- float_TY_DEF
-
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀'float' .
(∀a0'.
(∃a0 a1 a2.
a0' =
(λa0 a1 a2.
ind_type$CONSTR 0 (a0,a1,a2)
(λn. ind_type$BOTTOM)) a0 a1 a2) ⇒
'float' a0') ⇒
'float' a0') rep
- float_case_def
-
⊢ ∀a0 a1 a2 f. float_CASE (float a0 a1 a2) f = f a0 a1 a2
- float_size_def
-
⊢ ∀f f1 a0 a1 a2. float_size f f1 (float a0 a1 a2) = 1
- float_Sign
-
⊢ ∀c c0 c1. (float c c0 c1).Sign = c
- float_Exponent
-
⊢ ∀c c0 c1. (float c c0 c1).Exponent = c0
- float_Significand
-
⊢ ∀c c0 c1. (float c c0 c1).Significand = c1
- float_Sign_fupd
-
⊢ ∀f c c0 c1. float c c0 c1 with Sign updated_by f = float (f c) c0 c1
- float_Exponent_fupd
-
⊢ ∀f c c0 c1. float c c0 c1 with Exponent updated_by f = float c (f c0) c1
- float_Significand_fupd
-
⊢ ∀f c c0 c1. float c c0 c1 with Significand updated_by f = float c c0 (f c1)
- float_value_TY_DEF
-
⊢ ∃rep.
TYPE_DEFINITION
(λa0.
∀'float_value' .
(∀a0.
(∃a.
a0 =
(λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM)) a) ∨
a0 = ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ∨
a0 =
ind_type$CONSTR (SUC (SUC 0)) ARB (λn. ind_type$BOTTOM) ⇒
'float_value' a0) ⇒
'float_value' a0) rep
- float_value_case_def
-
⊢ (∀a f v v1. float_value_CASE (Float a) f v v1 = f a) ∧
(∀f v v1. float_value_CASE Infinity f v v1 = v) ∧
∀f v v1. float_value_CASE NaN f v v1 = v1
- float_value_size_def
-
⊢ (∀a. float_value_size (Float a) = 1) ∧ float_value_size Infinity = 0 ∧
float_value_size NaN = 0
- float_to_real_def
-
⊢ ∀x.
float_to_real x =
if x.Exponent = 0w then
-1 pow w2n x.Sign * (2 / 2 pow INT_MAX (:χ)) *
(&w2n x.Significand / 2 pow dimindex (:τ))
else
-1 pow w2n x.Sign * (2 pow w2n x.Exponent / 2 pow INT_MAX (:χ)) *
(1 + &w2n x.Significand / 2 pow dimindex (:τ))
- float_value_def
-
⊢ ∀x.
float_value x =
if x.Exponent = UINT_MAXw then
if x.Significand = 0w then Infinity else NaN
else Float (float_to_real x)
- float_is_nan_def
-
⊢ ∀x.
float_is_nan x ⇔
case float_value x of Float v1 => F | Infinity => F | NaN => T
- float_is_signalling_def
-
⊢ ∀x. float_is_signalling x ⇔ float_is_nan x ∧ ¬word_msb x.Significand
- float_is_infinite_def
-
⊢ ∀x.
float_is_infinite x ⇔
case float_value x of Float v1 => F | Infinity => T | NaN => F
- float_is_normal_def
-
⊢ ∀x. float_is_normal x ⇔ x.Exponent ≠ 0w ∧ x.Exponent ≠ UINT_MAXw
- float_is_subnormal_def
-
⊢ ∀x. float_is_subnormal x ⇔ x.Exponent = 0w ∧ x.Significand ≠ 0w
- float_is_zero_def
-
⊢ ∀x.
float_is_zero x ⇔
case float_value x of Float r => r = 0 | Infinity => F | NaN => F
- float_is_finite_def
-
⊢ ∀x.
float_is_finite x ⇔
case float_value x of Float v1 => T | Infinity => F | NaN => F
- is_integral_def
-
⊢ ∀r. is_integral r ⇔ ∃n. abs r = &n
- float_is_integral_def
-
⊢ ∀x.
float_is_integral x ⇔
case float_value x of
Float r => is_integral r
| Infinity => F
| NaN => F
- float_negate_def
-
⊢ ∀x. float_negate x = x with Sign := ¬x.Sign
- float_abs_def
-
⊢ ∀x. float_abs x = x with Sign := 0w
- float_plus_infinity_def
-
⊢ float_plus_infinity (:τ # χ) =
<|Sign := 0w; Exponent := UINT_MAXw; Significand := 0w|>
- float_plus_zero_def
-
⊢ float_plus_zero (:τ # χ) = <|Sign := 0w; Exponent := 0w; Significand := 0w|>
- float_top_def
-
⊢ float_top (:τ # χ) =
<|Sign := 0w; Exponent := UINT_MAXw − 1w; Significand := UINT_MAXw|>
- float_plus_min_def
-
⊢ float_plus_min (:τ # χ) = <|Sign := 0w; Exponent := 0w; Significand := 1w|>
- float_minus_infinity_def
-
⊢ float_minus_infinity (:τ # χ) = float_negate (float_plus_infinity (:τ # χ))
- float_minus_zero_def
-
⊢ float_minus_zero (:τ # χ) = float_negate (float_plus_zero (:τ # χ))
- float_bottom_def
-
⊢ float_bottom (:τ # χ) = float_negate (float_top (:τ # χ))
- float_minus_min_def
-
⊢ float_minus_min (:τ # χ) = float_negate (float_plus_min (:τ # χ))
- flags_TY_DEF
-
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀'flags' .
(∀a0'.
(∃a0 a1 a2 a3 a4 a5.
a0' =
(λa0 a1 a2 a3 a4 a5.
ind_type$CONSTR 0 (a0,a1,a2,a3,a4,a5)
(λn. ind_type$BOTTOM)) a0 a1 a2 a3 a4 a5) ⇒
'flags' a0') ⇒
'flags' a0') rep
- flags_case_def
-
⊢ ∀a0 a1 a2 a3 a4 a5 f.
flags_CASE (flags a0 a1 a2 a3 a4 a5) f = f a0 a1 a2 a3 a4 a5
- flags_size_def
-
⊢ ∀a0 a1 a2 a3 a4 a5.
flags_size (flags a0 a1 a2 a3 a4 a5) =
1 +
(bool_size a0 +
(bool_size a1 +
(bool_size a2 + (bool_size a3 + (bool_size a4 + bool_size a5)))))
- flags_DivideByZero
-
⊢ ∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).DivideByZero ⇔ b
- flags_InvalidOp
-
⊢ ∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).InvalidOp ⇔ b0
- flags_Overflow
-
⊢ ∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Overflow ⇔ b1
- flags_Precision
-
⊢ ∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Precision ⇔ b2
- flags_Underflow_BeforeRounding
-
⊢ ∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Underflow_BeforeRounding ⇔ b3
- flags_Underflow_AfterRounding
-
⊢ ∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Underflow_AfterRounding ⇔ b4
- flags_DivideByZero_fupd
-
⊢ ∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with DivideByZero updated_by f =
flags (f b) b0 b1 b2 b3 b4
- flags_InvalidOp_fupd
-
⊢ ∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with InvalidOp updated_by f =
flags b (f b0) b1 b2 b3 b4
- flags_Overflow_fupd
-
⊢ ∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Overflow updated_by f =
flags b b0 (f b1) b2 b3 b4
- flags_Precision_fupd
-
⊢ ∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Precision updated_by f =
flags b b0 b1 (f b2) b3 b4
- flags_Underflow_BeforeRounding_fupd
-
⊢ ∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Underflow_BeforeRounding updated_by f =
flags b b0 b1 b2 (f b3) b4
- flags_Underflow_AfterRounding_fupd
-
⊢ ∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Underflow_AfterRounding updated_by f =
flags b b0 b1 b2 b3 (f b4)
- clear_flags_def
-
⊢ clear_flags =
<|DivideByZero := F; InvalidOp := F; Overflow := F; Precision := F;
Underflow_BeforeRounding := F; Underflow_AfterRounding := F|>
- invalidop_flags_def
-
⊢ invalidop_flags = clear_flags with InvalidOp := T
- dividezero_flags_def
-
⊢ dividezero_flags = clear_flags with DivideByZero := T
- rounding_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION (λn. n < 4) rep
- rounding_BIJ
-
⊢ (∀a. num2rounding (rounding2num a) = a) ∧
∀r. (λn. n < 4) r ⇔ rounding2num (num2rounding r) = r
- rounding_size_def
-
⊢ ∀x. rounding_size x = 0
- rounding_CASE
-
⊢ ∀x v0 v1 v2 v3.
(case x of
roundTiesToEven => v0
| roundTowardPositive => v1
| roundTowardNegative => v2
| roundTowardZero => v3) =
(λm.
if m < 1 then v0
else if m < 2 then v1
else if m = 2 then v2
else v3) (rounding2num x)
- is_closest_def
-
⊢ ∀s x a.
is_closest s x a ⇔
a ∈ s ∧
∀b. b ∈ s ⇒ abs (float_to_real a − x) ≤ abs (float_to_real b − x)
- closest_such_def
-
⊢ ∀p s x.
closest_such p s x =
@a. is_closest s x a ∧ ∀b. is_closest s x b ∧ p b ⇒ p a
- closest_def
-
⊢ closest = closest_such (K T)
- largest_def
-
⊢ largest (:τ # χ) =
2 pow (UINT_MAX (:χ) − 1) / 2 pow INT_MAX (:χ) *
(2 − (2 pow dimindex (:τ))⁻¹)
- threshold_def
-
⊢ threshold (:τ # χ) =
2 pow (UINT_MAX (:χ) − 1) / 2 pow INT_MAX (:χ) *
(2 − (2 pow SUC (dimindex (:τ)))⁻¹)
- ULP_primitive_def
-
⊢ ULP =
WFREC (@R. WF R)
(λULP a.
case a of
(v,v1) =>
I
(2 pow (if v = 0w then 1 else w2n v) /
2 pow (INT_MAX (:χ) + dimindex (:τ))))
- ulp_def
-
⊢ ulp (:τ # χ) = ULP (0w,(:τ))
- round_def
-
⊢ ∀mode x.
round mode x =
case mode of
roundTiesToEven =>
(let
t = threshold (:τ # χ)
in
if x ≤ -t then float_minus_infinity (:τ # χ)
else if x ≥ t then float_plus_infinity (:τ # χ)
else closest_such (λa. ¬word_lsb a.Significand) float_is_finite x)
| roundTowardPositive =>
(let
t = largest (:τ # χ)
in
if x < -t then float_bottom (:τ # χ)
else if x > t then float_plus_infinity (:τ # χ)
else closest {a | float_is_finite a ∧ float_to_real a ≥ x} x)
| roundTowardNegative =>
(let
t = largest (:τ # χ)
in
if x < -t then float_minus_infinity (:τ # χ)
else if x > t then float_top (:τ # χ)
else closest {a | float_is_finite a ∧ float_to_real a ≤ x} x)
| roundTowardZero =>
(let
t = largest (:τ # χ)
in
if x < -t then float_bottom (:τ # χ)
else if x > t then float_top (:τ # χ)
else
closest {a | float_is_finite a ∧ abs (float_to_real a) ≤ abs x} x)
- integral_round_def
-
⊢ ∀mode x.
integral_round mode x =
case mode of
roundTiesToEven =>
(let
t = threshold (:τ # χ)
in
if x ≤ -t then float_minus_infinity (:τ # χ)
else if x ≥ t then float_plus_infinity (:τ # χ)
else
closest_such (λa. ∃n. EVEN n ∧ abs (float_to_real a) = &n)
float_is_integral x)
| roundTowardPositive =>
(let
t = largest (:τ # χ)
in
if x < -t then float_bottom (:τ # χ)
else if x > t then float_plus_infinity (:τ # χ)
else closest {a | float_is_integral a ∧ float_to_real a ≥ x} x)
| roundTowardNegative =>
(let
t = largest (:τ # χ)
in
if x < -t then float_minus_infinity (:τ # χ)
else if x > t then float_top (:τ # χ)
else closest {a | float_is_integral a ∧ float_to_real a ≤ x} x)
| roundTowardZero =>
(let
t = largest (:τ # χ)
in
if x < -t then float_bottom (:τ # χ)
else if x > t then float_top (:τ # χ)
else
closest {a | float_is_integral a ∧ abs (float_to_real a) ≤ abs x}
x)
- fp_op_TY_DEF
-
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀'fp_op' .
(∀a0'.
