Theory "ratRing"

Parents     rat

Signature

Constant Type
rat_interp_p :rat varmap -> rat polynom -> rat
rat_polynom_normalize :rat polynom -> rat canonical_sum
rat_polynom_simplify :rat polynom -> rat canonical_sum
rat_r_canonical_sum_merge :rat canonical_sum -> rat canonical_sum -> rat canonical_sum
rat_r_canonical_sum_prod :rat canonical_sum -> rat canonical_sum -> rat canonical_sum
rat_r_canonical_sum_scalar :rat -> rat canonical_sum -> rat canonical_sum
rat_r_canonical_sum_scalar2 :index list -> rat canonical_sum -> rat canonical_sum
rat_r_canonical_sum_scalar3 :rat -> index list -> rat canonical_sum -> rat canonical_sum
rat_r_canonical_sum_simplify :rat canonical_sum -> rat canonical_sum
rat_r_ics_aux :rat varmap -> rat -> rat canonical_sum -> rat
rat_r_interp_cs :rat varmap -> rat canonical_sum -> rat
rat_r_interp_m :rat varmap -> rat -> index list -> rat
rat_r_interp_sp :rat varmap -> rat spolynom -> rat
rat_r_interp_vl :rat varmap -> index list -> rat
rat_r_ivl_aux :rat varmap -> index -> index list -> rat
rat_r_monom_insert :rat -> index list -> rat canonical_sum -> rat canonical_sum
rat_r_spolynom_normalize :rat spolynom -> rat canonical_sum
rat_r_spolynom_simplify :rat spolynom -> rat canonical_sum
rat_r_varlist_insert :index list -> rat canonical_sum -> rat canonical_sum

Definitions

rat_interp_p_def
⊢ rat_interp_p = interp_p (ring 0 1 $+ $* numeric_negate)
rat_polynom_simplify_def
⊢ rat_polynom_simplify = polynom_simplify (ring 0 1 $+ $* numeric_negate)
rat_polynom_normalize_def
⊢ rat_polynom_normalize = polynom_normalize (ring 0 1 $+ $* numeric_negate)
rat_r_canonical_sum_merge_def
⊢ rat_r_canonical_sum_merge =
  r_canonical_sum_merge (ring 0 1 $+ $* numeric_negate)
rat_r_monom_insert_def
⊢ rat_r_monom_insert = r_monom_insert (ring 0 1 $+ $* numeric_negate)
rat_r_varlist_insert_def
⊢ rat_r_varlist_insert = r_varlist_insert (ring 0 1 $+ $* numeric_negate)
rat_r_canonical_sum_scalar_def
⊢ rat_r_canonical_sum_scalar =
  r_canonical_sum_scalar (ring 0 1 $+ $* numeric_negate)
rat_r_canonical_sum_scalar2_def
⊢ rat_r_canonical_sum_scalar2 =
  r_canonical_sum_scalar2 (ring 0 1 $+ $* numeric_negate)
rat_r_canonical_sum_scalar3_def
⊢ rat_r_canonical_sum_scalar3 =
  r_canonical_sum_scalar3 (ring 0 1 $+ $* numeric_negate)
rat_r_canonical_sum_prod_def
⊢ rat_r_canonical_sum_prod =
  r_canonical_sum_prod (ring 0 1 $+ $* numeric_negate)
rat_r_canonical_sum_simplify_def
⊢ rat_r_canonical_sum_simplify =
  r_canonical_sum_simplify (ring 0 1 $+ $* numeric_negate)
rat_r_ivl_aux_def
⊢ rat_r_ivl_aux = r_ivl_aux (ring 0 1 $+ $* numeric_negate)
rat_r_interp_vl_def
⊢ rat_r_interp_vl = r_interp_vl (ring 0 1 $+ $* numeric_negate)
rat_r_interp_m_def
⊢ rat_r_interp_m = r_interp_m (ring 0 1 $+ $* numeric_negate)
rat_r_ics_aux_def
⊢ rat_r_ics_aux = r_ics_aux (ring 0 1 $+ $* numeric_negate)
rat_r_interp_cs_def
⊢ rat_r_interp_cs = r_interp_cs (ring 0 1 $+ $* numeric_negate)
rat_r_spolynom_normalize_def
⊢ rat_r_spolynom_normalize =
  r_spolynom_normalize (ring 0 1 $+ $* numeric_negate)
rat_r_spolynom_simplify_def
⊢ rat_r_spolynom_simplify =
  r_spolynom_simplify (ring 0 1 $+ $* numeric_negate)
rat_r_interp_sp_def
⊢ rat_r_interp_sp = r_interp_sp (ring 0 1 $+ $* numeric_negate)


