Theory "integer_word"

Parents     Omega   int_arith   words

Signature

Constant Type
INT_MAX :α itself -> int
INT_MIN :α itself -> int
UINT_MAX :α itself -> int
fromString :string -> int
i2w :int -> α word
saturate_i2sw :int -> α word
saturate_i2w :int -> α word
saturate_sw2sw :α word -> β word
saturate_sw2w :α word -> β word
saturate_w2sw :α word -> β word
signed_saturate_add :α word -> α word -> α word
signed_saturate_sub :α word -> α word -> α word
toString :int -> string
w2i :α word -> int
word_sdiv :α word -> α word -> α word
word_smod :α word -> α word -> α word

Definitions

toString_def
⊢ ∀i.
      toString i = if i < 0 then STRCAT "~" (toString (Num (-i)))
      else toString (Num i)
fromString_primitive_def
⊢ fromString =
  WFREC (@R. WF R)
    (λfromString a.
         case a of
           "" => I (&toNum "")
         | STRING #"~" t => I (-&toNum t)
         | STRING #"-" t => I (-&toNum t)
         | STRING v4 t => I (&toNum (STRING v4 t)))
i2w_def
⊢ ∀i. i2w i = if i < 0 then -n2w (Num (-i)) else n2w (Num i)
w2i_def
⊢ ∀w. w2i w = if word_msb w then -&w2n (-w) else &w2n w
UINT_MAX_def
⊢ UINT_MAX (:α) = &dimword (:α) − 1
INT_MAX_def
⊢ INT_MAX (:α) = &INT_MIN (:α) − 1
INT_MIN_def
⊢ INT_MIN (:α) = -INT_MAX (:α) − 1
saturate_i2w_def
⊢ ∀i.
      saturate_i2w i = if UINT_MAX (:α) ≤ i then UINT_MAXw
      else if i < 0 then 0w else n2w (Num i)
saturate_i2sw_def
⊢ ∀i.
      saturate_i2sw i = if INT_MAX (:α) ≤ i then INT_MAXw
      else if i ≤ INT_MIN (:α) then INT_MINw else i2w i
saturate_sw2sw_def
⊢ ∀w. saturate_sw2sw w = saturate_i2sw (w2i w)
saturate_w2sw_def
⊢ ∀w. saturate_w2sw w = saturate_i2sw (&w2n w)
saturate_sw2w_def
⊢ ∀w. saturate_sw2w w = saturate_i2w (w2i w)
signed_saturate_add_def
⊢ ∀a b. signed_saturate_add a b = saturate_i2sw (w2i a + w2i b)
signed_saturate_sub_def
⊢ ∀a b. signed_saturate_sub a b = saturate_i2sw (w2i a − w2i b)
word_sdiv_def
⊢ ∀a b. word_sdiv a b = i2w (w2i a / w2i b)
word_smod_def
⊢ ∀a b. word_smod a b = i2w (w2i a % w2i b)


