registered to the visitor table. The foreign agent relays registration requests between mobile nodes and home agents. Also, when the foreign agent provides the care-of address, the foreign agent de-encapsulates datagrams for delivery to the mobile node. The foreign agent also sends periodic agent advertisement messages to advertise the presence of the foreign agent.

If home agents and foreign agents support reverse tunnels, and the mobile node requests a reverse tunnel, the foreign agent then tunnels all the packets from the mobile node to the home agent. The home agent then sends the packets to the correspondent node. This process is the reverse of the home agent tunneling all of the mobile node's packets to the foreign agent for delivery to the mobile node. A foreign agent that supports reverse tunnels advertises that the reverse tunnel is supported for registration. Because of the local policy, the foreign agent can deny a registration request when the reverse tunnel flag is not set. The foreign agent can only distinguish multiple mobile nodes with the same (private) IP address when these mobile nodes are visiting different interfaces on the foreign agent. In the forward tunnel situation, the foreign agent distinguishes between multiple mobile nodes that share the same private addresses by looking at the incoming tunnel interface. The incoming tunnel interface maps to a unique home agent address.

Home Agent Considerations

Home agents play an active role in the registration process. The home agent receives registration requests from the mobile node. The registration request might be relayed by the foreign agent. The home agent updates its record of the mobility bindings for this mobile node. The home agent issues a suitable registration reply in response to each registration request. The home agent also forwards packets to the mobile node when the mobile node is away from the home network.

A home agent might not have to have a physical subnet configured for mobile nodes. However, the home agent must recognize the home address of the mobile node through the mipagent.conf file or some other mechanism when the home agent grants registration. For more information about mipagent.conf, refer to Creating the Mobile IP Configuration File.

A home agent can support private addressed mobile nodes by configuring the private addressed mobile nodes in the mipagent.conf file. The home addresses that are used by the home agent must be unique.

Dynamic Home Agent Discovery

In some situations, the mobile node might not know the home agent address when the mobile node attempts to register. If the mobile node does not know the home agent address, the mobile node can use dynamic home agent address resolution to learn the address. In this situation, the mobile node sets the home agent field of the registration request to the subnet-directed broadcast address of its home network. Each home agent that receives a registration request with a broadcast destination address rejects the mobile node's registration by returning a rejection registration reply. By doing so, the mobile node can use the home agent's unicast IP address that is indicated in the rejection reply when the mobile node next attempts registration.

Routing Datagrams to and From Mobile Nodes

This section describes how mobile nodes, home agents, and foreign agents cooperate to route datagrams for mobile nodes that are connected to a foreign network. See Overview of the Solaris Mobile IP Implementation for Mobile IP functions that are supported in the Solaris OS.

Encapsulation Methods

Home agents and foreign agents use one of the available encapsulation methods to support datagrams that use a tunnel. Defined encapsulation methods are IP-in-IP Encapsulation, Minimal Encapsulation, and Generic Routing Encapsulation. Foreign agent and home agent cases, or indirect colocated mobile node and home agent cases, must support the same encapsulation method. All Mobile IP entities are required to support IP-in-IP Encapsulation.

Unicast Datagram Routing

When registered on a foreign network, the mobile node uses the following rules to choose a default router:

  • If the mobile node is registered and uses a foreign agent care-of address, the process is straightforward. The mobile node chooses its default router from among the router addresses that are advertised in the ICMP router advertisement portion of that agent advertisement. The mobile node can also consider the IP source address of the agent advertisement as another possible choice for the IP address of a default router.

  • The mobile node might be registered directly with the home agent by using a colocated care-of address. Then, the mobile node chooses its default router from among those routers that are advertised in any ICMP router advertisement message that it receives. The network prefix of the chosen default router must match the network prefix of the care-of address of the mobile node that is externally obtained. The address might match the IP source address of the agent advertisement under the network prefix. Then, the mobile node can also consider that IP source address as another possible choice for the IP address of a default router.

  • If the mobile node is registered, a foreign agent that supports reverse tunnels routes unicast datagrams from the mobile node to the home agent through the reverse tunnel. If the mobile node is registered with a foreign agent that provides reverse tunnel support, the mobile node must use that foreign agent as its default router.

Broadcast Datagrams

When a home agent receives a broadcast datagram or multicast datagram, the home agent only forwards the datagram to mobile nodes that have specifically requested that they receive them. How the home agent forwards broadcast and multicast datagrams to mobile nodes depends primarily on two factors. Either that mobile node is using a foreign-agent provided care-of address, or the mobile node is using its own colocated care-of address. The former means that the datagram must be double encapsulated. The first IP header identifies the mobile node for which the datagram is to be delivered. This first IP header is not present in the broadcast or multicast datagram. The second IP header identifies the care-of address, and is the usual tunnel header. In the latter instance, the mobile node is decapsulating its own datagrams, and the datagram needs only to be sent through the regular tunnel.