Theorems

RAT_IS_RING
⊢ is_ring (ring 0 1 $+ $* numeric_negate)
rat_ring_thms
⊢ is_ring (ring 0 1 $+ $* numeric_negate) ∧
  (∀vm p. rat_interp_p vm p = rat_r_interp_cs vm (rat_polynom_simplify p)) ∧
  (((∀vm c. rat_interp_p vm (Pconst c) = c) ∧
    (∀vm i. rat_interp_p vm (Pvar i) = varmap_find i vm) ∧
    (∀vm p1 p2.
         rat_interp_p vm (Pplus p1 p2) =
         rat_interp_p vm p1 + rat_interp_p vm p2) ∧
    (∀vm p1 p2.
         rat_interp_p vm (Pmult p1 p2) =
         rat_interp_p vm p1 * rat_interp_p vm p2) ∧
    ∀vm p1. rat_interp_p vm (Popp p1) = -rat_interp_p vm p1) ∧
   (∀x v2 v1. varmap_find End_idx (Node_vm x v1 v2) = x) ∧
   (∀x v2 v1 i1.
        varmap_find (Right_idx i1) (Node_vm x v1 v2) = varmap_find i1 v2) ∧
   (∀x v2 v1 i1.
        varmap_find (Left_idx i1) (Node_vm x v1 v2) = varmap_find i1 v1) ∧
   ∀i. varmap_find i Empty_vm = @x. T) ∧
  ((∀t2 t1 l2 l1 c2 c1.
        rat_r_canonical_sum_merge (Cons_monom c1 l1 t1) (Cons_monom c2 l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less =>
            Cons_monom c1 l1
              (rat_r_canonical_sum_merge t1 (Cons_monom c2 l2 t2))
        | Equal => Cons_monom (c1 + c2) l1 (rat_r_canonical_sum_merge t1 t2)
        | Greater =>
          Cons_monom c2 l2
            (rat_r_canonical_sum_merge (Cons_monom c1 l1 t1) t2)) ∧
   (∀t2 t1 l2 l1 c1.
        rat_r_canonical_sum_merge (Cons_monom c1 l1 t1) (Cons_varlist l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less =>
            Cons_monom c1 l1
              (rat_r_canonical_sum_merge t1 (Cons_varlist l2 t2))
        | Equal => Cons_monom (c1 + 1) l1 (rat_r_canonical_sum_merge t1 t2)
        | Greater =>
          Cons_varlist l2 (rat_r_canonical_sum_merge (Cons_monom c1 l1 t1) t2)) ∧
   (∀t2 t1 l2 l1 c2.
        rat_r_canonical_sum_merge (Cons_varlist l1 t1) (Cons_monom c2 l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less =>
            Cons_varlist l1
              (rat_r_canonical_sum_merge t1 (Cons_monom c2 l2 t2))
        | Equal => Cons_monom (1 + c2) l1 (rat_r_canonical_sum_merge t1 t2)
        | Greater =>
          Cons_monom c2 l2 (rat_r_canonical_sum_merge (Cons_varlist l1 t1) t2)) ∧
   (∀t2 t1 l2 l1.
        rat_r_canonical_sum_merge (Cons_varlist l1 t1) (Cons_varlist l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less =>
            Cons_varlist l1
              (rat_r_canonical_sum_merge t1 (Cons_varlist l2 t2))
        | Equal => Cons_monom (1 + 1) l1 (rat_r_canonical_sum_merge t1 t2)
        | Greater =>
          Cons_varlist l2 (rat_r_canonical_sum_merge (Cons_varlist l1 t1) t2)) ∧
