- cpn_TY_DEF
-
|- ∃rep. TYPE_DEFINITION (λn. n < 3) rep
- cpn_BIJ
-
|- (∀a. num2cpn (cpn2num a) = a) ∧
∀r. (λn. n < 3) r ⇔ (cpn2num (num2cpn r) = r)
- cpn_size_def
-
|- ∀x. cpn_size x = 0
- cpn_CASE
-
|- ∀x v0 v1 v2.
(case x of Less => v0 | Equal => v1 | Greater => v2) =
(λm. if m < 1 then v0 else if m = 1 then v1 else v2) (cpn2num x)
- TotOrd
-
|- ∀c.
TotOrd c ⇔
(∀x y. (c x y = Equal) ⇔ (x = y)) ∧
(∀x y. (c x y = Greater) ⇔ (c y x = Less)) ∧
∀x y z. (c x y = Less) ∧ (c y z = Less) ⇒ (c x z = Less)
- TO_of_LinearOrder
-
|- ∀r x y.
TO_of_LinearOrder r x y =
if x = y then Equal else if r x y then Less else Greater
- toto_TY_DEF
-
|- ∃rep. TYPE_DEFINITION TotOrd rep
- to_bij
-
|- (∀a. TO (apto a) = a) ∧ ∀r. TotOrd r ⇔ (apto (TO r) = r)
- WeakLinearOrder_of_TO
-
|- ∀c x y.
WeakLinearOrder_of_TO c x y ⇔
case c x y of Less => T | Equal => T | Greater => F
- StrongLinearOrder_of_TO
-
|- ∀c x y.
StrongLinearOrder_of_TO c x y ⇔
case c x y of Less => T | Equal => F | Greater => F
- toto_of_LinearOrder
-
|- ∀r. toto_of_LinearOrder r = TO (TO_of_LinearOrder r)
- TO_inv
-
|- ∀c x y. TO_inv c x y = c y x
- toto_inv
-
|- ∀c. toto_inv c = TO (TO_inv (apto c))
- lexTO
-
|- ∀R V.
R lexTO V =
TO_of_LinearOrder
(StrongLinearOrder_of_TO R LEX StrongLinearOrder_of_TO V)
- lextoto
-
|- ∀c v. c lextoto v = TO (apto c lexTO apto v)
- numOrd
-
|- numOrd = TO_of_LinearOrder $<
- numto
-
|- numto = TO numOrd
- num_dt_TY_DEF
-
|- ∃rep.
TYPE_DEFINITION
(λa0.
∀'num_dt' .
(∀a0.
(a0 = ind_type$CONSTR 0 ARB (λn. ind_type$BOTTOM)) ∨
(∃a.
(a0 =
(λa.
ind_type$CONSTR (SUC 0) ARB
(ind_type$FCONS a (λn. ind_type$BOTTOM))) a) ∧
'num_dt' a) ∨
(∃a.
(a0 =
(λa.
ind_type$CONSTR (SUC (SUC 0)) ARB
(ind_type$FCONS a (λn. ind_type$BOTTOM))) a) ∧
'num_dt' a) ⇒
'num_dt' a0) ⇒
'num_dt' a0) rep
- num_dt_case_def
-
|- (∀v f f1. num_dt_CASE zer v f f1 = v) ∧
(∀a v f f1. num_dt_CASE (bit1 a) v f f1 = f a) ∧
∀a v f f1. num_dt_CASE (bit2 a) v f f1 = f1 a
- num_dt_size_def
-
|- (num_dt_size zer = 0) ∧ (∀a. num_dt_size (bit1 a) = 1 + num_dt_size a) ∧
∀a. num_dt_size (bit2 a) = 1 + num_dt_size a
- num_to_dt_primitive
-
|- num_to_dt =
WFREC
(@R.
WF R ∧ (∀n. n ≠ 0 ∧ ODD n ⇒ R (DIV2 (n − 1)) n) ∧
∀n. n ≠ 0 ∧ ¬ODD n ⇒ R (DIV2 (n − 2)) n)
(λnum_to_dt n.
I
(if n = 0 then zer
else if ODD n then bit1 (num_to_dt (DIV2 (n − 1)))
else bit2 (num_to_dt (DIV2 (n − 2)))))
- num_dtOrd_tupled_primitive
-
|- num_dtOrd_tupled =
WFREC
(@R.