(∃a0 a1.
a0' =
(λa0 a1.
ind_type$CONSTR 0 (a0,a1,ARB,ARB)
(λn. ind_type$BOTTOM)) a0 a1) ∨
(∃a0 a1 a2.
a0' =
(λa0 a1 a2.
ind_type$CONSTR (SUC 0) (a0,a1,a2,ARB)
(λn. ind_type$BOTTOM)) a0 a1 a2) ∨
(∃a0 a1 a2.
a0' =
(λa0 a1 a2.
ind_type$CONSTR (SUC (SUC 0)) (a0,a1,a2,ARB)
(λn. ind_type$BOTTOM)) a0 a1 a2) ∨
(∃a0 a1 a2.
a0' =
(λa0 a1 a2.
ind_type$CONSTR (SUC (SUC (SUC 0)))
(a0,a1,a2,ARB) (λn. ind_type$BOTTOM)) a0 a1
a2) ∨
(∃a0 a1 a2.
a0' =
(λa0 a1 a2.
ind_type$CONSTR (SUC (SUC (SUC (SUC 0))))
(a0,a1,a2,ARB) (λn. ind_type$BOTTOM)) a0 a1
a2) ∨
(∃a0 a1 a2 a3.
a0' =
(λa0 a1 a2 a3.
ind_type$CONSTR
(SUC (SUC (SUC (SUC (SUC 0)))))
(a0,a1,a2,a3) (λn. ind_type$BOTTOM)) a0 a1
a2 a3) ∨
(∃a0 a1 a2 a3.
a0' =
(λa0 a1 a2 a3.
ind_type$CONSTR
(SUC (SUC (SUC (SUC (SUC (SUC 0))))))
(a0,a1,a2,a3) (λn. ind_type$BOTTOM)) a0 a1
a2 a3) ⇒
'fp_op' a0') ⇒
'fp_op' a0') rep
- fp_op_case_def
-
⊢ (∀a0 a1 f f1 f2 f3 f4 f5 f6.
fp_op_CASE (FP_Sqrt a0 a1) f f1 f2 f3 f4 f5 f6 = f a0 a1) ∧
(∀a0 a1 a2 f f1 f2 f3 f4 f5 f6.
fp_op_CASE (FP_Add a0 a1 a2) f f1 f2 f3 f4 f5 f6 = f1 a0 a1 a2) ∧
(∀a0 a1 a2 f f1 f2 f3 f4 f5 f6.
fp_op_CASE (FP_Sub a0 a1 a2) f f1 f2 f3 f4 f5 f6 = f2 a0 a1 a2) ∧
(∀a0 a1 a2 f f1 f2 f3 f4 f5 f6.
fp_op_CASE (FP_Mul a0 a1 a2) f f1 f2 f3 f4 f5 f6 = f3 a0 a1 a2) ∧
(∀a0 a1 a2 f f1 f2 f3 f4 f5 f6.
fp_op_CASE (FP_Div a0 a1 a2) f f1 f2 f3 f4 f5 f6 = f4 a0 a1 a2) ∧
(∀a0 a1 a2 a3 f f1 f2 f3 f4 f5 f6.
fp_op_CASE (FP_MulAdd a0 a1 a2 a3) f f1 f2 f3 f4 f5 f6 = f5 a0 a1 a2 a3) ∧
∀a0 a1 a2 a3 f f1 f2 f3 f4 f5 f6.
fp_op_CASE (FP_MulSub a0 a1 a2 a3) f f1 f2 f3 f4 f5 f6 = f6 a0 a1 a2 a3
- fp_op_size_def
-
⊢ (∀f f1 a0 a1.
fp_op_size f f1 (FP_Sqrt a0 a1) =
1 + (rounding_size a0 + float_size f f1 a1)) ∧
(∀f f1 a0 a1 a2.
fp_op_size f f1 (FP_Add a0 a1 a2) =
1 + (rounding_size a0 + (float_size f f1 a1 + float_size f f1 a2))) ∧
(∀f f1 a0 a1 a2.
fp_op_size f f1 (FP_Sub a0 a1 a2) =
1 + (rounding_size a0 + (float_size f f1 a1 + float_size f f1 a2))) ∧
(∀f f1 a0 a1 a2.
fp_op_size f f1 (FP_Mul a0 a1 a2) =
1 + (rounding_size a0 + (float_size f f1 a1 + float_size f f1 a2))) ∧
(∀f f1 a0 a1 a2.
fp_op_size f f1 (FP_Div a0 a1 a2) =
1 + (rounding_size a0 + (float_size f f1 a1 + float_size f f1 a2))) ∧
(∀f f1 a0 a1 a2 a3.
fp_op_size f f1 (FP_MulAdd a0 a1 a2 a3) =
1 +
(rounding_size a0 +
(float_size f f1 a1 + (float_size f f1 a2 + float_size f f1 a3)))) ∧
∀f f1 a0 a1 a2 a3.
fp_op_size f f1 (FP_MulSub a0 a1 a2 a3) =
1 +
(rounding_size a0 +
(float_size f f1 a1 + (float_size f f1 a2 + float_size f f1 a3)))
- float_some_qnan_def
-
⊢ ∀fp_op.
float_some_qnan fp_op =
(@f.
(let
qnan = f fp_op
in
float_is_nan qnan ∧ ¬float_is_signalling qnan)) fp_op
- float_round_def
-
⊢ ∀mode toneg r.
float_round mode toneg r =
(let
x = round mode r
in
if float_is_zero x then
if toneg then float_minus_zero (:τ # χ)
else float_plus_zero (:τ # χ) else x)
- float_round_with_flags_def
-
⊢ ∀mode to_neg r.
float_round_with_flags mode to_neg r =
(let
x = float_round mode to_neg r and a = abs r ;
inexact = float_value x ≠ Float r
in
(clear_flags with
<|Overflow := (float_is_infinite x ∨ 2 pow INT_MIN (:χ) ≤ a);
Underflow_BeforeRounding := (inexact ∧ a < 2 / 2 pow INT_MAX (:χ));
Underflow_AfterRounding :=
(inexact ∧
(float_round mode to_neg r).Exponent ≤₊ n2w (INT_MIN (:χ)));
Precision := inexact|>,x))
- check_for_signalling_def
-
⊢ ∀l.
check_for_signalling l =
clear_flags with InvalidOp := EXISTS float_is_signalling l
- real_to_float_def
-
⊢ ∀m. real_to_float m = float_round m (m = roundTowardNegative)
- real_to_float_with_flags_def
-
⊢ ∀m.
real_to_float_with_flags m =
float_round_with_flags m (m = roundTowardNegative)
- float_round_to_integral_def
-
⊢ ∀mode x.
float_round_to_integral mode x =
case float_value x of
Float r => integral_round mode r
| Infinity => x
| NaN => x
- float_to_int_def
-
⊢ ∀mode x.
float_to_int mode x =
case float_value x of
Float r =>
SOME
(case mode of
roundTiesToEven =>
(let
f = flr r ;
df = abs (r − real_of_int f)
in
if df < 1 / 2 ∨ df = 1 / 2 ∧ EVEN (Num (ABS f)) then f
else clg r)
| roundTowardPositive => clg r
| roundTowardNegative => flr r
| roundTowardZero => if x.Sign = 1w then clg r else flr r)
| Infinity => NONE
| NaN => NONE
- float_sqrt_def
-
⊢ ∀mode x.
float_sqrt mode x =
if x.Sign = 0w then
case float_value x of
Float r => float_round_with_flags mode F (sqrt r)
| Infinity => (clear_flags,float_plus_infinity (:τ # χ))
| NaN => (check_for_signalling [x],float_some_qnan (FP_Sqrt mode x))
else (invalidop_flags,float_some_qnan (FP_Sqrt mode x))
- float_add_def
-
⊢ ∀mode x y.
(mode float_add x) y =
case (float_value x,float_value y) of
(Float r1,Float r2) =>
float_round_with_flags mode
(if r1 = 0 ∧ r2 = 0 ∧ x.Sign = y.Sign then x.Sign = 1w
else (mode = roundTowardNegative)) (r1 + r2)
| (Float r1,Infinity) => (clear_flags,y)
| (Float r1,NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Add mode x y))
| (Infinity,Float v7) => (clear_flags,x)
| (Infinity,Infinity) =>
if x.Sign = y.Sign then (clear_flags,x)
else (invalidop_flags,float_some_qnan (FP_Add mode x y))
| (Infinity,NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Add mode x y))
| (NaN,v1) =>
(check_for_signalling [x; y],float_some_qnan (FP_Add mode x y))
- float_sub_def
-
⊢ ∀mode x y.
(mode float_sub x) y =
case (float_value x,float_value y) of
(Float r1,Float r2) =>
float_round_with_flags mode
(if r1 = 0 ∧ r2 = 0 ∧ x.Sign ≠ y.Sign then x.Sign = 1w
else (mode = roundTowardNegative)) (r1 − r2)
| (Float r1,Infinity) => (clear_flags,float_negate y)
| (Float r1,NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Sub mode x y))
| (Infinity,Float v7) => (clear_flags,x)
| (Infinity,Infinity) =>
if x.Sign = y.Sign then
(invalidop_flags,float_some_qnan (FP_Sub mode x y))
else (clear_flags,x)
| (Infinity,NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Sub mode x y))
| (NaN,v1) =>
(check_for_signalling [x; y],float_some_qnan (FP_Sub mode x y))
- float_mul_def
-
⊢ ∀mode x y.
(mode float_mul x) y =
case (float_value x,float_value y) of
(Float r',Float r2) =>
float_round_with_flags mode (x.Sign ≠ y.Sign) (r' * r2)
| (Float 0,Infinity) =>
(invalidop_flags,float_some_qnan (FP_Mul mode x y))
| (Float r',Infinity) =>
(clear_flags,if x.Sign = y.Sign then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
| (Float r',NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Mul mode x y))
| (Infinity,Float 0) =>
(invalidop_flags,float_some_qnan (FP_Mul mode x y))
| (Infinity,Float r) =>
(clear_flags,if x.Sign = y.Sign then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
| (Infinity,Infinity) =>
(clear_flags,if x.Sign = y.Sign then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
| (Infinity,NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Mul mode x y))
| (NaN,v1) =>
(check_for_signalling [x; y],float_some_qnan (FP_Mul mode x y))
- float_div_def
-
⊢ ∀mode x y.
(mode float_div x) y =
case (float_value x,float_value y) of
(Float 0,Float 0) =>
(invalidop_flags,float_some_qnan (FP_Div mode x y))
| (Float r1,Float 0) =>
(dividezero_flags,if x.Sign = y.Sign then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
| (Float r1,Float r2) =>
float_round_with_flags mode (x.Sign ≠ y.Sign) (r1 / r2)
| (Float r1,Infinity) =>
(clear_flags,if x.Sign = y.Sign then float_plus_zero (:τ # χ)
else float_minus_zero (:τ # χ))
| (Float r1,NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Div mode x y))
| (Infinity,Float v7) =>
(clear_flags,if x.Sign = y.Sign then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
| (Infinity,Infinity) =>
(invalidop_flags,float_some_qnan (FP_Div mode x y))
| (Infinity,NaN) =>
(check_for_signalling [y],float_some_qnan (FP_Div mode x y))
| (NaN,v1) =>
(check_for_signalling [x; y],float_some_qnan (FP_Div mode x y))
- float_mul_add_def
-
⊢ ∀mode x y z.
float_mul_add mode x y z =
(let
signP = x.Sign ⊕ y.Sign ;
infP = float_is_infinite x ∨ float_is_infinite y
in
if float_is_nan x ∨ float_is_nan y ∨ float_is_nan z then
(check_for_signalling [x; y; z],
float_some_qnan (FP_MulAdd mode x y z))
else if
float_is_infinite x ∧ float_is_zero y ∨
float_is_zero x ∧ float_is_infinite y ∨
float_is_infinite z ∧ infP ∧ signP ≠ z.Sign
then
(invalidop_flags,float_some_qnan (FP_MulAdd mode x y z))
else if float_is_infinite z ∧ z.Sign = 0w ∨ infP ∧ signP = 0w then
(clear_flags,float_plus_infinity (:τ # χ))
else if float_is_infinite z ∧ z.Sign = 1w ∨ infP ∧ signP = 1w then
(clear_flags,float_minus_infinity (:τ # χ))
else
(let
r1 = float_to_real x * float_to_real y and r2 = float_to_real z
in
float_round_with_flags mode
(if r1 = 0 ∧ r2 = 0 ∧ signP = z.Sign then signP = 1w
else (mode = roundTowardNegative)) (r1 + r2)))
- float_mul_sub_def
-
⊢ ∀mode x y z.
float_mul_sub mode x y z =
(let
signP = x.Sign ⊕ y.Sign ;
infP = float_is_infinite x ∨ float_is_infinite y
in
if float_is_nan x ∨ float_is_nan y ∨ float_is_nan z then
(check_for_signalling [x; y; z],
float_some_qnan (FP_MulSub mode x y z))
else if
float_is_infinite x ∧ float_is_zero y ∨
float_is_zero x ∧ float_is_infinite y ∨
float_is_infinite z ∧ infP ∧ signP = z.Sign
then
(invalidop_flags,float_some_qnan (FP_MulAdd mode x y z))
else if float_is_infinite z ∧ z.Sign = 1w ∨ infP ∧ signP = 0w then
(clear_flags,float_plus_infinity (:τ # χ))
else if float_is_infinite z ∧ z.Sign = 0w ∨ infP ∧ signP = 1w then
(clear_flags,float_minus_infinity (:τ # χ))
else
(let
r1 = float_to_real x * float_to_real y and r2 = float_to_real z
in
float_round_with_flags mode
(if r1 = 0 ∧ r2 = 0 ∧ signP ≠ z.Sign then signP = 1w
else (mode = roundTowardNegative)) (r1 − r2)))
- float_compare_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION (λn. n < 4) rep
- float_compare_BIJ
-
⊢ (∀a. num2float_compare (float_compare2num a) = a) ∧
∀r. (λn. n < 4) r ⇔ float_compare2num (num2float_compare r) = r
- float_compare_size_def
-
⊢ ∀x. float_compare_size x = 0
- float_compare_CASE
-
⊢ ∀x v0 v1 v2 v3.