   (∀s1. rat_r_canonical_sum_merge s1 Nil_monom = s1) ∧
   (∀v6 v5 v4.
        rat_r_canonical_sum_merge Nil_monom (Cons_monom v4 v5 v6) =
        Cons_monom v4 v5 v6) ∧
   ∀v8 v7.
       rat_r_canonical_sum_merge Nil_monom (Cons_varlist v7 v8) =
       Cons_varlist v7 v8) ∧
  ((∀t2 l2 l1 c2 c1.
        rat_r_monom_insert c1 l1 (Cons_monom c2 l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less => Cons_monom c1 l1 (Cons_monom c2 l2 t2)
        | Equal => Cons_monom (c1 + c2) l1 t2
        | Greater => Cons_monom c2 l2 (rat_r_monom_insert c1 l1 t2)) ∧
   (∀t2 l2 l1 c1.
        rat_r_monom_insert c1 l1 (Cons_varlist l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less => Cons_monom c1 l1 (Cons_varlist l2 t2)
        | Equal => Cons_monom (c1 + 1) l1 t2
        | Greater => Cons_varlist l2 (rat_r_monom_insert c1 l1 t2)) ∧
   ∀l1 c1. rat_r_monom_insert c1 l1 Nil_monom = Cons_monom c1 l1 Nil_monom) ∧
  ((∀t2 l2 l1 c2.
        rat_r_varlist_insert l1 (Cons_monom c2 l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less => Cons_varlist l1 (Cons_monom c2 l2 t2)
        | Equal => Cons_monom (1 + c2) l1 t2
        | Greater => Cons_monom c2 l2 (rat_r_varlist_insert l1 t2)) ∧
   (∀t2 l2 l1.
        rat_r_varlist_insert l1 (Cons_varlist l2 t2) =
        case list_cmp index_compare l1 l2 of
          Less => Cons_varlist l1 (Cons_varlist l2 t2)
        | Equal => Cons_monom (1 + 1) l1 t2
        | Greater => Cons_varlist l2 (rat_r_varlist_insert l1 t2)) ∧
   ∀l1. rat_r_varlist_insert l1 Nil_monom = Cons_varlist l1 Nil_monom) ∧
  ((∀c0 c l t.
        rat_r_canonical_sum_scalar c0 (Cons_monom c l t) =
        Cons_monom (c0 * c) l (rat_r_canonical_sum_scalar c0 t)) ∧
   (∀c0 l t.
        rat_r_canonical_sum_scalar c0 (Cons_varlist l t) =
        Cons_monom c0 l (rat_r_canonical_sum_scalar c0 t)) ∧
   ∀c0. rat_r_canonical_sum_scalar c0 Nil_monom = Nil_monom) ∧
  ((∀l0 c l t.
        rat_r_canonical_sum_scalar2 l0 (Cons_monom c l t) =
        rat_r_monom_insert c (list_merge index_lt l0 l)
          (rat_r_canonical_sum_scalar2 l0 t)) ∧
   (∀l0 l t.
        rat_r_canonical_sum_scalar2 l0 (Cons_varlist l t) =
        rat_r_varlist_insert (list_merge index_lt l0 l)
          (rat_r_canonical_sum_scalar2 l0 t)) ∧
   ∀l0. rat_r_canonical_sum_scalar2 l0 Nil_monom = Nil_monom) ∧
  ((∀c0 l0 c l t.
        rat_r_canonical_sum_scalar3 c0 l0 (Cons_monom c l t) =
        rat_r_monom_insert (c0 * c) (list_merge index_lt l0 l)
          (rat_r_canonical_sum_scalar3 c0 l0 t)) ∧
   (∀c0 l0 l t.
        rat_r_canonical_sum_scalar3 c0 l0 (Cons_varlist l t) =
        rat_r_monom_insert c0 (list_merge index_lt l0 l)