WF R ∧ (∀y x. R (x,y) (bit1 x,bit1 y)) ∧
∀y x. R (x,y) (bit2 x,bit2 y))
(λnum_dtOrd_tupled a.
case a of
(zer,zer) => I Equal
| (zer,bit1 x) => I Less
| (zer,bit2 x') => I Less
| (bit1 x'',zer) => I Greater
| (bit1 x'',bit1 y'') => I (num_dtOrd_tupled (x'',y''))
| (bit1 x'',bit2 y) => I Less
| (bit2 x''',zer) => I Greater
| (bit2 x''',bit1 y') => I Greater
| (bit2 x''',bit2 y''') => I (num_dtOrd_tupled (x''',y''')))
- num_dtOrd_curried
-
|- ∀x x1. num_dtOrd x x1 = num_dtOrd_tupled (x,x1)
- qk_numOrd_def
-
|- ∀m n. qk_numOrd m n = num_dtOrd (num_to_dt m) (num_to_dt n)
- qk_numto
-
|- qk_numto = TO qk_numOrd
- charOrd
-
|- ∀a b. charOrd a b = numOrd (ORD a) (ORD b)
- charto
-
|- charto = TO charOrd
- listorder_tupled_primitive
-
|- listorder_tupled =
WFREC (@R. WF R ∧ ∀s r m l V. R (V,l,m) (V,r::l,s::m))
(λlistorder_tupled a.
case a of
(V,l,[]) => I F
| (V,[],s::m) => I T
| (V,r::l',s::m) => I (V r s ∨ (r = s) ∧ listorder_tupled (V,l',m)))
- listorder_curried
-
|- ∀x x1 x2. listorder x x1 x2 ⇔ listorder_tupled (x,x1,x2)
- ListOrd
-
|- ∀c.
ListOrd c =
TO_of_LinearOrder (listorder (StrongLinearOrder_of_TO (apto c)))
- listoto
-
|- ∀c. listoto c = TO (ListOrd c)
- stringto
-
|- stringto = listoto charto
- imageOrd
-
|- ∀f cp a b. imageOrd f cp a b = cp (f a) (f b)
- StrongLinearOrderExists
-
|- ∃R. StrongLinearOrder R
- num2cpn_cpn2num
-
|- ∀a. num2cpn (cpn2num a) = a
- cpn2num_num2cpn
-
|- ∀r. r < 3 ⇔ (cpn2num (num2cpn r) = r)
- num2cpn_11
-
|- ∀r r'. r < 3 ⇒ r' < 3 ⇒ ((num2cpn r = num2cpn r') ⇔ (r = r'))
- cpn2num_11
-
|- ∀a a'. (cpn2num a = cpn2num a') ⇔ (a = a')
- num2cpn_ONTO
-
|- ∀a. ∃r. (a = num2cpn r) ∧ r < 3
- cpn2num_ONTO
-
|- ∀r. r < 3 ⇔ ∃a. r = cpn2num a
- num2cpn_thm
-
|- (num2cpn 0 = Less) ∧ (num2cpn 1 = Equal) ∧ (num2cpn 2 = Greater)
- cpn2num_thm
-
|- (cpn2num Less = 0) ∧ (cpn2num Equal = 1) ∧ (cpn2num Greater = 2)
- cpn_EQ_cpn
-
|- ∀a a'. (a = a') ⇔ (cpn2num a = cpn2num a')
- cpn_case_def
-
|- (∀v0 v1 v2. (case Less of Less => v0 | Equal => v1 | Greater => v2) = v0) ∧
(∀v0 v1 v2.
(case Equal of Less => v0 | Equal => v1 | Greater => v2) = v1) ∧
∀v0 v1 v2. (case Greater of Less => v0 | Equal => v1 | Greater => v2) = v2
- datatype_cpn
-
|- DATATYPE (cpn Less Equal Greater)
- cpn_distinct
-
|- Less ≠ Equal ∧ Less ≠ Greater ∧ Equal ≠ Greater
- cpn_case_cong
-
|- ∀M M' v0 v1 v2.