(case x of LT => v0 | EQ => v1 | GT => v2 | UN => v3) =
(λm.
if m < 1 then v0
else if m < 2 then v1
else if m = 2 then v2
else v3) (float_compare2num x)
- float_compare_def
-
⊢ ∀x y.
float_compare x y =
case (float_value x,float_value y) of
(Float r1,Float r2) =>
if r1 < r2 then LT else if r1 = r2 then EQ else GT
| (Float r1,Infinity) => if y.Sign = 1w then GT else LT
| (Float r1,NaN) => UN
| (Infinity,Float v7) => if x.Sign = 1w then LT else GT
| (Infinity,Infinity) =>
if x.Sign = y.Sign then EQ else if x.Sign = 1w then LT else GT
| (Infinity,NaN) => UN
| (NaN,v1) => UN
- float_less_than_def
-
⊢ ∀x y. float_less_than x y ⇔ float_compare x y = LT
- float_less_equal_def
-
⊢ ∀x y.
float_less_equal x y ⇔
case float_compare x y of LT => T | EQ => T | GT => F | UN => F
- float_greater_than_def
-
⊢ ∀x y. float_greater_than x y ⇔ float_compare x y = GT
- float_greater_equal_def
-
⊢ ∀x y.
float_greater_equal x y ⇔
case float_compare x y of LT => F | EQ => T | GT => T | UN => F
- float_equal_def
-
⊢ ∀x y. float_equal x y ⇔ float_compare x y = EQ
- exponent_boundary_def
-
⊢ ∀y x.
exponent_boundary y x ⇔
x.Sign = y.Sign ∧ w2n x.Exponent = w2n y.Exponent + 1 ∧
x.Exponent ≠ 1w ∧ y.Significand = -1w ∧ x.Significand = 0w
- float_accessors
-
⊢ (∀c c0 c1. (float c c0 c1).Sign = c) ∧
(∀c c0 c1. (float c c0 c1).Exponent = c0) ∧
∀c c0 c1. (float c c0 c1).Significand = c1
- float_fn_updates
-
⊢ (∀f c c0 c1. float c c0 c1 with Sign updated_by f = float (f c) c0 c1) ∧
(∀f c c0 c1. float c c0 c1 with Exponent updated_by f = float c (f c0) c1) ∧
∀f c c0 c1. float c c0 c1 with Significand updated_by f = float c c0 (f c1)
- float_accfupds
-
⊢ (∀f0 f. (f with Exponent updated_by f0).Sign = f.Sign) ∧
(∀f0 f. (f with Significand updated_by f0).Sign = f.Sign) ∧
(∀f0 f. (f with Sign updated_by f0).Exponent = f.Exponent) ∧
(∀f0 f. (f with Significand updated_by f0).Exponent = f.Exponent) ∧
(∀f0 f. (f with Sign updated_by f0).Significand = f.Significand) ∧
(∀f0 f. (f with Exponent updated_by f0).Significand = f.Significand) ∧
(∀f0 f. (f with Sign updated_by f0).Sign = f0 f.Sign) ∧
(∀f0 f. (f with Exponent updated_by f0).Exponent = f0 f.Exponent) ∧
∀f0 f. (f with Significand updated_by f0).Significand = f0 f.Significand
- float_fupdfupds
-
⊢ (∀g f0 f.
f with <|Sign updated_by f0; Sign updated_by g|> =
f with Sign updated_by f0 ∘ g) ∧
(∀g f0 f.
f with <|Exponent updated_by f0; Exponent updated_by g|> =
f with Exponent updated_by f0 ∘ g) ∧
∀g f0 f.
f with <|Significand updated_by f0; Significand updated_by g|> =
f with Significand updated_by f0 ∘ g
- float_fupdfupds_comp
-
⊢ ((∀g f0. Sign_fupd f0 ∘ Sign_fupd g = Sign_fupd (f0 ∘ g)) ∧
∀h g f0. Sign_fupd f0 ∘ Sign_fupd g ∘ h = Sign_fupd (f0 ∘ g) ∘ h) ∧
((∀g f0. Exponent_fupd f0 ∘ Exponent_fupd g = Exponent_fupd (f0 ∘ g)) ∧
∀h g f0.
Exponent_fupd f0 ∘ Exponent_fupd g ∘ h = Exponent_fupd (f0 ∘ g) ∘ h) ∧
(∀g f0. Significand_fupd f0 ∘ Significand_fupd g = Significand_fupd (f0 ∘ g)) ∧
∀h g f0.
Significand_fupd f0 ∘ Significand_fupd g ∘ h =
Significand_fupd (f0 ∘ g) ∘ h
- float_fupdcanon
-
⊢ (∀g f0 f.
f with <|Exponent updated_by f0; Sign updated_by g|> =
f with <|Sign updated_by g; Exponent updated_by f0|>) ∧
(∀g f0 f.
f with <|Significand updated_by f0; Sign updated_by g|> =
f with <|Sign updated_by g; Significand updated_by f0|>) ∧
∀g f0 f.
f with <|Significand updated_by f0; Exponent updated_by g|> =
f with <|Exponent updated_by g; Significand updated_by f0|>
- float_fupdcanon_comp
-
⊢ ((∀g f0. Exponent_fupd f0 ∘ Sign_fupd g = Sign_fupd g ∘ Exponent_fupd f0) ∧
∀h g f0.
Exponent_fupd f0 ∘ Sign_fupd g ∘ h = Sign_fupd g ∘ Exponent_fupd f0 ∘ h) ∧
((∀g f0.
Significand_fupd f0 ∘ Sign_fupd g = Sign_fupd g ∘ Significand_fupd f0) ∧
∀h g f0.
Significand_fupd f0 ∘ Sign_fupd g ∘ h =
Sign_fupd g ∘ Significand_fupd f0 ∘ h) ∧
(∀g f0.
Significand_fupd f0 ∘ Exponent_fupd g =
Exponent_fupd g ∘ Significand_fupd f0) ∧
∀h g f0.
Significand_fupd f0 ∘ Exponent_fupd g ∘ h =
Exponent_fupd g ∘ Significand_fupd f0 ∘ h
- float_component_equality
-
⊢ ∀f1 f2.
f1 = f2 ⇔
f1.Sign = f2.Sign ∧ f1.Exponent = f2.Exponent ∧
f1.Significand = f2.Significand
- float_updates_eq_literal
-
⊢ ∀f c1 c0 c.
f with <|Sign := c1; Exponent := c0; Significand := c|> =
<|Sign := c1; Exponent := c0; Significand := c|>
- float_literal_nchotomy
-
⊢ ∀f. ∃c1 c0 c. f = <|Sign := c1; Exponent := c0; Significand := c|>
- FORALL_float
-
⊢ ∀P. (∀f. P f) ⇔ ∀c1 c0 c. P <|Sign := c1; Exponent := c0; Significand := c|>
- EXISTS_float
-
⊢ ∀P. (∃f. P f) ⇔ ∃c1 c0 c. P <|Sign := c1; Exponent := c0; Significand := c|>
- float_literal_11
-
⊢ ∀c11 c01 c1 c12 c02 c2.
<|Sign := c11; Exponent := c01; Significand := c1|> =
<|Sign := c12; Exponent := c02; Significand := c2|> ⇔
c11 = c12 ∧ c01 = c02 ∧ c1 = c2
- datatype_float
-
⊢ DATATYPE (record float Sign Exponent Significand)
- float_11
-
⊢ ∀a0 a1 a2 a0' a1' a2'.
float a0 a1 a2 = float a0' a1' a2' ⇔ a0 = a0' ∧ a1 = a1' ∧ a2 = a2'
- float_nchotomy
-
⊢ ∀ff. ∃c c0 c1. ff = float c c0 c1
- float_Axiom
-
⊢ ∀f. ∃fn. ∀a0 a1 a2. fn (float a0 a1 a2) = f a0 a1 a2
- float_induction
-
⊢ ∀P. (∀c c0 c1. P (float c c0 c1)) ⇒ ∀f. P f
- float_case_cong
-
⊢ ∀M M' f.
M = M' ∧ (∀a0 a1 a2. M' = float a0 a1 a2 ⇒ f a0 a1 a2 = f' a0 a1 a2) ⇒
float_CASE M f = float_CASE M' f'
- float_case_eq
-
⊢ float_CASE x f = v ⇔ ∃c c0 c1. x = float c c0 c1 ∧ f c c0 c1 = v
- datatype_float_value
-
⊢ DATATYPE (float_value Float Infinity NaN)
- float_value_11
-
⊢ ∀a a'. Float a = Float a' ⇔ a = a'
- float_value_distinct
-
⊢ (∀a. Float a ≠ Infinity) ∧ (∀a. Float a ≠ NaN) ∧ Infinity ≠ NaN
- float_value_nchotomy
-
⊢ ∀ff. (∃r. ff = Float r) ∨ ff = Infinity ∨ ff = NaN
- float_value_Axiom
-
⊢ ∀f0 f1 f2. ∃fn. (∀a. fn (Float a) = f0 a) ∧ fn Infinity = f1 ∧ fn NaN = f2
- float_value_induction
-
⊢ ∀P. (∀r. P (Float r)) ∧ P Infinity ∧ P NaN ⇒ ∀f. P f
- float_value_case_cong
-
⊢ ∀M M' f v v1.
M = M' ∧ (∀a. M' = Float a ⇒ f a = f' a) ∧ (M' = Infinity ⇒ v = v') ∧
(M' = NaN ⇒ v1 = v1') ⇒
float_value_CASE M f v v1 = float_value_CASE M' f' v' v1'
- float_value_case_eq
-
⊢ float_value_CASE x f v v1 = v' ⇔
(∃r. x = Float r ∧ f r = v') ∨ x = Infinity ∧ v = v' ∨ x = NaN ∧ v1 = v'
- flags_accessors
-
⊢ (∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).DivideByZero ⇔ b) ∧
(∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).InvalidOp ⇔ b0) ∧
(∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Overflow ⇔ b1) ∧
(∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Precision ⇔ b2) ∧
(∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Underflow_BeforeRounding ⇔ b3) ∧
∀b b0 b1 b2 b3 b4. (flags b b0 b1 b2 b3 b4).Underflow_AfterRounding ⇔ b4
- flags_fn_updates
-
⊢ (∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with DivideByZero updated_by f =
flags (f b) b0 b1 b2 b3 b4) ∧
(∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with InvalidOp updated_by f =
flags b (f b0) b1 b2 b3 b4) ∧
(∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Overflow updated_by f =
flags b b0 (f b1) b2 b3 b4) ∧
(∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Precision updated_by f =
flags b b0 b1 (f b2) b3 b4) ∧
(∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Underflow_BeforeRounding updated_by f =
flags b b0 b1 b2 (f b3) b4) ∧
∀f b b0 b1 b2 b3 b4.
flags b b0 b1 b2 b3 b4 with Underflow_AfterRounding updated_by f =
flags b b0 b1 b2 b3 (f b4)
- flags_accfupds
-
⊢ (∀f0 f. (f with InvalidOp updated_by f0).DivideByZero ⇔ f.DivideByZero) ∧
(∀f0 f. (f with Overflow updated_by f0).DivideByZero ⇔ f.DivideByZero) ∧
(∀f0 f. (f with Precision updated_by f0).DivideByZero ⇔ f.DivideByZero) ∧
(∀f0 f.
(f with Underflow_BeforeRounding updated_by f0).DivideByZero ⇔
f.DivideByZero) ∧
(∀f0 f.
(f with Underflow_AfterRounding updated_by f0).DivideByZero ⇔
f.DivideByZero) ∧
(∀f0 f. (f with DivideByZero updated_by f0).InvalidOp ⇔ f.InvalidOp) ∧
(∀f0 f. (f with Overflow updated_by f0).InvalidOp ⇔ f.InvalidOp) ∧
(∀f0 f. (f with Precision updated_by f0).InvalidOp ⇔ f.InvalidOp) ∧
(∀f0 f.
(f with Underflow_BeforeRounding updated_by f0).InvalidOp ⇔ f.InvalidOp) ∧
(∀f0 f.
(f with Underflow_AfterRounding updated_by f0).InvalidOp ⇔ f.InvalidOp) ∧
(∀f0 f. (f with DivideByZero updated_by f0).Overflow ⇔ f.Overflow) ∧
(∀f0 f. (f with InvalidOp updated_by f0).Overflow ⇔ f.Overflow) ∧
(∀f0 f. (f with Precision updated_by f0).Overflow ⇔ f.Overflow) ∧
(∀f0 f.
(f with Underflow_BeforeRounding updated_by f0).Overflow ⇔ f.Overflow) ∧
(∀f0 f. (f with Underflow_AfterRounding updated_by f0).Overflow ⇔ f.Overflow) ∧
(∀f0 f. (f with DivideByZero updated_by f0).Precision ⇔ f.Precision) ∧
(∀f0 f. (f with InvalidOp updated_by f0).Precision ⇔ f.Precision) ∧
(∀f0 f. (f with Overflow updated_by f0).Precision ⇔ f.Precision) ∧
(∀f0 f.
(f with Underflow_BeforeRounding updated_by f0).Precision ⇔ f.Precision) ∧
(∀f0 f.
(f with Underflow_AfterRounding updated_by f0).Precision ⇔ f.Precision) ∧
(∀f0 f.
(f with DivideByZero updated_by f0).Underflow_BeforeRounding ⇔
f.Underflow_BeforeRounding) ∧
(∀f0 f.
(f with InvalidOp updated_by f0).Underflow_BeforeRounding ⇔
f.Underflow_BeforeRounding) ∧
(∀f0 f.
(f with Overflow updated_by f0).Underflow_BeforeRounding ⇔
f.Underflow_BeforeRounding) ∧
(∀f0 f.
(f with Precision updated_by f0).Underflow_BeforeRounding ⇔
f.Underflow_BeforeRounding) ∧
(∀f0 f.
(f with Underflow_AfterRounding updated_by f0).Underflow_BeforeRounding ⇔
f.Underflow_BeforeRounding) ∧
(∀f0 f.
(f with DivideByZero updated_by f0).Underflow_AfterRounding ⇔
f.Underflow_AfterRounding) ∧
(∀f0 f.
(f with InvalidOp updated_by f0).Underflow_AfterRounding ⇔
f.Underflow_AfterRounding) ∧
(∀f0 f.
(f with Overflow updated_by f0).Underflow_AfterRounding ⇔
f.Underflow_AfterRounding) ∧
(∀f0 f.
(f with Precision updated_by f0).Underflow_AfterRounding ⇔
f.Underflow_AfterRounding) ∧
(∀f0 f.
(f with Underflow_BeforeRounding updated_by f0).Underflow_AfterRounding ⇔
f.Underflow_AfterRounding) ∧
(∀f0 f. (f with DivideByZero updated_by f0).DivideByZero ⇔ f0 f.DivideByZero) ∧
(∀f0 f. (f with InvalidOp updated_by f0).InvalidOp ⇔ f0 f.InvalidOp) ∧
(∀f0 f. (f with Overflow updated_by f0).Overflow ⇔ f0 f.Overflow) ∧
(∀f0 f. (f with Precision updated_by f0).Precision ⇔ f0 f.Precision) ∧
(∀f0 f.