Theorems

fromString_ind
⊢ ∀P.
      (∀t. P (STRING #"~" t)) ∧ (∀t. P (STRING #"-" t)) ∧ P "" ∧
      (∀v4 v1. P (STRING v4 v1)) ⇒
      ∀v. P v
fromString_def
⊢ fromString (STRING #"~" t) = -&toNum t ∧
  fromString (STRING #"-" t) = -&toNum t ∧ fromString "" = &toNum "" ∧
  fromString (STRING v4 v1) = if v4 = #"~" then -&toNum v1
  else if v4 = #"-" then -&toNum v1 else &toNum (STRING v4 v1)
ONE_LE_TWOEXP
⊢ ∀n. 1 ≤ 2 ** n
w2i_w2n_pos
⊢ ∀w n. ¬word_msb w ∧ w2i w < &n ⇒ w2n w < n
w2i_n2w_pos
⊢ ∀n. n < INT_MIN (:α) ⇒ w2i (n2w n) = &n
w2i_n2w_neg
⊢ ∀n. INT_MIN (:α) ≤ n ∧ n < dimword (:α) ⇒ w2i (n2w n) = -&(dimword (:α) − n)
i2w_w2i
⊢ ∀w. i2w (w2i w) = w
w2i_i2w
⊢ ∀i. INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒ w2i (i2w i) = i
word_msb_i2w
⊢ ∀i. word_msb (i2w i) ⇔ &INT_MIN (:α) ≤ i % &dimword (:α)
w2i_11
⊢ ∀v w. w2i v = w2i w ⇔ v = w
int_word_nchotomy
⊢ ∀w. ∃i. w = i2w i
w2i_le
⊢ ∀w. w2i w ≤ INT_MAX (:α)
w2i_ge
⊢ ∀w. INT_MIN (:α) ≤ w2i w
ranged_int_word_nchotomy
⊢ ∀w. ∃i. w = i2w i ∧ INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α)
sw2sw_i2w
⊢ ∀j.
      INT_MIN (:β) ≤ j ∧ j ≤ INT_MAX (:β) ∧ dimindex (:β) ≤ dimindex (:α) ⇒
      sw2sw (i2w j) = i2w j
w2w_i2w
⊢ ∀i. dimindex (:α) ≤ dimindex (:β) ⇒ w2w (i2w i) = i2w i
WORD_LTi
⊢ ∀a b. a < b ⇔ w2i a < w2i b
WORD_GTi
⊢ ∀a b. a > b ⇔ w2i a > w2i b
WORD_LEi
⊢ ∀a b. a ≤ b ⇔ w2i a ≤ w2i b
WORD_GEi
⊢ ∀a b. a ≥ b ⇔ w2i a ≥ w2i b
word_add_i2w_w2n
⊢ ∀a b. i2w (&w2n a + &w2n b) = a + b
word_add_i2w
⊢ ∀a b. i2w (w2i a + w2i b) = a + b
word_sub_i2w_w2n
⊢ ∀a b. i2w (&w2n a − &w2n b) = a − b
word_sub_i2w
⊢ ∀a b. i2w (w2i a − w2i b) = a − b
word_mul_i2w_w2n
⊢ ∀a b. i2w (&w2n a * &w2n b) = a * b
word_mul_i2w
⊢ ∀a b. i2w (w2i a * w2i b) = a * b
word_i2w_add
⊢ ∀a b. i2w a + i2w b = i2w (a + b)
word_i2w_mul
⊢ ∀a b. i2w a * i2w b = i2w (a * b)
MULT_MINUS_ONE
⊢ ∀i. -1w * i2w i = i2w (-i)
word_0_w2i
⊢ w2i 0w = 0
w2i_eq_0
⊢ ∀w. w2i w = 0 ⇔ w = 0w
i2w_DIV
⊢ ∀n i.
      n < dimindex (:α) ∧ INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒
      i2w (i / 2 ** n) = i2w i ≫ n
INT_MIN_MONOTONIC
⊢ dimindex (:α) ≤ dimindex (:β) ⇒ INT_MIN (:β) ≤ INT_MIN (:α)
INT_MAX_MONOTONIC
⊢ dimindex (:α) ≤ dimindex (:β) ⇒ INT_MAX (:α) ≤ INT_MAX (:β)
w2i_sw2sw_bounds
⊢ ∀w. INT_MIN (:α) ≤ w2i (sw2sw w) ∧ w2i (sw2sw w) ≤ INT_MAX (:α)
w2i_i2w_id
⊢ ∀i.
      INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ∧ dimindex (:β) ≤ dimindex (:α) ⇒
      (i = w2i (i2w i) ⇔ i2w i = sw2sw (i2w i))
w2i_11_lift
⊢ ∀a b.
      dimindex (:α) ≤ dimindex (:γ) ∧ dimindex (:β) ≤ dimindex (:γ) ⇒
      (w2i a = w2i b ⇔ sw2sw a = sw2sw b)
w2i_n2w_mod
⊢ ∀n m.
      n < dimword (:α) ∧ m ≤ dimindex (:α) ⇒
      Num (w2i (n2w n) % 2 ** m) = n MOD 2 ** m
word_abs_w2i
⊢ ∀w. word_abs w = n2w (Num (ABS (w2i w)))
word_abs_i2w
⊢ ∀i.
      INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒
      word_abs (i2w i) = n2w (Num (ABS i))
INT_MIN