Multicast Datagram Routing

To begin receiving multicast traffic when a mobile node is visiting a foreign subnet, a mobile node can join a multicast group in any of the following ways:

  • If the mobile node is using a colocated care-of address, the mobile node can use this address as the source IP address of any Internet Group Management Protocol (IGMP) join messages. However, a multicast router must be present on the visited subnet.

  • If the mobile node wants to join the ICMP group from its home subnet, the mobile node must use a reverse tunnel to send IGMP join messages to the home agent. However, the mobile node's home agent must be a multicast router. The home agent then forwards multicast datagrams through the tunnel to the mobile node.

  • If the mobile node is using a colocated care-of address, the mobile node can use this address as the source IP address of any IGMP join messages. However, a multicast router must be present on the visited subnet. After the mobile node has joined the group, the mobile node can participate by sending its own multicast packets directly on the visited network.

  • Send directly on the visited network.

  • Send through a tunnel to the home agent.

Multicast routing depends on the IP source address. A mobile node that is sending a multicast datagram must send the datagram from a valid source address on that link. So a mobile node that is sending multicast datagrams directly on the visited network must use a colocated care-of address as the IP source address. Also, the mobile node must have joined the multicast group that is associated with the address. Similarly, a mobile node that joined a multicast group while on its home subnet before roaming, or joined the multicast group while roaming through a reverse tunnel to its home agent, must use its home address as the IP source address of the multicast datagram. Thus, the mobile node must have these datagrams reverse-tunneled to its home subnet as well, either through itself by using its colocated care-of address, or through a foreign agent reverse tunnel.

While it seems more efficient for a mobile node to always join from the subnet that the mobile node is visiting, it is still a mobile node. Consequently, the mobile node would have to repeat the join every time the mobile node switches subnets. The more efficient way is for the mobile node to join through its home agent, and not have to carry this overhead. Also, multicast sessions might be present that are only available from the home subnet. Other considerations might also force the mobile node to participate in a specific way.

Security Considerations for Mobile IP

In many situations, mobile computers use wireless links to connect to the network. Wireless links are particularly vulnerable to passive eavesdropping, active replay attacks, and other active attacks.

Because Mobile IP recognizes its inability to reduce or eliminate this vulnerability, Mobile IP uses a form of authentication to protect Mobile IP registration messages from these types of attack. The default algorithm that is used is MD5, with a key size of 128 bits. The default operational mode requires that this 128-bit key precede and succeed the data to be hashed. The foreign agent uses MD5 to support authentication. The foreign agent also uses key sizes of 128 bits or greater, with manual key distribution. Mobile IP can support more authentication algorithms, algorithm modes, key distribution methods, and key sizes.

These methods do prevent Mobile IP registration messages from being altered. However, Mobile IP also uses a form of replay protection to alert Mobile IP entities when they receive duplicates of previous Mobile IP registration messages. If this protection method were not used, the mobile node and its home agent might become unsynchronized when either of them receives a registration message. Hence, Mobile IP updates its state. For example, a home agent receives a duplicate deregistration message while the mobile node is registered through a foreign agent.

Replay protection is ensured either by a method known as nonces, or timestamps. Nonces and timestamps are exchanged by home agents and mobile nodes within the Mobile IP registration messages. Nonces and timestamps are protected from change by an authentication mechanism. Consequently, if a home agent or mobile node receives a duplicate message, the duplicate message can be thrown away.

The use of tunnels can be a significant vulnerability, especially if registration is not authenticated. Also, the Address Resolution Protocol (ARP) is not authenticated, and can potentially be used to steal another host's traffic.

Use of IPsec With Mobile IP

In general, because home agents and foreign agents are fixed entities, they can use IPsec authentication or encryption to protect both Mobile IP registration messages and forward and reverse tunnel traffic. This process works completely independently of Mobile IP, and only depends on the workstation's ability to perform IPsec functions. Mobile nodes can also use IPsec authentication to protect their registration traffic. If the mobile node registers through a foreign agent, in general the mobile node cannot use IPsec encryption. The reason that the mobile node cannot use IPsec encryption is because the foreign agent must be able to check the information in the registration packet. While IPsec encryption could be used when a foreign agent is not needed, the issue of colocation makes this difficult to achieve. IPsec is an IP-level security relationship. Consequently, a home agent would have to know the mobile node's colocated address without prior information or registration messages. For more information about IPsec, see Chapter 19, IP Security Architecture (Overview) or Chapter 20, Configuring IPsec (Tasks).

Previous Previous     Contents     Index     Next Next
Company Info Contact Terms of Use Privacy Copyright 1994-2007 Sun Microsystems, Inc.