(f with Underflow_BeforeRounding updated_by f0).
Underflow_BeforeRounding ⇔ f0 f.Underflow_BeforeRounding) ∧
∀f0 f.
(f with Underflow_AfterRounding updated_by f0).Underflow_AfterRounding ⇔
f0 f.Underflow_AfterRounding
- flags_fupdfupds
-
⊢ (∀g f0 f.
f with <|DivideByZero updated_by f0; DivideByZero updated_by g|> =
f with DivideByZero updated_by f0 ∘ g) ∧
(∀g f0 f.
f with <|InvalidOp updated_by f0; InvalidOp updated_by g|> =
f with InvalidOp updated_by f0 ∘ g) ∧
(∀g f0 f.
f with <|Overflow updated_by f0; Overflow updated_by g|> =
f with Overflow updated_by f0 ∘ g) ∧
(∀g f0 f.
f with <|Precision updated_by f0; Precision updated_by g|> =
f with Precision updated_by f0 ∘ g) ∧
(∀g f0 f.
f with
<|Underflow_BeforeRounding updated_by f0;
Underflow_BeforeRounding updated_by g|> =
f with Underflow_BeforeRounding updated_by f0 ∘ g) ∧
∀g f0 f.
f with
<|Underflow_AfterRounding updated_by f0;
Underflow_AfterRounding updated_by g|> =
f with Underflow_AfterRounding updated_by f0 ∘ g
- flags_fupdfupds_comp
-
⊢ ((∀g f0.
DivideByZero_fupd f0 ∘ DivideByZero_fupd g =
DivideByZero_fupd (f0 ∘ g)) ∧
∀h g f0.
DivideByZero_fupd f0 ∘ DivideByZero_fupd g ∘ h =
DivideByZero_fupd (f0 ∘ g) ∘ h) ∧
((∀g f0. InvalidOp_fupd f0 ∘ InvalidOp_fupd g = InvalidOp_fupd (f0 ∘ g)) ∧
∀h g f0.
InvalidOp_fupd f0 ∘ InvalidOp_fupd g ∘ h = InvalidOp_fupd (f0 ∘ g) ∘ h) ∧
((∀g f0. Overflow_fupd f0 ∘ Overflow_fupd g = Overflow_fupd (f0 ∘ g)) ∧
∀h g f0.
Overflow_fupd f0 ∘ Overflow_fupd g ∘ h = Overflow_fupd (f0 ∘ g) ∘ h) ∧
((∀g f0. Precision_fupd f0 ∘ Precision_fupd g = Precision_fupd (f0 ∘ g)) ∧
∀h g f0.
Precision_fupd f0 ∘ Precision_fupd g ∘ h = Precision_fupd (f0 ∘ g) ∘ h) ∧
((∀g f0.
Underflow_BeforeRounding_fupd f0 ∘ Underflow_BeforeRounding_fupd g =
Underflow_BeforeRounding_fupd (f0 ∘ g)) ∧
∀h g f0.
Underflow_BeforeRounding_fupd f0 ∘ Underflow_BeforeRounding_fupd g ∘ h =
Underflow_BeforeRounding_fupd (f0 ∘ g) ∘ h) ∧
(∀g f0.
Underflow_AfterRounding_fupd f0 ∘ Underflow_AfterRounding_fupd g =
Underflow_AfterRounding_fupd (f0 ∘ g)) ∧
∀h g f0.
Underflow_AfterRounding_fupd f0 ∘ Underflow_AfterRounding_fupd g ∘ h =
Underflow_AfterRounding_fupd (f0 ∘ g) ∘ h
- flags_fupdcanon
-
⊢ (∀g f0 f.
f with <|InvalidOp updated_by f0; DivideByZero updated_by g|> =
f with <|DivideByZero updated_by g; InvalidOp updated_by f0|>) ∧
(∀g f0 f.
f with <|Overflow updated_by f0; DivideByZero updated_by g|> =
f with <|DivideByZero updated_by g; Overflow updated_by f0|>) ∧
(∀g f0 f.
f with <|Overflow updated_by f0; InvalidOp updated_by g|> =
f with <|InvalidOp updated_by g; Overflow updated_by f0|>) ∧
(∀g f0 f.
f with <|Precision updated_by f0; DivideByZero updated_by g|> =
f with <|DivideByZero updated_by g; Precision updated_by f0|>) ∧
(∀g f0 f.
f with <|Precision updated_by f0; InvalidOp updated_by g|> =
f with <|InvalidOp updated_by g; Precision updated_by f0|>) ∧
(∀g f0 f.
f with <|Precision updated_by f0; Overflow updated_by g|> =
f with <|Overflow updated_by g; Precision updated_by f0|>) ∧
(∀g f0 f.
f with
<|Underflow_BeforeRounding updated_by f0; DivideByZero updated_by g|> =
f with
<|DivideByZero updated_by g; Underflow_BeforeRounding updated_by f0|>) ∧
(∀g f0 f.
f with
<|Underflow_BeforeRounding updated_by f0; InvalidOp updated_by g|> =
f with
<|InvalidOp updated_by g; Underflow_BeforeRounding updated_by f0|>) ∧
(∀g f0 f.
f with
<|Underflow_BeforeRounding updated_by f0; Overflow updated_by g|> =
f with
<|Overflow updated_by g; Underflow_BeforeRounding updated_by f0|>) ∧
(∀g f0 f.
f with
<|Underflow_BeforeRounding updated_by f0; Precision updated_by g|> =
f with
<|Precision updated_by g; Underflow_BeforeRounding updated_by f0|>) ∧
(∀g f0 f.
f with
<|Underflow_AfterRounding updated_by f0; DivideByZero updated_by g|> =
f with
<|DivideByZero updated_by g; Underflow_AfterRounding updated_by f0|>) ∧
(∀g f0 f.
f with
<|Underflow_AfterRounding updated_by f0; InvalidOp updated_by g|> =
f with
<|InvalidOp updated_by g; Underflow_AfterRounding updated_by f0|>) ∧
(∀g f0 f.
f with <|Underflow_AfterRounding updated_by f0; Overflow updated_by g|> =
f with <|Overflow updated_by g; Underflow_AfterRounding updated_by f0|>) ∧
(∀g f0 f.
f with
<|Underflow_AfterRounding updated_by f0; Precision updated_by g|> =
f with
<|Precision updated_by g; Underflow_AfterRounding updated_by f0|>) ∧
∀g f0 f.
f with
<|Underflow_AfterRounding updated_by f0;
Underflow_BeforeRounding updated_by g|> =
f with
<|Underflow_BeforeRounding updated_by g;
Underflow_AfterRounding updated_by f0|>
- flags_fupdcanon_comp
-
⊢ ((∀g f0.
InvalidOp_fupd f0 ∘ DivideByZero_fupd g =
DivideByZero_fupd g ∘ InvalidOp_fupd f0) ∧
∀h g f0.
InvalidOp_fupd f0 ∘ DivideByZero_fupd g ∘ h =
DivideByZero_fupd g ∘ InvalidOp_fupd f0 ∘ h) ∧
((∀g f0.
Overflow_fupd f0 ∘ DivideByZero_fupd g =
DivideByZero_fupd g ∘ Overflow_fupd f0) ∧
∀h g f0.
Overflow_fupd f0 ∘ DivideByZero_fupd g ∘ h =
DivideByZero_fupd g ∘ Overflow_fupd f0 ∘ h) ∧
((∀g f0.
Overflow_fupd f0 ∘ InvalidOp_fupd g =
InvalidOp_fupd g ∘ Overflow_fupd f0) ∧
∀h g f0.
Overflow_fupd f0 ∘ InvalidOp_fupd g ∘ h =
InvalidOp_fupd g ∘ Overflow_fupd f0 ∘ h) ∧
((∀g f0.
Precision_fupd f0 ∘ DivideByZero_fupd g =
DivideByZero_fupd g ∘ Precision_fupd f0) ∧
∀h g f0.
Precision_fupd f0 ∘ DivideByZero_fupd g ∘ h =
DivideByZero_fupd g ∘ Precision_fupd f0 ∘ h) ∧
((∀g f0.
Precision_fupd f0 ∘ InvalidOp_fupd g =
InvalidOp_fupd g ∘ Precision_fupd f0) ∧
∀h g f0.
Precision_fupd f0 ∘ InvalidOp_fupd g ∘ h =
InvalidOp_fupd g ∘ Precision_fupd f0 ∘ h) ∧
((∀g f0.
Precision_fupd f0 ∘ Overflow_fupd g =
Overflow_fupd g ∘ Precision_fupd f0) ∧
∀h g f0.
Precision_fupd f0 ∘ Overflow_fupd g ∘ h =
Overflow_fupd g ∘ Precision_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_BeforeRounding_fupd f0 ∘ DivideByZero_fupd g =
DivideByZero_fupd g ∘ Underflow_BeforeRounding_fupd f0) ∧
∀h g f0.
Underflow_BeforeRounding_fupd f0 ∘ DivideByZero_fupd g ∘ h =
DivideByZero_fupd g ∘ Underflow_BeforeRounding_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_BeforeRounding_fupd f0 ∘ InvalidOp_fupd g =
InvalidOp_fupd g ∘ Underflow_BeforeRounding_fupd f0) ∧
∀h g f0.
Underflow_BeforeRounding_fupd f0 ∘ InvalidOp_fupd g ∘ h =
InvalidOp_fupd g ∘ Underflow_BeforeRounding_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_BeforeRounding_fupd f0 ∘ Overflow_fupd g =
Overflow_fupd g ∘ Underflow_BeforeRounding_fupd f0) ∧
∀h g f0.
Underflow_BeforeRounding_fupd f0 ∘ Overflow_fupd g ∘ h =
Overflow_fupd g ∘ Underflow_BeforeRounding_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_BeforeRounding_fupd f0 ∘ Precision_fupd g =
Precision_fupd g ∘ Underflow_BeforeRounding_fupd f0) ∧
∀h g f0.
Underflow_BeforeRounding_fupd f0 ∘ Precision_fupd g ∘ h =
Precision_fupd g ∘ Underflow_BeforeRounding_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_AfterRounding_fupd f0 ∘ DivideByZero_fupd g =
DivideByZero_fupd g ∘ Underflow_AfterRounding_fupd f0) ∧
∀h g f0.
Underflow_AfterRounding_fupd f0 ∘ DivideByZero_fupd g ∘ h =
DivideByZero_fupd g ∘ Underflow_AfterRounding_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_AfterRounding_fupd f0 ∘ InvalidOp_fupd g =
InvalidOp_fupd g ∘ Underflow_AfterRounding_fupd f0) ∧
∀h g f0.
Underflow_AfterRounding_fupd f0 ∘ InvalidOp_fupd g ∘ h =
InvalidOp_fupd g ∘ Underflow_AfterRounding_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_AfterRounding_fupd f0 ∘ Overflow_fupd g =
Overflow_fupd g ∘ Underflow_AfterRounding_fupd f0) ∧
∀h g f0.
Underflow_AfterRounding_fupd f0 ∘ Overflow_fupd g ∘ h =
Overflow_fupd g ∘ Underflow_AfterRounding_fupd f0 ∘ h) ∧
((∀g f0.
Underflow_AfterRounding_fupd f0 ∘ Precision_fupd g =
Precision_fupd g ∘ Underflow_AfterRounding_fupd f0) ∧
∀h g f0.
Underflow_AfterRounding_fupd f0 ∘ Precision_fupd g ∘ h =
Precision_fupd g ∘ Underflow_AfterRounding_fupd f0 ∘ h) ∧
(∀g f0.
Underflow_AfterRounding_fupd f0 ∘ Underflow_BeforeRounding_fupd g =
Underflow_BeforeRounding_fupd g ∘ Underflow_AfterRounding_fupd f0) ∧
∀h g f0.
Underflow_AfterRounding_fupd f0 ∘ Underflow_BeforeRounding_fupd g ∘ h =
Underflow_BeforeRounding_fupd g ∘ Underflow_AfterRounding_fupd f0 ∘ h
- flags_component_equality
-
⊢ ∀f1 f2.
f1 = f2 ⇔
(f1.DivideByZero ⇔ f2.DivideByZero) ∧ (f1.InvalidOp ⇔ f2.InvalidOp) ∧
(f1.Overflow ⇔ f2.Overflow) ∧ (f1.Precision ⇔ f2.Precision) ∧
(f1.Underflow_BeforeRounding ⇔ f2.Underflow_BeforeRounding) ∧
(f1.Underflow_AfterRounding ⇔ f2.Underflow_AfterRounding)
- flags_updates_eq_literal
-
⊢ ∀f b4 b3 b2 b1 b0 b.
f with
<|DivideByZero := b4; InvalidOp := b3; Overflow := b2; Precision := b1;
Underflow_BeforeRounding := b0; Underflow_AfterRounding := b|> =
<|DivideByZero := b4; InvalidOp := b3; Overflow := b2; Precision := b1;
Underflow_BeforeRounding := b0; Underflow_AfterRounding := b|>
- flags_literal_nchotomy
-
⊢ ∀f.
∃b4 b3 b2 b1 b0 b.
f =
<|DivideByZero := b4; InvalidOp := b3; Overflow := b2;
Precision := b1; Underflow_BeforeRounding := b0;
Underflow_AfterRounding := b|>
- FORALL_flags
-
⊢ ∀P.
(∀f. P f) ⇔
∀b4 b3 b2 b1 b0 b.
P
<|DivideByZero := b4; InvalidOp := b3; Overflow := b2;
Precision := b1; Underflow_BeforeRounding := b0;
Underflow_AfterRounding := b|>
- EXISTS_flags
-
⊢ ∀P.
(∃f. P f) ⇔
∃b4 b3 b2 b1 b0 b.