          (rat_r_canonical_sum_scalar3 c0 l0 t)) ∧
   ∀c0 l0. rat_r_canonical_sum_scalar3 c0 l0 Nil_monom = Nil_monom) ∧
  ((∀c1 l1 t1 s2.
        rat_r_canonical_sum_prod (Cons_monom c1 l1 t1) s2 =
        rat_r_canonical_sum_merge (rat_r_canonical_sum_scalar3 c1 l1 s2)
          (rat_r_canonical_sum_prod t1 s2)) ∧
   (∀l1 t1 s2.
        rat_r_canonical_sum_prod (Cons_varlist l1 t1) s2 =
        rat_r_canonical_sum_merge (rat_r_canonical_sum_scalar2 l1 s2)
          (rat_r_canonical_sum_prod t1 s2)) ∧
   ∀s2. rat_r_canonical_sum_prod Nil_monom s2 = Nil_monom) ∧
  ((∀c l t.
        rat_r_canonical_sum_simplify (Cons_monom c l t) =
        if c = 0 then rat_r_canonical_sum_simplify t
        else if c = 1 then Cons_varlist l (rat_r_canonical_sum_simplify t)
        else Cons_monom c l (rat_r_canonical_sum_simplify t)) ∧
   (∀l t.
        rat_r_canonical_sum_simplify (Cons_varlist l t) =
        Cons_varlist l (rat_r_canonical_sum_simplify t)) ∧
   rat_r_canonical_sum_simplify Nil_monom = Nil_monom) ∧
  ((∀vm x. rat_r_ivl_aux vm x [] = varmap_find x vm) ∧
   ∀vm x x' t'.
       rat_r_ivl_aux vm x (x'::t') = varmap_find x vm * rat_r_ivl_aux vm x' t') ∧
  ((∀vm. rat_r_interp_vl vm [] = 1) ∧
   ∀vm x t. rat_r_interp_vl vm (x::t) = rat_r_ivl_aux vm x t) ∧
  ((∀vm c. rat_r_interp_m vm c [] = c) ∧
   ∀vm c x t. rat_r_interp_m vm c (x::t) = c * rat_r_ivl_aux vm x t) ∧
  ((∀vm a. rat_r_ics_aux vm a Nil_monom = a) ∧
   (∀vm a l t.
        rat_r_ics_aux vm a (Cons_varlist l t) =
        a + rat_r_ics_aux vm (rat_r_interp_vl vm l) t) ∧
   ∀vm a c l t.
       rat_r_ics_aux vm a (Cons_monom c l t) =
       a + rat_r_ics_aux vm (rat_r_interp_m vm c l) t) ∧
  ((∀vm. rat_r_interp_cs vm Nil_monom = 0) ∧
   (∀vm l t.
        rat_r_interp_cs vm (Cons_varlist l t) =
        rat_r_ics_aux vm (rat_r_interp_vl vm l) t) ∧
   ∀vm c l t.
       rat_r_interp_cs vm (Cons_monom c l t) =
       rat_r_ics_aux vm (rat_r_interp_m vm c l) t) ∧
  ((∀i. rat_polynom_normalize (Pvar i) = Cons_varlist [i] Nil_monom) ∧
   (∀c. rat_polynom_normalize (Pconst c) = Cons_monom c [] Nil_monom) ∧
   (∀pl pr.
        rat_polynom_normalize (Pplus pl pr) =
        rat_r_canonical_sum_merge (rat_polynom_normalize pl)
          (rat_polynom_normalize pr)) ∧
   (∀pl pr.
        rat_polynom_normalize (Pmult pl pr) =
        rat_r_canonical_sum_prod (rat_polynom_normalize pl)
          (rat_polynom_normalize pr)) ∧
   ∀p.
       rat_polynom_normalize (Popp p) =
       rat_r_canonical_sum_scalar3 (-1) [] (rat_polynom_normalize p)) ∧
  ∀x.
      rat_polynom_simplify x =
      rat_r_canonical_sum_simplify (rat_polynom_normalize x)