(M = M') ∧ ((M' = Less) ⇒ (v0 = v0')) ∧ ((M' = Equal) ⇒ (v1 = v1')) ∧
((M' = Greater) ⇒ (v2 = v2')) ⇒
((case M of Less => v0 | Equal => v1 | Greater => v2) =
case M' of Less => v0' | Equal => v1' | Greater => v2')
- cpn_nchotomy
-
|- ∀a. (a = Less) ∨ (a = Equal) ∨ (a = Greater)
- cpn_Axiom
-
|- ∀x0 x1 x2. ∃f. (f Less = x0) ∧ (f Equal = x1) ∧ (f Greater = x2)
- cpn_induction
-
|- ∀P. P Equal ∧ P Greater ∧ P Less ⇒ ∀a. P a
- trichotomous_ALT
-
|- ∀R. trichotomous R ⇔ ∀x y. ¬R x y ∧ ¬R y x ⇒ (x = y)
- TotOrd_TO_of_LO
-
|- ∀r. LinearOrder r ⇒ TotOrd (TO_of_LinearOrder r)
- SPLIT_PAIRS
-
|- ∀x y. (x = y) ⇔ (FST x = FST y) ∧ (SND x = SND y)
- all_cpn_distinct
-
|- (Less ≠ Equal ∧ Less ≠ Greater ∧ Equal ≠ Greater) ∧ Equal ≠ Less ∧
Greater ≠ Less ∧ Greater ≠ Equal
- TO_exists
-
|- ∃x. TotOrd x
- TO_apto_ID
-
|- ∀a. TO (apto a) = a
- TO_apto_TO_ID
-
|- ∀r. TotOrd r ⇔ (apto (TO r) = r)
- TO_11
-
|- ∀r r'. TotOrd r ⇒ TotOrd r' ⇒ ((TO r = TO r') ⇔ (r = r'))
- onto_apto
-
|- ∀r. TotOrd r ⇔ ∃a. r = apto a
- TO_onto
-
|- ∀a. ∃r. (a = TO r) ∧ TotOrd r
- TotOrd_apto
-
|- ∀c. TotOrd (apto c)
- TO_apto_TO_IMP
-
|- ∀r. TotOrd r ⇒ (apto (TO r) = r)
- toto_thm
-
|- ∀c.
(∀x y. (apto c x y = Equal) ⇔ (x = y)) ∧
(∀x y. (apto c x y = Greater) ⇔ (apto c y x = Less)) ∧
∀x y z. (apto c x y = Less) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
- TO_equal_eq
-
|- ∀c. TotOrd c ⇒ ∀x y. (c x y = Equal) ⇔ (x = y)
- toto_equal_eq
-
|- ∀c x y. (apto c x y = Equal) ⇔ (x = y)
- toto_equal_imp_eq
-
|- ∀c x y. (apto c x y = Equal) ⇒ (x = y)
- TO_refl
-
|- ∀c. TotOrd c ⇒ ∀x. c x x = Equal
- toto_refl
-
|- ∀c x. apto c x x = Equal
- toto_equal_sym
-
|- ∀c x y. (apto c x y = Equal) ⇔ (apto c y x = Equal)
- TO_antisym
-
|- ∀c. TotOrd c ⇒ ∀x y. (c x y = Greater) ⇔ (c y x = Less)
- toto_antisym
-
|- ∀c x y. (apto c x y = Greater) ⇔ (apto c y x = Less)
- toto_not_less_refl
-
|- ∀cmp h. (apto cmp h h = Less) ⇔ F
- toto_swap_cases
-
|- ∀c x y.
apto c y x =
case apto c x y of Less => Greater | Equal => Equal | Greater => Less
- toto_glneq
-
|- (∀c x y. (apto c x y = Less) ⇒ x ≠ y) ∧
∀c x y. (apto c x y = Greater) ⇒ x ≠ y
- toto_cpn_eqn
-
|- (∀c x y. (apto c x y = Equal) ⇒ (x = y)) ∧
(∀c x y. (apto c x y = Less) ⇒ x ≠ y) ∧
∀c x y. (apto c x y = Greater) ⇒ x ≠ y
- TO_cpn_eqn
-
|- ∀c.
TotOrd c ⇒
(∀x y. (c x y = Less) ⇒ x ≠ y) ∧ (∀x y. (c x y = Greater) ⇒ x ≠ y) ∧
∀x y. (c x y = Equal) ⇒ (x = y)
- NOT_EQ_LESS_IMP
-
|- ∀cmp x y. apto cmp x y ≠ Less ⇒ (x = y) ∨ (apto cmp y x = Less)
- totoEEtrans
-
|- ∀c x y z.
((apto c x y = Equal) ∧ (apto c y z = Equal) ⇒ (apto c x z = Equal)) ∧
((apto c x y = Equal) ∧ (apto c z y = Equal) ⇒ (apto c x z = Equal))
- totoLLtrans
-
|- ∀c x y z. (apto c x y = Less) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
- totoLGtrans
-
|- ∀c x y z.
