- cardeq_REFL
-
⊢ ∀s. s ≈ s
- cardeq_SYM
-
⊢ ∀s t. s ≈ t ⇔ t ≈ s
- cardeq_TRANS
-
⊢ ∀s t u. s ≈ t ∧ t ≈ u ⇒ s ≈ u
- cardleq_REFL
-
⊢ ∀s. s ≼ s
- cardleq_TRANS
-
⊢ ∀s t u. s ≼ t ∧ t ≼ u ⇒ s ≼ u
- cardleq_ANTISYM
-
⊢ ∀s t. s ≼ t ∧ t ≼ s ⇒ s ≈ t
- CARDEQ_FINITE
-
⊢ s1 ≈ s2 ⇒ (FINITE s1 ⇔ FINITE s2)
- CARDEQ_CARD
-
⊢ s1 ≈ s2 ∧ FINITE s1 ⇒ CARD s1 = CARD s2
- CARDEQ_0
-
⊢ (x ≈ ∅ ⇔ x = ∅) ∧ (∅ ≈ x ⇔ x = ∅)
- cardeq_INSERT
-
⊢ x INSERT s ≈ s ⇔ x ∈ s ∨ INFINITE s
- CARDEQ_INSERT_RWT
-
⊢ ∀s. INFINITE s ⇒ x INSERT s ≈ s
- EMPTY_CARDLEQ
-
⊢ ∅ ≼ t
- FINITE_CLE_INFINITE
-
⊢ FINITE s ∧ INFINITE t ⇒ s ≼ t
- CARDEQ_CROSS
-
⊢ s1 ≈ s2 ∧ t1 ≈ t2 ⇒ s1 × t1 ≈ s2 × t2
- CARDEQ_CROSS_SYM
-
⊢ s × t ≈ t × s
- CARDEQ_SUBSET_CARDLEQ
-
⊢ s ≈ t ⇒ s ≼ t
- CARDEQ_CARDLEQ
-
⊢ s1 ≈ s2 ∧ t1 ≈ t2 ⇒ (s1 ≼ t1 ⇔ s2 ≼ t2)
- CARDLEQ_FINITE
-
⊢ ∀s1 s2. FINITE s2 ∧ s1 ≼ s2 ⇒ FINITE s1
- INFINITE_UNIV_INF
-
⊢ INFINITE 𝕌(:α inf)
- IMAGE_cardleq
-
⊢ IMAGE f s ≼ s
- CARDLEQ_CROSS_CONG
-
⊢ x1 ≼ x2 ∧ y1 ≼ y2 ⇒ x1 × y1 ≼ x2 × y2
- SUBSET_CARDLEQ
-
⊢ x ⊆ y ⇒ x ≼ y
- IMAGE_cardleq_rwt
-
⊢ s ≼ t ⇒ IMAGE f s ≼ t
- countable_thm
-
⊢ countable s ⇔ s ≼ 𝕌(:num)
- countable_cardeq
-
⊢ s ≈ t ⇒ (countable s ⇔ countable t)
- cardleq_dichotomy
-
⊢ s ≼ t ∨ t ≼ s
- cardleq_lteq
-
⊢ s1 ≼ s2 ⇔ s1 <= s2 ∨ s1 ≈ s2
- cardlt_REFL
-
⊢ ¬(s <= s)
- cardlt_lenoteq
-
⊢ s <= t ⇔ s ≼ t ∧ ¬(s ≈ t)
- cardlt_TRANS
-
⊢ ∀s t u. s <= t ∧ t <= u ⇒ s <= u
- cardlt_leq_trans
-
⊢ ∀r s t. r <= s ∧ s ≼ t ⇒ r <= t
- cardleq_lt_trans
-
⊢ ∀r s t. r ≼ s ∧ s <= t ⇒ r <= t
- cardleq_empty
-
⊢ x ≼ ∅ ⇔ x = ∅
- set_binomial2
-
⊢ (A ∪ B) × (A ∪ B) = A × A ∪ A × B ∪ B × A ∪ B × B
- SET_SQUARED_CARDEQ_SET
-
⊢ INFINITE s ⇒ s × s ≈ s
- SET_SUM_CARDEQ_SET
-
⊢ INFINITE s ⇒ s ≈ {T; F} × s ∧ ∀A B. DISJOINT A B ∧ A ≈ s ∧ B ≈ s ⇒ A ∪ B ≈ s
- CARD_BIGUNION
-
⊢ INFINITE k ∧ s1 ≼ k ∧ (∀e. e ∈ s1 ⇒ e ≼ k) ⇒ BIGUNION s1 ≼ k
- CARD_MUL_ABSORB_LE
-
⊢ ∀s t. INFINITE t ∧ s ≼ t ⇒ s × t ≼ t
- CARD_MUL_LT_LEMMA
-
⊢ ∀s t. s ≼ t ∧ t <= u ∧ INFINITE u ⇒ s × t <= u
- CARD_MUL_LT_INFINITE
-
⊢ ∀s t. s <= t ∧ t <= u ∧ INFINITE u ⇒ s × t <= u
- BIJ_functions_agree
-
⊢ ∀f g s t. BIJ f s t ∧ (∀x. x ∈ s ⇒ f x = g x) ⇒ BIJ g s t
- CARD_CARDEQ_I
-