P
<|DivideByZero := b4; InvalidOp := b3; Overflow := b2;
Precision := b1; Underflow_BeforeRounding := b0;
Underflow_AfterRounding := b|>
- flags_literal_11
-
⊢ ∀b41 b31 b21 b11 b01 b1 b42 b32 b22 b12 b02 b2.
<|DivideByZero := b41; InvalidOp := b31; Overflow := b21;
Precision := b11; Underflow_BeforeRounding := b01;
Underflow_AfterRounding := b1|> =
<|DivideByZero := b42; InvalidOp := b32; Overflow := b22;
Precision := b12; Underflow_BeforeRounding := b02;
Underflow_AfterRounding := b2|> ⇔
(b41 ⇔ b42) ∧ (b31 ⇔ b32) ∧ (b21 ⇔ b22) ∧ (b11 ⇔ b12) ∧ (b01 ⇔ b02) ∧
(b1 ⇔ b2)
- datatype_flags
-
⊢ DATATYPE
(record flags DivideByZero InvalidOp Overflow Precision
Underflow_BeforeRounding Underflow_AfterRounding)
- flags_11
-
⊢ ∀a0 a1 a2 a3 a4 a5 a0' a1' a2' a3' a4' a5'.
flags a0 a1 a2 a3 a4 a5 = flags a0' a1' a2' a3' a4' a5' ⇔
(a0 ⇔ a0') ∧ (a1 ⇔ a1') ∧ (a2 ⇔ a2') ∧ (a3 ⇔ a3') ∧ (a4 ⇔ a4') ∧
(a5 ⇔ a5')
- flags_nchotomy
-
⊢ ∀ff. ∃b b0 b1 b2 b3 b4. ff = flags b b0 b1 b2 b3 b4
- flags_Axiom
-
⊢ ∀f.
∃fn.
∀a0 a1 a2 a3 a4 a5.
fn (flags a0 a1 a2 a3 a4 a5) = f a0 a1 a2 a3 a4 a5
- flags_induction
-
⊢ ∀P. (∀b b0 b1 b2 b3 b4. P (flags b b0 b1 b2 b3 b4)) ⇒ ∀f. P f
- flags_case_cong
-
⊢ ∀M M' f.
M = M' ∧
(∀a0 a1 a2 a3 a4 a5.
M' = flags a0 a1 a2 a3 a4 a5 ⇒
f a0 a1 a2 a3 a4 a5 = f' a0 a1 a2 a3 a4 a5) ⇒
flags_CASE M f = flags_CASE M' f'
- flags_case_eq
-
⊢ flags_CASE x f = v ⇔
∃b b0 b1 b2 b3 b4. x = flags b b0 b1 b2 b3 b4 ∧ f b b0 b1 b2 b3 b4 = v
- num2rounding_rounding2num
-
⊢ ∀a. num2rounding (rounding2num a) = a
- rounding2num_num2rounding
-
⊢ ∀r. r < 4 ⇔ rounding2num (num2rounding r) = r
- num2rounding_11
-
⊢ ∀r r'. r < 4 ⇒ r' < 4 ⇒ (num2rounding r = num2rounding r' ⇔ r = r')
- rounding2num_11
-
⊢ ∀a a'. rounding2num a = rounding2num a' ⇔ a = a'
- num2rounding_ONTO
-
⊢ ∀a. ∃r. a = num2rounding r ∧ r < 4
- rounding2num_ONTO
-
⊢ ∀r. r < 4 ⇔ ∃a. r = rounding2num a
- num2rounding_thm
-
⊢ num2rounding 0 = roundTiesToEven ∧ num2rounding 1 = roundTowardPositive ∧
num2rounding 2 = roundTowardNegative ∧ num2rounding 3 = roundTowardZero
- rounding2num_thm
-
⊢ rounding2num roundTiesToEven = 0 ∧ rounding2num roundTowardPositive = 1 ∧
rounding2num roundTowardNegative = 2 ∧ rounding2num roundTowardZero = 3
- rounding_EQ_rounding
-
⊢ ∀a a'. a = a' ⇔ rounding2num a = rounding2num a'
- rounding_case_def
-
⊢ (∀v0 v1 v2 v3.
(case roundTiesToEven of
roundTiesToEven => v0
| roundTowardPositive => v1
| roundTowardNegative => v2
| roundTowardZero => v3) = v0) ∧
(∀v0 v1 v2 v3.
(case roundTowardPositive of
roundTiesToEven => v0
| roundTowardPositive => v1
| roundTowardNegative => v2
| roundTowardZero => v3) = v1) ∧
(∀v0 v1 v2 v3.
(case roundTowardNegative of
roundTiesToEven => v0
| roundTowardPositive => v1
| roundTowardNegative => v2
| roundTowardZero => v3) = v2) ∧
∀v0 v1 v2 v3.
(case roundTowardZero of
roundTiesToEven => v0
| roundTowardPositive => v1
| roundTowardNegative => v2
| roundTowardZero => v3) = v3
- datatype_rounding
-
⊢ DATATYPE
(rounding roundTiesToEven roundTowardPositive roundTowardNegative
roundTowardZero)
- rounding_distinct
-
⊢ roundTiesToEven ≠ roundTowardPositive ∧
roundTiesToEven ≠ roundTowardNegative ∧ roundTiesToEven ≠ roundTowardZero ∧
roundTowardPositive ≠ roundTowardNegative ∧
roundTowardPositive ≠ roundTowardZero ∧
roundTowardNegative ≠ roundTowardZero
- rounding_nchotomy
-
⊢ ∀a.
a = roundTiesToEven ∨ a = roundTowardPositive ∨
a = roundTowardNegative ∨ a = roundTowardZero
- rounding_Axiom
-
⊢ ∀x0 x1 x2 x3.
∃f.
f roundTiesToEven = x0 ∧ f roundTowardPositive = x1 ∧
f roundTowardNegative = x2 ∧ f roundTowardZero = x3
- rounding_induction
-
⊢ ∀P.
P roundTiesToEven ∧ P roundTowardNegative ∧ P roundTowardPositive ∧
P roundTowardZero ⇒
∀a. P a
- rounding_case_cong
-
⊢ ∀M M' v0 v1 v2 v3.
M = M' ∧ (M' = roundTiesToEven ⇒ v0 = v0') ∧
(M' = roundTowardPositive ⇒ v1 = v1') ∧
(M' = roundTowardNegative ⇒ v2 = v2') ∧
(M' = roundTowardZero ⇒ v3 = v3') ⇒
(case M of
roundTiesToEven => v0
| roundTowardPositive => v1
| roundTowardNegative => v2
| roundTowardZero => v3) =
case M' of
roundTiesToEven => v0'
| roundTowardPositive => v1'
| roundTowardNegative => v2'
| roundTowardZero => v3'
- rounding_case_eq
-
⊢ (case x of
roundTiesToEven => v0
| roundTowardPositive => v1
| roundTowardNegative => v2
| roundTowardZero => v3) = v ⇔
x = roundTiesToEven ∧ v0 = v ∨ x = roundTowardPositive ∧ v1 = v ∨
x = roundTowardNegative ∧ v2 = v ∨ x = roundTowardZero ∧ v3 = v
- ULP_ind
-
⊢ ∀P. (∀e. P (e,(:τ))) ⇒ ∀v v1. P (v,v1)
- ULP_def
-
⊢ ULP (e,(:τ)) =
2 pow (if e = 0w then 1 else w2n e) / 2 pow (INT_MAX (:χ) + dimindex (:τ))
- datatype_fp_op
-
⊢ DATATYPE (fp_op FP_Sqrt FP_Add FP_Sub FP_Mul FP_Div FP_MulAdd FP_MulSub)
- fp_op_11
-
⊢ (∀a0 a1 a0' a1'. FP_Sqrt a0 a1 = FP_Sqrt a0' a1' ⇔ a0 = a0' ∧ a1 = a1') ∧
(∀a0 a1 a2 a0' a1' a2'.
FP_Add a0 a1 a2 = FP_Add a0' a1' a2' ⇔ a0 = a0' ∧ a1 = a1' ∧ a2 = a2') ∧
(∀a0 a1 a2 a0' a1' a2'.
FP_Sub a0 a1 a2 = FP_Sub a0' a1' a2' ⇔ a0 = a0' ∧ a1 = a1' ∧ a2 = a2') ∧
(∀a0 a1 a2 a0' a1' a2'.
FP_Mul a0 a1 a2 = FP_Mul a0' a1' a2' ⇔ a0 = a0' ∧ a1 = a1' ∧ a2 = a2') ∧
(∀a0 a1 a2 a0' a1' a2'.
FP_Div a0 a1 a2 = FP_Div a0' a1' a2' ⇔ a0 = a0' ∧ a1 = a1' ∧ a2 = a2') ∧
(∀a0 a1 a2 a3 a0' a1' a2' a3'.
FP_MulAdd a0 a1 a2 a3 = FP_MulAdd a0' a1' a2' a3' ⇔
a0 = a0' ∧ a1 = a1' ∧ a2 = a2' ∧ a3 = a3') ∧
∀a0 a1 a2 a3 a0' a1' a2' a3'.
FP_MulSub a0 a1 a2 a3 = FP_MulSub a0' a1' a2' a3' ⇔
a0 = a0' ∧ a1 = a1' ∧ a2 = a2' ∧ a3 = a3'
- fp_op_distinct
-
⊢ (∀a2 a1' a1 a0' a0. FP_Sqrt a0 a1 ≠ FP_Add a0' a1' a2) ∧
(∀a2 a1' a1 a0' a0. FP_Sqrt a0 a1 ≠ FP_Sub a0' a1' a2) ∧
(∀a2 a1' a1 a0' a0. FP_Sqrt a0 a1 ≠ FP_Mul a0' a1' a2) ∧
(∀a2 a1' a1 a0' a0. FP_Sqrt a0 a1 ≠ FP_Div a0' a1' a2) ∧
(∀a3 a2 a1' a1 a0' a0. FP_Sqrt a0 a1 ≠ FP_MulAdd a0' a1' a2 a3) ∧
(∀a3 a2 a1' a1 a0' a0. FP_Sqrt a0 a1 ≠ FP_MulSub a0' a1' a2 a3) ∧
(∀a2' a2 a1' a1 a0' a0. FP_Add a0 a1 a2 ≠ FP_Sub a0' a1' a2') ∧
(∀a2' a2 a1' a1 a0' a0. FP_Add a0 a1 a2 ≠ FP_Mul a0' a1' a2') ∧
(∀a2' a2 a1' a1 a0' a0. FP_Add a0 a1 a2 ≠ FP_Div a0' a1' a2') ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Add a0 a1 a2 ≠ FP_MulAdd a0' a1' a2' a3) ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Add a0 a1 a2 ≠ FP_MulSub a0' a1' a2' a3) ∧
(∀a2' a2 a1' a1 a0' a0. FP_Sub a0 a1 a2 ≠ FP_Mul a0' a1' a2') ∧
(∀a2' a2 a1' a1 a0' a0. FP_Sub a0 a1 a2 ≠ FP_Div a0' a1' a2') ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Sub a0 a1 a2 ≠ FP_MulAdd a0' a1' a2' a3) ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Sub a0 a1 a2 ≠ FP_MulSub a0' a1' a2' a3) ∧
(∀a2' a2 a1' a1 a0' a0. FP_Mul a0 a1 a2 ≠ FP_Div a0' a1' a2') ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Mul a0 a1 a2 ≠ FP_MulAdd a0' a1' a2' a3) ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Mul a0 a1 a2 ≠ FP_MulSub a0' a1' a2' a3) ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Div a0 a1 a2 ≠ FP_MulAdd a0' a1' a2' a3) ∧
(∀a3 a2' a2 a1' a1 a0' a0. FP_Div a0 a1 a2 ≠ FP_MulSub a0' a1' a2' a3) ∧
∀a3' a3 a2' a2 a1' a1 a0' a0.
FP_MulAdd a0 a1 a2 a3 ≠ FP_MulSub a0' a1' a2' a3'
- fp_op_nchotomy
-
⊢ ∀ff.
(∃r f. ff = FP_Sqrt r f) ∨ (∃r f f0. ff = FP_Add r f f0) ∨
(∃r f f0. ff = FP_Sub r f f0) ∨ (∃r f f0. ff = FP_Mul r f f0) ∨
(∃r f f0. ff = FP_Div r f f0) ∨ (∃r f f0 f1. ff = FP_MulAdd r f f0 f1) ∨
∃r f f0 f1. ff = FP_MulSub r f f0 f1
- fp_op_Axiom
-
⊢ ∀f0 f1 f2 f3 f4 f5 f6.
∃fn.
(∀a0 a1. fn (FP_Sqrt a0 a1) = f0 a0 a1) ∧
(∀a0 a1 a2. fn (FP_Add a0 a1 a2) = f1 a0 a1 a2) ∧
(∀a0 a1 a2. fn (FP_Sub a0 a1 a2) = f2 a0 a1 a2) ∧
(∀a0 a1 a2. fn (FP_Mul a0 a1 a2) = f3 a0 a1 a2) ∧
(∀a0 a1 a2. fn (FP_Div a0 a1 a2) = f4 a0 a1 a2) ∧
(∀a0 a1 a2 a3. fn (FP_MulAdd a0 a1 a2 a3) = f5 a0 a1 a2 a3) ∧
∀a0 a1 a2 a3. fn (FP_MulSub a0 a1 a2 a3) = f6 a0 a1 a2 a3
- fp_op_induction
-
⊢ ∀P.
(∀r f. P (FP_Sqrt r f)) ∧ (∀r f f0. P (FP_Add r f f0)) ∧
(∀r f f0. P (FP_Sub r f f0)) ∧ (∀r f f0. P (FP_Mul r f f0)) ∧
(∀r f f0. P (FP_Div r f f0)) ∧ (∀r f f0 f1. P (FP_MulAdd r f f0 f1)) ∧
(∀r f f0 f1. P (FP_MulSub r f f0 f1)) ⇒
∀f. P f
- fp_op_case_cong
-
⊢ ∀M M' f f1 f2 f3 f4 f5 f6.