(apto c x y = Less) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)
- totoGGtrans
-
|- ∀c x y z.
(apto c y x = Greater) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)
- totoGLtrans
-
|- ∀c x y z.
(apto c y x = Greater) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
- totoLEtrans
-
|- ∀c x y z. (apto c x y = Less) ∧ (apto c y z = Equal) ⇒ (apto c x z = Less)
- totoELtrans
-
|- ∀c x y z. (apto c x y = Equal) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
- toto_trans_less
-
|- (∀c x y z.
(apto c x y = Less) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)) ∧
(∀c x y z.
(apto c x y = Less) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)) ∧
(∀c x y z.
(apto c y x = Greater) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)) ∧
(∀c x y z.
(apto c y x = Greater) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)) ∧
(∀c x y z.
(apto c x y = Less) ∧ (apto c y z = Equal) ⇒ (apto c x z = Less)) ∧
∀c x y z. (apto c x y = Equal) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
- Weak_Weak_of
-
|- ∀c. WeakLinearOrder (WeakLinearOrder_of_TO (apto c))
- STRORD_SLO
-
|- ∀R. WeakLinearOrder R ⇒ StrongLinearOrder (STRORD R)
- Strongof_toto_STRORD
-
|- ∀c.
StrongLinearOrder_of_TO (apto c) =
STRORD (WeakLinearOrder_of_TO (apto c))
- Strong_Strong_of
-
|- ∀c. StrongLinearOrder (StrongLinearOrder_of_TO (apto c))
- Strong_Strong_of_TO
-
|- ∀c. TotOrd c ⇒ StrongLinearOrder (StrongLinearOrder_of_TO c)
- TotOrd_TO_of_Weak
-
|- ∀r. WeakLinearOrder r ⇒ TotOrd (TO_of_LinearOrder r)
- TotOrd_TO_of_Strong
-
|- ∀r. StrongLinearOrder r ⇒ TotOrd (TO_of_LinearOrder r)
- toto_Weak_thm
-
|- ∀c. toto_of_LinearOrder (WeakLinearOrder_of_TO (apto c)) = c
- toto_Strong_thm
-
|- ∀c. toto_of_LinearOrder (StrongLinearOrder_of_TO (apto c)) = c
- Weak_toto_thm
-
|- ∀r.
WeakLinearOrder r ⇒
(WeakLinearOrder_of_TO (apto (toto_of_LinearOrder r)) = r)
- Strong_toto_thm
-
|- ∀r.
StrongLinearOrder r ⇒
(StrongLinearOrder_of_TO (apto (toto_of_LinearOrder r)) = r)
- TotOrd_inv
-
|- ∀c. TotOrd c ⇒ TotOrd (TO_inv c)
- inv_TO
-
|- ∀r. TotOrd r ⇒ (toto_inv (TO r) = TO (TO_inv r))
- apto_inv
-
|- ∀c. apto (toto_inv c) = TO_inv (apto c)
- Weak_toto_inv
-
|- ∀c.
WeakLinearOrder_of_TO (apto (toto_inv c)) =
inv (WeakLinearOrder_of_TO (apto c))
- Strong_toto_inv
-
|- ∀c.
StrongLinearOrder_of_TO (apto (toto_inv c)) =
inv (StrongLinearOrder_of_TO (apto c))
- TO_inv_TO_inv
-
|- ∀c. TO_inv (TO_inv c) = c
- toto_inv_toto_inv
-
|- ∀c. toto_inv (toto_inv c) = c
- TO_inv_Ord
-
|- ∀r. TO_of_LinearOrder (inv r) = TO_inv (TO_of_LinearOrder r)
- TO_of_less_rel
-
|- ∀r. StrongLinearOrder r ⇒ ∀x y. (TO_of_LinearOrder r x y = Less) ⇔ r x y
- TO_of_greater_ler
-
|- ∀r. StrongLinearOrder r ⇒ ∀x y. (TO_of_LinearOrder r x y = Greater) ⇔ r y x
- toto_equal_imp
-
|- ∀cmp phi.
LinearOrder phi ∧ (cmp = toto_of_LinearOrder phi) ⇒
∀x y. ((x = y) ⇔ T) ⇒ (apto cmp x y = Equal)
- toto_unequal_imp
-
|- ∀cmp phi.
LinearOrder phi ∧ (cmp = toto_of_LinearOrder phi) ⇒
∀x y.