⊢ FINITE s1 ∧ FINITE s2 ∧ CARD s1 = CARD s2 ⇒ s1 ≈ s2
- CARDEQ_CARD_EQN
-
⊢ FINITE s1 ∧ FINITE s2 ⇒ (s1 ≈ s2 ⇔ CARD s1 = CARD s2)
- CARDLEQ_CARD
-
⊢ FINITE s1 ∧ FINITE s2 ⇒ (s1 ≼ s2 ⇔ CARD s1 ≤ CARD s2)
- CARD_LT_CARD
-
⊢ FINITE s1 ∧ FINITE s2 ⇒ (s1 <= s2 ⇔ CARD s1 < CARD s2)
- EMPTY_set_exp
-
⊢ A ** ∅ = {K NONE} ∧ (B ≠ ∅ ⇒ ∅ ** B = ∅)
- EMPTY_set_exp_CARD
-
⊢ A ** ∅ ≈ count 1
- SING_set_exp
-
⊢ {x} ** B = {(λb. if b ∈ B then SOME x else NONE)} ∧
A ** {x} = {(λb. if b = x then SOME a else NONE) | a ∈ A}
- SING_set_exp_CARD
-
⊢ {x} ** B ≈ count 1 ∧ A ** {x} ≈ A
- POW_TWO_set_exp
-
⊢ POW A ≈ count 2 ** A
- set_exp_count
-
⊢ A ** count n ≈ {l | LENGTH l = n ∧ ∀e. MEM e l ⇒ e ∈ A}
- set_exp_card_cong
-
⊢ a1 ≈ a2 ⇒ b1 ≈ b2 ⇒ a1 ** b1 ≈ a2 ** b2
- set_exp_cardle_cong
-
⊢ (b = ∅ ⇒ d = ∅) ⇒ a ≼ b ∧ c ≼ d ⇒ a ** c ≼ b ** d
- exp_INSERT_cardeq
-
⊢ e ∉ s ⇒ A ** (e INSERT s) ≈ A × A ** s
- exp_count_cardeq
-
⊢ INFINITE A ∧ 0 < n ⇒ A ** count n ≈ A
- INFINITE_Unum
-
⊢ INFINITE A ⇔ 𝕌(:num) ≼ A
- cardleq_SURJ
-
⊢ A ≼ B ⇔ (∃f. SURJ f B A) ∨ A = ∅
- INFINITE_cardleq_INSERT
-
⊢ INFINITE A ⇒ (x INSERT s ≼ A ⇔ s ≼ A)
- list_EMPTY
-
⊢ list ∅ = {[]}
- list_SING
-
⊢ list {e} ≈ 𝕌(:num)
- UNIV_list
-
⊢ 𝕌(:α list) = list 𝕌(:α)
- list_BIGUNION_EXP
-
⊢ list A ≈ BIGUNION (IMAGE (λn. A ** count n) 𝕌(:num))
- INFINITE_A_list_BIJ_A
-
⊢ INFINITE A ⇒ list A ≈ A
- finite_subsets_bijection
-
⊢ INFINITE A ⇒ A ≈ {s | FINITE s ∧ s ⊆ A}
- FINITE_IMAGE_INJ'
-
⊢ (∀x y. x ∈ s ∧ y ∈ s ⇒ (f x = f y ⇔ x = y)) ⇒
(FINITE (IMAGE f s) ⇔ FINITE s)
- countable_decomposition
-
⊢ ∀s. INFINITE s ⇒ ∃A. BIGUNION A = s ∧ ∀a. a ∈ A ⇒ INFINITE a ∧ countable a
- disjoint_countable_decomposition
-
⊢ ∀s.
INFINITE s ⇒
∃A.
BIGUNION A = s ∧ (∀a. a ∈ A ⇒ INFINITE a ∧ countable a) ∧
∀a1 a2. a1 ∈ A ∧ a2 ∈ A ∧ a1 ≠ a2 ⇒ DISJOINT a1 a2
- count_cardle
-
⊢ count n ≼ A ⇔ FINITE A ⇒ n ≤ CARD A
- CANTOR
-
⊢ A <= POW A
- cardlt_cardle
-
⊢ A <= B ⇒ A ≼ B
- set_exp_product
-
⊢ (A ** B1) ** B2 ≈ A ** (B1 × B2)
- COUNT_EQ_EMPTY
-
⊢ count n = ∅ ⇔ n = 0
- POW_EQ_X_EXP_X
-
⊢ INFINITE A ⇒ POW A ≈ A ** A
- cardeq_bijns_cong
-
⊢ A ≈ B ⇒ bijns A ≈ bijns B
- bijections_cardeq
-
⊢ INFINITE s ⇒ bijns s ≈ POW s