M = M' ∧ (∀a0 a1. M' = FP_Sqrt a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
(∀a0 a1 a2. M' = FP_Add a0 a1 a2 ⇒ f1 a0 a1 a2 = f1' a0 a1 a2) ∧
(∀a0 a1 a2. M' = FP_Sub a0 a1 a2 ⇒ f2 a0 a1 a2 = f2' a0 a1 a2) ∧
(∀a0 a1 a2. M' = FP_Mul a0 a1 a2 ⇒ f3 a0 a1 a2 = f3' a0 a1 a2) ∧
(∀a0 a1 a2. M' = FP_Div a0 a1 a2 ⇒ f4 a0 a1 a2 = f4' a0 a1 a2) ∧
(∀a0 a1 a2 a3.
M' = FP_MulAdd a0 a1 a2 a3 ⇒ f5 a0 a1 a2 a3 = f5' a0 a1 a2 a3) ∧
(∀a0 a1 a2 a3.
M' = FP_MulSub a0 a1 a2 a3 ⇒ f6 a0 a1 a2 a3 = f6' a0 a1 a2 a3) ⇒
fp_op_CASE M f f1 f2 f3 f4 f5 f6 =
fp_op_CASE M' f' f1' f2' f3' f4' f5' f6'
- fp_op_case_eq
-
⊢ fp_op_CASE x f f1 f2 f3 f4 f5 f6 = v ⇔
(∃r f'. x = FP_Sqrt r f' ∧ f r f' = v) ∨
(∃r f' f0. x = FP_Add r f' f0 ∧ f1 r f' f0 = v) ∨
(∃r f' f0. x = FP_Sub r f' f0 ∧ f2 r f' f0 = v) ∨
(∃r f' f0. x = FP_Mul r f' f0 ∧ f3 r f' f0 = v) ∨
(∃r f' f0. x = FP_Div r f' f0 ∧ f4 r f' f0 = v) ∨
(∃r f' f0 f1'. x = FP_MulAdd r f' f0 f1' ∧ f5 r f' f0 f1' = v) ∨
∃r f' f0 f1'. x = FP_MulSub r f' f0 f1' ∧ f6 r f' f0 f1' = v
- num2float_compare_float_compare2num
-
⊢ ∀a. num2float_compare (float_compare2num a) = a
- float_compare2num_num2float_compare
-
⊢ ∀r. r < 4 ⇔ float_compare2num (num2float_compare r) = r
- num2float_compare_11
-
⊢ ∀r r'.
r < 4 ⇒ r' < 4 ⇒ (num2float_compare r = num2float_compare r' ⇔ r = r')
- float_compare2num_11
-
⊢ ∀a a'. float_compare2num a = float_compare2num a' ⇔ a = a'
- num2float_compare_ONTO
-
⊢ ∀a. ∃r. a = num2float_compare r ∧ r < 4
- float_compare2num_ONTO
-
⊢ ∀r. r < 4 ⇔ ∃a. r = float_compare2num a
- num2float_compare_thm
-
⊢ num2float_compare 0 = LT ∧ num2float_compare 1 = EQ ∧
num2float_compare 2 = GT ∧ num2float_compare 3 = UN
- float_compare2num_thm
-
⊢ float_compare2num LT = 0 ∧ float_compare2num EQ = 1 ∧
float_compare2num GT = 2 ∧ float_compare2num UN = 3
- float_compare_EQ_float_compare
-
⊢ ∀a a'. a = a' ⇔ float_compare2num a = float_compare2num a'
- float_compare_case_def
-
⊢ (∀v0 v1 v2 v3. (case LT of LT => v0 | EQ => v1 | GT => v2 | UN => v3) = v0) ∧
(∀v0 v1 v2 v3. (case EQ of LT => v0 | EQ => v1 | GT => v2 | UN => v3) = v1) ∧
(∀v0 v1 v2 v3. (case GT of LT => v0 | EQ => v1 | GT => v2 | UN => v3) = v2) ∧
∀v0 v1 v2 v3. (case UN of LT => v0 | EQ => v1 | GT => v2 | UN => v3) = v3
- datatype_float_compare
-
⊢ DATATYPE (float_compare LT EQ GT UN)
- float_compare_distinct
-
⊢ LT ≠ EQ ∧ LT ≠ GT ∧ LT ≠ UN ∧ EQ ≠ GT ∧ EQ ≠ UN ∧ GT ≠ UN
- float_compare_nchotomy
-
⊢ ∀a. a = LT ∨ a = EQ ∨ a = GT ∨ a = UN
- float_compare_Axiom
-
⊢ ∀x0 x1 x2 x3. ∃f. f LT = x0 ∧ f EQ = x1 ∧ f GT = x2 ∧ f UN = x3
- float_compare_induction
-
⊢ ∀P. P EQ ∧ P GT ∧ P LT ∧ P UN ⇒ ∀a. P a
- float_compare_case_cong
-
⊢ ∀M M' v0 v1 v2 v3.
M = M' ∧ (M' = LT ⇒ v0 = v0') ∧ (M' = EQ ⇒ v1 = v1') ∧
(M' = GT ⇒ v2 = v2') ∧ (M' = UN ⇒ v3 = v3') ⇒
(case M of LT => v0 | EQ => v1 | GT => v2 | UN => v3) =
case M' of LT => v0' | EQ => v1' | GT => v2' | UN => v3'
- float_compare_case_eq
-
⊢ (case x of LT => v0 | EQ => v1 | GT => v2 | UN => v3) = v ⇔
x = LT ∧ v0 = v ∨ x = EQ ∧ v1 = v ∨ x = GT ∧ v2 = v ∨ x = UN ∧ v3 = v
- zero_lt_twopow
-
⊢ ∀n. 0 < 2 pow n
- zero_le_twopow
-
⊢ ∀n. 0 ≤ 2 pow n
- zero_neq_twopow
-
⊢ ∀n. 2 pow n ≠ 0
- zero_le_pos_div_twopow
-
⊢ ∀m n. 0 ≤ &m / 2 pow n
- div_eq0
-
⊢ ∀a b. 0 < b ⇒ (a / b = 0 ⇔ a = 0)
- exp_ge2
-
⊢ ∀b. 2 ≤ 2 ** b ⇔ 1 ≤ b
- exp_gt2
-
⊢ ∀b. 2 < 2 ** b ⇔ 1 < b
- le2
-
⊢ ∀n m. 2 ≤ n ∧ 2 ≤ m ⇒ 2 ≤ n * m
- float_components
-
⊢ (float_plus_infinity (:τ # χ)).Sign = 0w ∧
(float_plus_infinity (:τ # χ)).Exponent = UINT_MAXw ∧
(float_plus_infinity (:τ # χ)).Significand = 0w ∧
(float_minus_infinity (:τ # χ)).Sign = 1w ∧
(float_minus_infinity (:τ # χ)).Exponent = UINT_MAXw ∧
(float_minus_infinity (:τ # χ)).Significand = 0w ∧
(float_plus_zero (:τ # χ)).Sign = 0w ∧
(float_plus_zero (:τ # χ)).Exponent = 0w ∧
(float_plus_zero (:τ # χ)).Significand = 0w ∧
(float_minus_zero (:τ # χ)).Sign = 1w ∧
(float_minus_zero (:τ # χ)).Exponent = 0w ∧
(float_minus_zero (:τ # χ)).Significand = 0w ∧
(float_plus_min (:τ # χ)).Sign = 0w ∧
(float_plus_min (:τ # χ)).Exponent = 0w ∧
(float_plus_min (:τ # χ)).Significand = 1w ∧
(float_minus_min (:τ # χ)).Sign = 1w ∧
(float_minus_min (:τ # χ)).Exponent = 0w ∧
(float_minus_min (:τ # χ)).Significand = 1w ∧
(float_top (:τ # χ)).Sign = 0w ∧
(float_top (:τ # χ)).Exponent = UINT_MAXw − 1w ∧
(float_top (:τ # χ)).Significand = UINT_MAXw ∧
(float_bottom (:τ # χ)).Sign = 1w ∧
(float_bottom (:τ # χ)).Exponent = UINT_MAXw − 1w ∧
(float_bottom (:τ # χ)).Significand = UINT_MAXw ∧
(∀fp_op. (float_some_qnan fp_op).Exponent = UINT_MAXw) ∧
(∀fp_op. (float_some_qnan fp_op).Significand ≠ 0w) ∧
(∀x. (float_negate x).Sign = ¬x.Sign) ∧
(∀x. (float_negate x).Exponent = x.Exponent) ∧
∀x. (float_negate x).Significand = x.Significand
- float_distinct
-
⊢ float_plus_infinity (:τ # χ) ≠ float_minus_infinity (:τ # χ) ∧
float_plus_infinity (:τ # χ) ≠ float_plus_zero (:τ # χ) ∧
float_plus_infinity (:τ # χ) ≠ float_minus_zero (:τ # χ) ∧
float_plus_infinity (:τ # χ) ≠ float_top (:τ # χ) ∧
float_plus_infinity (:τ # χ) ≠ float_bottom (:τ # χ) ∧
float_plus_infinity (:τ # χ) ≠ float_plus_min (:τ # χ) ∧
float_plus_infinity (:τ # χ) ≠ float_minus_min (:τ # χ) ∧
(∀fp_op. float_plus_infinity (:τ # χ) ≠ float_some_qnan fp_op) ∧
float_minus_infinity (:τ # χ) ≠ float_plus_zero (:τ # χ) ∧
float_minus_infinity (:τ # χ) ≠ float_minus_zero (:τ # χ) ∧
float_minus_infinity (:τ # χ) ≠ float_top (:τ # χ) ∧
float_minus_infinity (:τ # χ) ≠ float_bottom (:τ # χ) ∧
float_minus_infinity (:τ # χ) ≠ float_plus_min (:τ # χ) ∧
float_minus_infinity (:τ # χ) ≠ float_minus_min (:τ # χ) ∧
(∀fp_op. float_minus_infinity (:τ # χ) ≠ float_some_qnan fp_op) ∧
float_plus_zero (:τ # χ) ≠ float_minus_zero (:τ # χ) ∧
float_plus_zero (:τ # χ) ≠ float_top (:τ # χ) ∧
float_plus_zero (:τ # χ) ≠ float_bottom (:τ # χ) ∧
float_plus_zero (:τ # χ) ≠ float_plus_min (:τ # χ) ∧
float_plus_zero (:τ # χ) ≠ float_minus_min (:τ # χ) ∧
(∀fp_op. float_plus_zero (:τ # χ) ≠ float_some_qnan fp_op) ∧
float_minus_zero (:τ # χ) ≠ float_top (:τ # χ) ∧
float_minus_zero (:τ # χ) ≠ float_bottom (:τ # χ) ∧
float_minus_zero (:τ # χ) ≠ float_plus_min (:τ # χ) ∧
float_minus_zero (:τ # χ) ≠ float_minus_min (:τ # χ) ∧
(∀fp_op. float_minus_zero (:τ # χ) ≠ float_some_qnan fp_op) ∧
float_top (:τ # χ) ≠ float_minus_min (:τ # χ) ∧
float_top (:τ # χ) ≠ float_bottom (:τ # χ) ∧
(∀fp_op. float_top (:τ # χ) ≠ float_some_qnan fp_op) ∧
float_bottom (:τ # χ) ≠ float_plus_min (:τ # χ) ∧
(∀fp_op. float_bottom (:τ # χ) ≠ float_some_qnan fp_op) ∧
(∀fp_op. float_plus_min (:τ # χ) ≠ float_some_qnan fp_op) ∧
float_plus_min (:τ # χ) ≠ float_minus_min (:τ # χ) ∧
(∀fp_op. float_minus_min (:τ # χ) ≠ float_some_qnan fp_op) ∧
∀x. float_negate x ≠ x
- float_values
-
⊢ float_value (float_plus_infinity (:τ # χ)) = Infinity ∧
float_value (float_minus_infinity (:τ # χ)) = Infinity ∧
(∀fp_op. float_value (float_some_qnan fp_op) = NaN) ∧
float_value (float_plus_zero (:τ # χ)) = Float 0 ∧
float_value (float_minus_zero (:τ # χ)) = Float 0 ∧
float_value (float_plus_min (:τ # χ)) =
Float (2 / 2 pow (INT_MAX (:χ) + dimindex (:τ))) ∧
float_value (float_minus_min (:τ # χ)) =
Float (-2 / 2 pow (INT_MAX (:χ) + dimindex (:τ)))
- zero_to_real
-
⊢ float_to_real (float_plus_zero (:τ # χ)) = 0 ∧
float_to_real (float_minus_zero (:τ # χ)) = 0
- sign_not_zero
-
⊢ ∀s. -1 pow w2n s ≠ 0
- float_sets
-
⊢ float_is_zero = {float_minus_zero (:τ # χ); float_plus_zero (:τ # χ)} ∧
float_is_infinite =
{float_minus_infinity (:τ # χ); float_plus_infinity (:τ # χ)}
- infinity_properties
-
⊢ ¬float_is_zero (float_plus_infinity (:τ # χ)) ∧
¬float_is_zero (float_minus_infinity (:τ # χ)) ∧
¬float_is_finite (float_plus_infinity (:τ # χ)) ∧
¬float_is_finite (float_minus_infinity (:τ # χ)) ∧
¬float_is_integral (float_plus_infinity (:τ # χ)) ∧
¬float_is_integral (float_minus_infinity (:τ # χ)) ∧
¬float_is_nan (float_plus_infinity (:τ # χ)) ∧
¬float_is_nan (float_minus_infinity (:τ # χ)) ∧
¬float_is_normal (float_plus_infinity (:τ # χ)) ∧
¬float_is_normal (float_minus_infinity (:τ # χ)) ∧
¬float_is_subnormal (float_plus_infinity (:τ # χ)) ∧
¬float_is_subnormal (float_minus_infinity (:τ # χ)) ∧
float_is_infinite (float_plus_infinity (:τ # χ)) ∧
float_is_infinite (float_minus_infinity (:τ # χ))
- zero_properties
-
⊢ float_is_zero (float_plus_zero (:τ # χ)) ∧
float_is_zero (float_minus_zero (:τ # χ)) ∧
float_is_finite (float_plus_zero (:τ # χ)) ∧
float_is_finite (float_minus_zero (:τ # χ)) ∧
float_is_integral (float_plus_zero (:τ # χ)) ∧
float_is_integral (float_minus_zero (:τ # χ)) ∧
¬float_is_nan (float_plus_zero (:τ # χ)) ∧
¬float_is_nan (float_minus_zero (:τ # χ)) ∧
¬float_is_normal (float_plus_zero (:τ # χ)) ∧
¬float_is_normal (float_minus_zero (:τ # χ)) ∧
¬float_is_subnormal (float_plus_zero (:τ # χ)) ∧
¬float_is_subnormal (float_minus_zero (:τ # χ)) ∧
¬float_is_infinite (float_plus_zero (:τ # χ)) ∧
¬float_is_infinite (float_minus_zero (:τ # χ))
- some_nan_properties
-
⊢ ∀fp_op.