((x = y) ⇔ F) ⇒
if phi x y then apto cmp x y = Less else apto cmp x y = Greater
- StrongOrder_ALT
-
|- ∀Z. StrongOrder Z ⇔ irreflexive Z ∧ transitive Z
- LEX_ALT
-
|- ∀R U c d.
(R LEX U) c d ⇔ R (FST c) (FST d) ∨ (FST c = FST d) ∧ U (SND c) (SND d)
- SLO_LEX
-
|- ∀R V.
StrongLinearOrder R ∧ StrongLinearOrder V ⇒ StrongLinearOrder (R LEX V)
- lexTO_thm
-
|- ∀R V.
TotOrd R ∧ TotOrd V ⇒
∀x y.
(R lexTO V) x y =
case R (FST x) (FST y) of
Less => Less
| Equal => V (SND x) (SND y)
| Greater => Greater
- lexTO_ALT
-
|- ∀R V.
TotOrd R ∧ TotOrd V ⇒
∀(r,u) (r',u').
(R lexTO V) (r,u) (r',u') =
case R r r' of Less => Less | Equal => V u u' | Greater => Greater
- TO_lexTO
-
|- ∀R V. TotOrd R ∧ TotOrd V ⇒ TotOrd (R lexTO V)
- pre_aplextoto
-
|- ∀c v x y.
apto (c lextoto v) x y =
case apto c (FST x) (FST y) of
Less => Less
| Equal => apto v (SND x) (SND y)
| Greater => Greater
- aplextoto
-
|- ∀c v x1 x2 y1 y2.
apto (c lextoto v) (x1,x2) (y1,y2) =
case apto c x1 y1 of
Less => Less
| Equal => apto v x2 y2
| Greater => Greater
- StrongLinearOrder_LESS
-
|- StrongLinearOrder $<
- TO_numOrd
-
|- TotOrd numOrd
- apnumto_thm
-
|- apto numto = numOrd
- numeralOrd
-
|- ∀x y.
(numOrd ZERO ZERO = Equal) ∧ (numOrd ZERO (BIT1 y) = Less) ∧
(numOrd ZERO (BIT2 y) = Less) ∧ (numOrd (BIT1 x) ZERO = Greater) ∧
(numOrd (BIT2 x) ZERO = Greater) ∧
(numOrd (BIT1 x) (BIT1 y) = numOrd x y) ∧
(numOrd (BIT2 x) (BIT2 y) = numOrd x y) ∧
(numOrd (BIT1 x) (BIT2 y) =
case numOrd x y of Less => Less | Equal => Less | Greater => Greater) ∧
(numOrd (BIT2 x) (BIT1 y) =
case numOrd x y of Less => Less | Equal => Greater | Greater => Greater)
- datatype_num_dt
-
|- DATATYPE (num_dt zer bit1 bit2)
- num_dt_11
-
|- (∀a a'. (bit1 a = bit1 a') ⇔ (a = a')) ∧
∀a a'. (bit2 a = bit2 a') ⇔ (a = a')
- num_dt_distinct
-
|- (∀a. zer ≠ bit1 a) ∧ (∀a. zer ≠ bit2 a) ∧ ∀a' a. bit1 a ≠ bit2 a'
- num_dt_case_cong
-
|- ∀M M' v f f1.
(M = M') ∧ ((M' = zer) ⇒ (v = v')) ∧ (∀a. (M' = bit1 a) ⇒ (f a = f' a)) ∧
(∀a. (M' = bit2 a) ⇒ (f1 a = f1' a)) ⇒
(num_dt_CASE M v f f1 = num_dt_CASE M' v' f' f1')
- num_dt_nchotomy
-
|- ∀nn. (nn = zer) ∨ (∃n. nn = bit1 n) ∨ ∃n. nn = bit2 n
- num_dt_Axiom
-
|- ∀f0 f1 f2.
∃fn.
(fn zer = f0) ∧ (∀a. fn (bit1 a) = f1 a (fn a)) ∧
∀a. fn (bit2 a) = f2 a (fn a)
- num_dt_induction
-
|- ∀P. P zer ∧ (∀n. P n ⇒ P (bit1 n)) ∧ (∀n. P n ⇒ P (bit2 n)) ⇒ ∀n. P n
- num_dtOrd_ind
-
|- ∀P.