⊢ INT_MIN (:α) = -&INT_MIN (:α)
INT_MAX
⊢ INT_MAX (:α) = &INT_MAX (:α)
UINT_MAX
⊢ UINT_MAX (:α) = &UINT_MAX (:α)
INT_BOUND_ORDER
⊢ INT_MIN (:α) < INT_MAX (:α) ∧ INT_MAX (:α) < UINT_MAX (:α) ∧
  UINT_MAX (:α) < &dimword (:α)
INT_ZERO_LT_INT_MIN
⊢ INT_MIN (:α) < 0
INT_ZERO_LT_INT_MAX
⊢ 1 < dimindex (:α) ⇒ 0 < INT_MAX (:α)
INT_ZERO_LE_INT_MAX
⊢ 0 ≤ INT_MAX (:α)
INT_ZERO_LT_UINT_MAX
⊢ 0 < UINT_MAX (:α)
w2i_1
⊢ w2i 1w = if dimindex (:α) = 1 then -1 else 1
w2i_INT_MINw
⊢ w2i INT_MINw = INT_MIN (:α)
w2i_UINT_MAXw
⊢ w2i UINT_MAXw = -1
w2i_INT_MAXw
⊢ w2i INT_MAXw = INT_MAX (:α)
w2i_minus_1
⊢ w2i (-1w) = -1
w2i_lt_0
⊢ ∀w. w2i w < 0 ⇔ w < 0w
w2i_neg
⊢ ∀w. w ≠ INT_MINw ⇒ w2i (-w) = -w2i w
i2w_0
⊢ i2w 0 = 0w
i2w_minus_1
⊢ i2w (-1) = -1w
i2w_INT_MIN
⊢ i2w (INT_MIN (:α)) = INT_MINw
i2w_INT_MAX
⊢ i2w (INT_MAX (:α)) = INT_MAXw
i2w_UINT_MAX
⊢ i2w (UINT_MAX (:α)) = UINT_MAXw
word_msb_i2w_lt_0
⊢ ∀i. INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒ (word_msb (i2w i) ⇔ i < 0)
i2w_pos
⊢ ∀n. i2w (&n) = n2w n
word_quot
⊢ ∀a b. b ≠ 0w ⇒ a / b = i2w (w2i a quot w2i b)
word_rem
⊢ ∀a b. b ≠ 0w ⇒ word_rem a b = i2w (w2i a rem w2i b)
saturate_i2w_0
⊢ saturate_i2w 0 = 0w
saturate_i2sw_0
⊢ saturate_i2sw 0 = 0w
saturate_w2sw
⊢ ∀w.
      saturate_w2sw w =
      if dimindex (:β) ≤ dimindex (:α) ∧ w2w INT_MAXw ≤₊ w then INT_MAXw
      else w2w w
saturate_i2sw
⊢ ∀i. saturate_i2w i = if i < 0 then 0w else saturate_n2w (Num i)
saturate_sw2w
⊢ ∀w. saturate_sw2w w = if w < 0w then 0w else saturate_w2w w
saturate_sw2sw
⊢ ∀w.
      saturate_sw2sw w = if dimindex (:α) ≤ dimindex (:β) then sw2sw w
      else if sw2sw INT_MAXw ≤ w then INT_MAXw
      else if w ≤ sw2sw INT_MINw then INT_MINw else w2w w
signed_saturate_sub
⊢ ∀a b.
      signed_saturate_sub a b =
      if b = INT_MINw then if 0w ≤ a then INT_MAXw else a + INT_MINw
      else if dimindex (:α) = 1 then a && ¬b else signed_saturate_add a (-b)
signed_saturate_add
⊢ ∀a b.
      signed_saturate_add a b =
      (let
         sum = a + b and msba = word_msb a
       in
         if (msba ⇔ word_msb b) ∧ (msba ⇎ word_msb sum) then
           if msba then INT_MINw else INT_MAXw else sum)
different_sign_then_no_overflow
⊢ ∀x y. (word_msb x ⇎ word_msb y) ⇒ w2i (x + y) = w2i x + w2i y
w2i_i2w_pos
⊢ ∀n. n ≤ INT_MAX (:α) ⇒ w2i (i2w (&n)) = &n
w2i_i2w_neg
⊢ ∀n. n ≤ INT_MIN (:α) ⇒ w2i (i2w (-&n)) = -&n
overflow
⊢ ∀x y.
      w2i (x + y) ≠ w2i x + w2i y ⇔
      (word_msb x ⇔ word_msb y) ∧ (word_msb x ⇎ word_msb (x + y))
sub_overflow
⊢ ∀x y.
      w2i (x − y) ≠ w2i x − w2i y ⇔
      (word_msb x ⇎ word_msb y) ∧ (word_msb x ⇎ word_msb (x − y))
overflow_add
⊢ ∀x y. w2i (x + y) ≠ w2i x + w2i y ⇔ OVERFLOW x y F
overflow_sub
⊢ ∀x y. w2i (x − y) ≠ w2i x − w2i y ⇔ OVERFLOW x (¬y) T
i2w_w2n_w2w
⊢ ∀w. i2w (&w2n w) = w2w w
i2w_w2n
⊢ i2w (&w2n w) = w
w2n_i2w
⊢ &w2n (i2w n) = n % &dimword (:α)
w2i_eq_w2n
⊢ w2i w = if w2n w < INT_MIN (:α) then &w2n w else &w2n w − &dimword (:α)