¬float_is_zero (float_some_qnan fp_op) ∧
¬float_is_finite (float_some_qnan fp_op) ∧
¬float_is_integral (float_some_qnan fp_op) ∧
float_is_nan (float_some_qnan fp_op) ∧
¬float_is_signalling (float_some_qnan fp_op) ∧
¬float_is_normal (float_some_qnan fp_op) ∧
¬float_is_subnormal (float_some_qnan fp_op) ∧
¬float_is_infinite (float_some_qnan fp_op)
- min_properties
-
⊢ ¬float_is_zero (float_plus_min (:τ # χ)) ∧
float_is_finite (float_plus_min (:τ # χ)) ∧
(float_is_integral (float_plus_min (:τ # χ)) ⇔
dimindex (:χ) = 1 ∧ dimindex (:τ) = 1) ∧
¬float_is_nan (float_plus_min (:τ # χ)) ∧
¬float_is_normal (float_plus_min (:τ # χ)) ∧
float_is_subnormal (float_plus_min (:τ # χ)) ∧
¬float_is_infinite (float_plus_min (:τ # χ)) ∧
¬float_is_zero (float_minus_min (:τ # χ)) ∧
float_is_finite (float_minus_min (:τ # χ)) ∧
(float_is_integral (float_minus_min (:τ # χ)) ⇔
dimindex (:χ) = 1 ∧ dimindex (:τ) = 1) ∧
¬float_is_nan (float_minus_min (:τ # χ)) ∧
¬float_is_normal (float_minus_min (:τ # χ)) ∧
float_is_subnormal (float_minus_min (:τ # χ)) ∧
¬float_is_infinite (float_minus_min (:τ # χ))
- top_properties
-
⊢ ¬float_is_zero (float_top (:τ # χ)) ∧ float_is_finite (float_top (:τ # χ)) ∧
¬float_is_nan (float_top (:τ # χ)) ∧
(float_is_normal (float_top (:τ # χ)) ⇔ dimindex (:χ) ≠ 1) ∧
(float_is_subnormal (float_top (:τ # χ)) ⇔ dimindex (:χ) = 1) ∧
¬float_is_infinite (float_top (:τ # χ))
- bottom_properties
-
⊢ ¬float_is_zero (float_bottom (:τ # χ)) ∧
float_is_finite (float_bottom (:τ # χ)) ∧
¬float_is_nan (float_bottom (:τ # χ)) ∧
(float_is_normal (float_bottom (:τ # χ)) ⇔ dimindex (:χ) ≠ 1) ∧
(float_is_subnormal (float_bottom (:τ # χ)) ⇔ dimindex (:χ) = 1) ∧
¬float_is_infinite (float_bottom (:τ # χ))
- float_is_zero
-
⊢ ∀x. float_is_zero x ⇔ x.Exponent = 0w ∧ x.Significand = 0w
- float_is_finite
-
⊢ ∀x.
float_is_finite x ⇔
float_is_normal x ∨ float_is_subnormal x ∨ float_is_zero x
- float_cases_finite
-
⊢ ∀x. float_is_nan x ∨ float_is_infinite x ∨ float_is_finite x
- float_distinct_finite
-
⊢ ∀x.
¬(float_is_nan x ∧ float_is_infinite x) ∧
¬(float_is_nan x ∧ float_is_finite x) ∧
¬(float_is_infinite x ∧ float_is_finite x)
- float_cases
-
⊢ ∀x.
float_is_nan x ∨ float_is_infinite x ∨ float_is_normal x ∨
float_is_subnormal x ∨ float_is_zero x
- float_is_distinct
-
⊢ ∀x.
¬(float_is_nan x ∧ float_is_infinite x) ∧
¬(float_is_nan x ∧ float_is_normal x) ∧
¬(float_is_nan x ∧ float_is_subnormal x) ∧
¬(float_is_nan x ∧ float_is_zero x) ∧
¬(float_is_infinite x ∧ float_is_normal x) ∧
¬(float_is_infinite x ∧ float_is_subnormal x) ∧
¬(float_is_infinite x ∧ float_is_zero x) ∧
¬(float_is_normal x ∧ float_is_subnormal x) ∧
¬(float_is_normal x ∧ float_is_zero x) ∧
¬(float_is_subnormal x ∧ float_is_zero x)
- float_infinities
-
⊢ ∀x.
float_is_infinite x ⇔
x = float_plus_infinity (:τ # χ) ∨ x = float_minus_infinity (:τ # χ)
- float_infinities_distinct
-
⊢ ∀x. ¬(x = float_plus_infinity (:τ # χ) ∧ x = float_minus_infinity (:τ # χ))
- float_to_real_negate
-
⊢ ∀x. float_to_real (float_negate x) = -float_to_real x
- float_negate_negate
-
⊢ ∀x. float_negate (float_negate x) = x
- ulp
-
⊢ ulp (:τ # χ) = float_to_real (float_plus_min (:τ # χ))
- neg_ulp
-
⊢ -ulp (:τ # χ) = float_to_real (float_negate (float_plus_min (:τ # χ)))
- ULP_le_mono
-
⊢ ∀e1 e2. e2 ≠ 0w ⇒ (ULP (e1,(:τ)) ≤ ULP (e2,(:τ)) ⇔ e1 ≤₊ e2)
- ulp_lt_ULP
-
⊢ ∀e. ulp (:τ # χ) ≤ ULP (e,(:τ))
- ulp_lt_largest
-
⊢ ulp (:τ # χ) < largest (:τ # χ)
- ulp_lt_threshold
-
⊢ ulp (:τ # χ) < threshold (:τ # χ)
- abs_float_value
-
⊢ (∀b c d. abs (-1 pow w2n b * c * d) = abs (c * d)) ∧
∀b c. abs (-1 pow w2n b * c) = abs c
- less_than_ulp
-
⊢ ∀a.
abs (float_to_real a) < ulp (:τ # χ) ⇔
a.Exponent = 0w ∧ a.Significand = 0w
- float_is_zero_to_real
-
⊢ ∀x. float_is_zero x ⇔ float_to_real x = 0
- float_to_real_eq
-
⊢ ∀x y.
float_to_real x = float_to_real y ⇔
x = y ∨ float_is_zero x ∧ float_is_zero y
- diff_float_ULP
-
⊢ ∀x y.
float_to_real x ≠ float_to_real y ∧ ¬exponent_boundary y x ⇒
ULP (x.Exponent,(:τ)) ≤ abs (float_to_real x − float_to_real y)
- diff_lt_ulp_eq0
-
⊢ ∀a b x.
¬exponent_boundary b a ∧
abs (x − float_to_real a) < ULP (a.Exponent,(:τ)) ∧
abs (x − float_to_real b) < ULP (a.Exponent,(:τ)) ∧
abs (float_to_real a) ≤ abs x ∧ abs (float_to_real b) ≤ abs x ∧
¬float_is_zero a ⇒
b = a
- diff_lt_ulp_even
-
⊢ ∀a b x.
¬exponent_boundary b a ∧
2 * abs (float_to_real a − x) < ULP (a.Exponent,(:τ)) ∧
2 * abs (float_to_real b − x) < ULP (a.Exponent,(:τ)) ∧ ¬float_is_zero a ⇒
b = a
- diff_lt_ulp_even4
-
⊢ ∀a b x.
¬exponent_boundary b a ∧
4 * abs (float_to_real a − x) ≤ ULP (a.Exponent,(:τ)) ∧
4 * abs (float_to_real b − x) ≤ ULP (a.Exponent,(:τ)) ∧ ¬float_is_zero a ⇒
b = a
- round_roundTowardZero
-
⊢ ∀y x r.
float_value y = Float r ∧ abs (r − x) < ULP (y.Exponent,(:τ)) ∧
abs r ≤ abs x ∧ ulp (:τ # χ) ≤ abs x ∧ abs x ≤ largest (:τ # χ) ⇒
round roundTowardZero x = y
- round_roundTiesToEven
-
⊢ ∀y x r.
float_value y = Float r ∧
(y.Significand = 0w ∧ y.Exponent ≠ 1w ⇒ abs r ≤ abs x) ∧
2 * abs (r − x) ≤ ULP (y.Exponent,(:τ)) ∧
(2 * abs (r − x) = ULP (y.Exponent,(:τ)) ⇒ ¬word_lsb y.Significand) ∧
ulp (:τ # χ) < 2 * abs x ∧ abs x < threshold (:τ # χ) ⇒
round roundTiesToEven x = y
- round_roundTiesToEven0
-
⊢ ∀y x r.
float_value y = Float r ∧
(y.Significand = 0w ∧ y.Exponent ≠ 1w ∧ ¬(abs r ≤ abs x)) ∧
4 * abs (r − x) ≤ ULP (y.Exponent,(:τ)) ∧ ulp (:τ # χ) < 2 * abs x ∧
abs x < threshold (:τ # χ) ⇒
round roundTiesToEven x = y
- round_roundTowardZero_is_zero
-
⊢ ∀x.
abs x < ulp (:τ # χ) ⇒
round roundTowardZero x = float_plus_zero (:τ # χ) ∨
round roundTowardZero x = float_minus_zero (:τ # χ)
- round_roundTiesToEven_is_zero
-
⊢ ∀x.
2 * abs x ≤ ulp (:τ # χ) ⇒
round roundTiesToEven x = float_plus_zero (:τ # χ) ∨
round roundTiesToEven x = float_minus_zero (:τ # χ)
- round_roundTowardZero_is_minus_zero
-
⊢ ∀x.
abs x < ulp (:τ # χ) ⇒
float_round roundTowardZero T x = float_minus_zero (:τ # χ)
- round_roundTowardZero_is_plus_zero
-
⊢ ∀x.
abs x < ulp (:τ # χ) ⇒
float_round roundTowardZero F x = float_plus_zero (:τ # χ)
- round_roundTiesToEven_is_minus_zero
-
⊢ ∀x.
2 * abs x ≤ ulp (:τ # χ) ⇒
float_round roundTiesToEven T x = float_minus_zero (:τ # χ)
- round_roundTiesToEven_is_plus_zero
-
⊢ ∀x.
2 * abs x ≤ ulp (:τ # χ) ⇒
float_round roundTiesToEven F x = float_plus_zero (:τ # χ)
- largest_is_positive
-
⊢ 0 ≤ largest (:τ # χ)
- threshold_is_positive
-
⊢ 0 < threshold (:τ # χ)
- round_roundTiesToEven_plus_infinity
-
⊢ ∀y x.
threshold (:τ # χ) ≤ x ⇒
round roundTiesToEven x = float_plus_infinity (:τ # χ)
- round_roundTiesToEven_minus_infinity
-
⊢ ∀y x.
x ≤ -threshold (:τ # χ) ⇒
round roundTiesToEven x = float_minus_infinity (:τ # χ)
- round_roundTowardZero_top
-
⊢ ∀y x. largest (:τ # χ) < x ⇒ round roundTowardZero x = float_top (:τ # χ)
- round_roundTowardZero_bottom
-
⊢ ∀y x.
x < -largest (:τ # χ) ⇒ round roundTowardZero x = float_bottom (:τ # χ)
- round_roundTowardPositive_plus_infinity
-
⊢ ∀y x.
largest (:τ # χ) < x ⇒
round roundTowardPositive x = float_plus_infinity (:τ # χ)
- round_roundTowardPositive_bottom
-
⊢ ∀y x.
x < -largest (:τ # χ) ⇒
round roundTowardPositive x = float_bottom (:τ # χ)
- round_roundTowardNegative_top
-
⊢ ∀y x.
largest (:τ # χ) < x ⇒ round roundTowardNegative x = float_top (:τ # χ)
- round_roundTowardNegative_minus_infinity
-
⊢ ∀y x.
x < -largest (:τ # χ) ⇒
round roundTowardNegative x = float_minus_infinity (:τ # χ)
- float_round_roundTowardZero_top
-
⊢ ∀b y x.
largest (:τ # χ) < x ⇒
float_round roundTowardZero b x = float_top (:τ # χ)
- float_round_roundTowardZero_bottom
-
⊢ ∀b y x.
x < -largest (:τ # χ) ⇒
float_round roundTowardZero b x = float_bottom (:τ # χ)
- float_round_roundTowardPositive_plus_infinity
-
⊢ ∀b y x.
largest (:τ # χ) < x ⇒
float_round roundTowardPositive b x = float_plus_infinity (:τ # χ)
- float_round_roundTowardPositive_bottom
-
⊢ ∀b y x.
x < -largest (:τ # χ) ⇒
float_round roundTowardPositive b x = float_bottom (:τ # χ)
- float_round_roundTowardNegative_top
-
⊢ ∀b y x.