P zer zer ∧ (∀x. P zer (bit1 x)) ∧ (∀x. P zer (bit2 x)) ∧
(∀x. P (bit1 x) zer) ∧ (∀x. P (bit2 x) zer) ∧
(∀x y. P (bit1 x) (bit2 y)) ∧ (∀x y. P (bit2 x) (bit1 y)) ∧
(∀x y. P x y ⇒ P (bit1 x) (bit1 y)) ∧
(∀x y. P x y ⇒ P (bit2 x) (bit2 y)) ⇒
∀v v1. P v v1
- num_dtOrd
-
|- (num_dtOrd zer zer = Equal) ∧ (∀x. num_dtOrd zer (bit1 x) = Less) ∧
(∀x. num_dtOrd zer (bit2 x) = Less) ∧
(∀x. num_dtOrd (bit1 x) zer = Greater) ∧
(∀x. num_dtOrd (bit2 x) zer = Greater) ∧
(∀y x. num_dtOrd (bit1 x) (bit2 y) = Less) ∧
(∀y x. num_dtOrd (bit2 x) (bit1 y) = Greater) ∧
(∀y x. num_dtOrd (bit1 x) (bit1 y) = num_dtOrd x y) ∧
∀y x. num_dtOrd (bit2 x) (bit2 y) = num_dtOrd x y
- TO_qk_numOrd
-
|- TotOrd qk_numOrd
- qk_numeralOrd
-
|- ∀x y.
(qk_numOrd ZERO ZERO = Equal) ∧ (qk_numOrd ZERO (BIT1 y) = Less) ∧
(qk_numOrd ZERO (BIT2 y) = Less) ∧ (qk_numOrd (BIT1 x) ZERO = Greater) ∧
(qk_numOrd (BIT2 x) ZERO = Greater) ∧
(qk_numOrd (BIT1 x) (BIT1 y) = qk_numOrd x y) ∧
(qk_numOrd (BIT2 x) (BIT2 y) = qk_numOrd x y) ∧
(qk_numOrd (BIT1 x) (BIT2 y) = Less) ∧
(qk_numOrd (BIT2 x) (BIT1 y) = Greater)
- ap_qk_numto_thm
-
|- apto qk_numto = qk_numOrd
- TO_charOrd
-
|- TotOrd charOrd
- apcharto_thm
-
|- apto charto = charOrd
- charOrd_lt_lem
-
|- ∀a b.
(numOrd a b = Less) ⇒ (b < 256 ⇔ T) ⇒ (charOrd (CHR a) (CHR b) = Less)
- charOrd_gt_lem
-
|- ∀a b.
(numOrd a b = Greater) ⇒
(a < 256 ⇔ T) ⇒
(charOrd (CHR a) (CHR b) = Greater)
- charOrd_eq_lem
-
|- ∀a b. (numOrd a b = Equal) ⇒ (charOrd (CHR a) (CHR b) = Equal)
- charOrd_thm
-
|- charOrd = TO_of_LinearOrder $<
- listorder_ind
-
|- ∀P.
(∀V l. P V l []) ∧ (∀V s m. P V [] (s::m)) ∧
(∀V r l s m. P V l m ⇒ P V (r::l) (s::m)) ⇒
∀v v1 v2. P v v1 v2
- listorder
-
|- (∀l V. listorder V l [] ⇔ F) ∧ (∀s m V. listorder V [] (s::m) ⇔ T) ∧
∀s r m l V. listorder V (r::l) (s::m) ⇔ V r s ∨ (r = s) ∧ listorder V l m
- SLO_listorder
-
|- ∀V. StrongLinearOrder V ⇒ StrongLinearOrder (listorder V)
- TO_ListOrd
-
|- ∀c. TotOrd (ListOrd c)
- ListOrd_THM
-
|- ∀c.
(ListOrd c [] [] = Equal) ∧ (∀b y. ListOrd c [] (b::y) = Less) ∧
(∀a x. ListOrd c (a::x) [] = Greater) ∧
∀a x b y.
ListOrd c (a::x) (b::y) =
case apto c a b of
Less => Less
| Equal => ListOrd c x y
| Greater => Greater
- aplistoto
-
|- ∀c.
(apto (listoto c) [] [] = Equal) ∧
(∀b y. apto (listoto c) [] (b::y) = Less) ∧
(∀a x. apto (listoto c) (a::x) [] = Greater) ∧
∀a x b y.
apto (listoto c) (a::x) (b::y) =
case apto c a b of
Less => Less
| Equal => apto (listoto c) x y
| Greater => Greater
- TO_injection
-
|- ∀cp. TotOrd cp ⇒ ∀f. ONE_ONE f ⇒ TotOrd (imageOrd f cp)