largest (:τ # χ) < x ⇒
float_round roundTowardNegative b x = float_top (:τ # χ)
- float_round_roundTowardNegative_minus_infinity
-
⊢ ∀b y x.
x < -largest (:τ # χ) ⇒
float_round roundTowardNegative b x = float_minus_infinity (:τ # χ)
- float_minus_zero
-
⊢ float_minus_zero (:τ # χ) =
<|Sign := 1w; Exponent := 0w; Significand := 0w|>
- float_minus_infinity
-
⊢ float_minus_infinity (:τ # χ) =
<|Sign := 1w; Exponent := UINT_MAXw; Significand := 0w|>
- float_round_non_zero
-
⊢ ∀mode toneg r s e f.
round mode r = <|Sign := s; Exponent := e; Significand := f|> ∧
(e ≠ 0w ∨ f ≠ 0w) ⇒
float_round mode toneg r =
<|Sign := s; Exponent := e; Significand := f|>
- float_round_plus_infinity
-
⊢ ∀mode toneg r.
round mode r = float_plus_infinity (:τ # χ) ⇒
float_round mode toneg r = float_plus_infinity (:τ # χ)
- float_round_minus_infinity
-
⊢ ∀mode toneg r.
round mode r = float_minus_infinity (:τ # χ) ⇒
float_round mode toneg r = float_minus_infinity (:τ # χ)
- float_round_top
-
⊢ ∀mode toneg r.
round mode r = float_top (:τ # χ) ⇒
float_round mode toneg r = float_top (:τ # χ)
- float_round_bottom
-
⊢ ∀mode toneg r.
round mode r = float_bottom (:τ # χ) ⇒
float_round mode toneg r = float_bottom (:τ # χ)
- float_to_real
-
⊢ ∀s e f.
float_to_real <|Sign := s; Exponent := e; Significand := f|> =
(let
r =
if e = 0w then 2 / &(2 ** INT_MAX (:χ)) * (&w2n f / &dimword (:τ))
else
&(2 ** w2n e) / &(2 ** INT_MAX (:χ)) *
(1 + &w2n f / &dimword (:τ))
in
if s = 1w then -r else r)
- largest
-
⊢ largest (:τ # χ) =
&(2 ** (UINT_MAX (:χ) − 1)) * (2 − 1 / &dimword (:τ)) / &(2 ** INT_MAX (:χ))
- threshold
-
⊢ threshold (:τ # χ) =
&(2 ** (UINT_MAX (:χ) − 1)) * (2 − 1 / &(2 * dimword (:τ))) /
&(2 ** INT_MAX (:χ))
- largest_is_top
-
⊢ 1 < dimindex (:χ) ⇒ largest (:τ # χ) = float_to_real (float_top (:τ # χ))
- largest_lt_threshold
-
⊢ largest (:τ # χ) < threshold (:τ # χ)
- float_tests
-
⊢ (∀s e f.
float_is_nan <|Sign := s; Exponent := e; Significand := f|> ⇔
e = -1w ∧ f ≠ 0w) ∧
(∀s e f.
float_is_signalling <|Sign := s; Exponent := e; Significand := f|> ⇔
e = -1w ∧ ¬word_msb f ∧ f ≠ 0w) ∧
(∀s e f.
float_is_infinite <|Sign := s; Exponent := e; Significand := f|> ⇔
e = -1w ∧ f = 0w) ∧
(∀s e f.
float_is_normal <|Sign := s; Exponent := e; Significand := f|> ⇔
e ≠ 0w ∧ e ≠ -1w) ∧
(∀s e f.
float_is_subnormal <|Sign := s; Exponent := e; Significand := f|> ⇔
e = 0w ∧ f ≠ 0w) ∧
(∀s e f.
float_is_zero <|Sign := s; Exponent := e; Significand := f|> ⇔
e = 0w ∧ f = 0w) ∧
∀s e f.
float_is_finite <|Sign := s; Exponent := e; Significand := f|> ⇔ e ≠ -1w
- float_infinity_negate_abs
-
⊢ float_negate (float_plus_infinity (:τ # χ)) = float_minus_infinity (:τ # χ) ∧
float_negate (float_minus_infinity (:τ # χ)) = float_plus_infinity (:τ # χ) ∧
float_abs (float_plus_infinity (:τ # χ)) = float_plus_infinity (:τ # χ) ∧
float_abs (float_minus_infinity (:τ # χ)) = float_plus_infinity (:τ # χ)
- float_round_to_integral_compute
-
⊢ (∀m.
float_round_to_integral m (float_minus_infinity (:τ # χ)) =
float_minus_infinity (:τ # χ)) ∧
(∀m.
float_round_to_integral m (float_plus_infinity (:τ # χ)) =
float_plus_infinity (:τ # χ)) ∧
∀m fp_op.
float_round_to_integral m (float_some_qnan fp_op) =
float_some_qnan fp_op
- float_add_compute
-
⊢ (∀mode x fp_op.
(mode float_add float_some_qnan fp_op) x =
(check_for_signalling [x],
float_some_qnan (FP_Add mode (float_some_qnan fp_op) x))) ∧
(∀mode x fp_op.
(mode float_add x) (float_some_qnan fp_op) =
(check_for_signalling [x],
float_some_qnan (FP_Add mode x (float_some_qnan fp_op)))) ∧
(∀mode.
(mode float_add float_minus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(clear_flags,float_minus_infinity (:τ # χ))) ∧
(∀mode.
(mode float_add float_minus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Add mode (float_minus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ))))) ∧
(∀mode.
(mode float_add float_plus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(clear_flags,float_plus_infinity (:τ # χ))) ∧
∀mode.
(mode float_add float_plus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Add mode (float_plus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ))))
- float_add_nan
-
⊢ ∀mode x y.
float_value x = NaN ∨ float_value y = NaN ⇒
(mode float_add x) y =
(check_for_signalling [x; y],float_some_qnan (FP_Add mode x y))
- float_add_finite
-
⊢ ∀mode x y r1 r2.
float_value x = Float r1 ∧ float_value y = Float r2 ⇒
(mode float_add x) y =
float_round_with_flags mode
(if r1 = 0 ∧ r2 = 0 ∧ x.Sign = y.Sign then x.Sign = 1w
else (mode = roundTowardNegative)) (r1 + r2)
- float_add_finite_plus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_add x) (float_plus_infinity (:τ # χ)) =
(clear_flags,float_plus_infinity (:τ # χ))
- float_add_plus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_add float_plus_infinity (:τ # χ)) x =
(clear_flags,float_plus_infinity (:τ # χ))
- float_add_finite_minus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_add x) (float_minus_infinity (:τ # χ)) =
(clear_flags,float_minus_infinity (:τ # χ))
- float_add_minus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_add float_minus_infinity (:τ # χ)) x =
(clear_flags,float_minus_infinity (:τ # χ))
- float_sub_compute
-
⊢ (∀mode x fp_op.
(mode float_sub float_some_qnan fp_op) x =
(check_for_signalling [x],
float_some_qnan (FP_Sub mode (float_some_qnan fp_op) x))) ∧
(∀mode x fp_op.
(mode float_sub x) (float_some_qnan fp_op) =
(check_for_signalling [x],
float_some_qnan (FP_Sub mode x (float_some_qnan fp_op)))) ∧
(∀mode.
(mode float_sub float_minus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Sub mode (float_minus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ))))) ∧
(∀mode.
(mode float_sub float_minus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(clear_flags,float_minus_infinity (:τ # χ))) ∧
(∀mode.
(mode float_sub float_plus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Sub mode (float_plus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ))))) ∧
∀mode.
(mode float_sub float_plus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(clear_flags,float_plus_infinity (:τ # χ))
- float_sub_nan
-
⊢ ∀mode x y.
float_value x = NaN ∨ float_value y = NaN ⇒
(mode float_sub x) y =
(check_for_signalling [x; y],float_some_qnan (FP_Sub mode x y))
- float_sub_finite
-
⊢ ∀mode x y r1 r2.
float_value x = Float r1 ∧ float_value y = Float r2 ⇒
(mode float_sub x) y =
float_round_with_flags mode
(if r1 = 0 ∧ r2 = 0 ∧ x.Sign ≠ y.Sign then x.Sign = 1w
else (mode = roundTowardNegative)) (r1 − r2)
- float_sub_finite_plus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_sub x) (float_plus_infinity (:τ # χ)) =
(clear_flags,float_minus_infinity (:τ # χ))
- float_sub_plus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_sub float_plus_infinity (:τ # χ)) x =
(clear_flags,float_plus_infinity (:τ # χ))
- float_sub_finite_minus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_sub x) (float_minus_infinity (:τ # χ)) =
(clear_flags,float_plus_infinity (:τ # χ))
- float_sub_minus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_sub float_minus_infinity (:τ # χ)) x =
(clear_flags,float_minus_infinity (:τ # χ))
- float_mul_compute
-
⊢ (∀mode x fp_op.
(mode float_mul float_some_qnan fp_op) x =
(check_for_signalling [x],
float_some_qnan (FP_Mul mode (float_some_qnan fp_op) x))) ∧
(∀mode x fp_op.
(mode float_mul x) (float_some_qnan fp_op) =
(check_for_signalling [x],
float_some_qnan (FP_Mul mode x (float_some_qnan fp_op)))) ∧
(∀mode.
(mode float_mul float_minus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(clear_flags,float_plus_infinity (:τ # χ))) ∧
(∀mode.
(mode float_mul float_minus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(clear_flags,float_minus_infinity (:τ # χ))) ∧
(∀mode.
(mode float_mul float_plus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(clear_flags,float_plus_infinity (:τ # χ))) ∧
∀mode.
(mode float_mul float_plus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(clear_flags,float_minus_infinity (:τ # χ))
- float_mul_nan
-
⊢ ∀mode x y.
float_value x = NaN ∨ float_value y = NaN ⇒
(mode float_mul x) y =
(check_for_signalling [x; y],float_some_qnan (FP_Mul mode x y))
- float_mul_finite
-
⊢ ∀mode x y r1 r2.
float_value x = Float r1 ∧ float_value y = Float r2 ⇒
(mode float_mul x) y =
float_round_with_flags mode (x.Sign ≠ y.Sign) (r1 * r2)
- float_mul_finite_plus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_mul x) (float_plus_infinity (:τ # χ)) =
if r = 0 then
(invalidop_flags,
float_some_qnan (FP_Mul mode x (float_plus_infinity (:τ # χ))))
else
(clear_flags,if x.Sign = 0w then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
- float_mul_plus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_mul float_plus_infinity (:τ # χ)) x =
if r = 0 then
(invalidop_flags,
float_some_qnan (FP_Mul mode (float_plus_infinity (:τ # χ)) x))
else
(clear_flags,if x.Sign = 0w then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
- float_mul_finite_minus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_mul x) (float_minus_infinity (:τ # χ)) =
if r = 0 then
(invalidop_flags,
float_some_qnan (FP_Mul mode x (float_minus_infinity (:τ # χ))))
else
(clear_flags,if x.Sign = 0w then float_minus_infinity (:τ # χ)
else float_plus_infinity (:τ # χ))
- float_mul_minus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_mul float_minus_infinity (:τ # χ)) x =
if r = 0 then
(invalidop_flags,
float_some_qnan (FP_Mul mode (float_minus_infinity (:τ # χ)) x))
else
(clear_flags,if x.Sign = 0w then float_minus_infinity (:τ # χ)
else float_plus_infinity (:τ # χ))
- float_div_compute
-
⊢ (∀mode x fp_op.
(mode float_div float_some_qnan fp_op) x =
(check_for_signalling [x],
float_some_qnan (FP_Div mode (float_some_qnan fp_op) x))) ∧
(∀mode x fp_op.
(mode float_div x) (float_some_qnan fp_op) =
(check_for_signalling [x],
float_some_qnan (FP_Div mode x (float_some_qnan fp_op)))) ∧
(∀mode.
(mode float_div float_minus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Div mode (float_minus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ))))) ∧
(∀mode.
(mode float_div float_minus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Div mode (float_minus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ))))) ∧
(∀mode.
(mode float_div float_plus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Div mode (float_plus_infinity (:τ # χ))
(float_plus_infinity (:τ # χ))))) ∧
∀mode.
(mode float_div float_plus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ)) =
(invalidop_flags,
float_some_qnan
(FP_Div mode (float_plus_infinity (:τ # χ))
(float_minus_infinity (:τ # χ))))
- float_div_nan
-
⊢ ∀mode x y.
float_value x = NaN ∨ float_value y = NaN ⇒
(mode float_div x) y =
(check_for_signalling [x; y],float_some_qnan (FP_Div mode x y))
- float_div_finite
-
⊢ ∀mode x y r1 r2.
float_value x = Float r1 ∧ float_value y = Float r2 ⇒
(mode float_div x) y =
if r2 = 0 then
if r1 = 0 then (invalidop_flags,float_some_qnan (FP_Div mode x y))
else
(dividezero_flags,
if x.Sign = y.Sign then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
else float_round_with_flags mode (x.Sign ≠ y.Sign) (r1 / r2)
- float_div_finite_plus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_div x) (float_plus_infinity (:τ # χ)) =
(clear_flags,if x.Sign = 0w then float_plus_zero (:τ # χ)
else float_minus_zero (:τ # χ))
- float_div_plus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_div float_plus_infinity (:τ # χ)) x =
(clear_flags,if x.Sign = 0w then float_plus_infinity (:τ # χ)
else float_minus_infinity (:τ # χ))
- float_div_finite_minus_infinity
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_div x) (float_minus_infinity (:τ # χ)) =
(clear_flags,if x.Sign = 0w then float_minus_zero (:τ # χ)
else float_plus_zero (:τ # χ))
- float_div_minus_infinity_finite
-
⊢ ∀mode x r.
float_value x = Float r ⇒
(mode float_div float_minus_infinity (:τ # χ)) x =
(clear_flags,if x.Sign = 0w then float_minus_infinity (:τ # χ)
else float_plus_infinity (:τ # χ))