- WLOG_LT
-
⊢ (∀m. P m m) ∧ (∀m n. P m n ⇔ P n m) ∧ (∀m n. m < n ⇒ P m n) ⇒ ∀m y. P m y
- WLOG_LE
-
⊢ (∀m n. P m n ⇔ P n m) ∧ (∀m n. m ≤ n ⇒ P m n) ⇒ ∀m n. P m n
- WITHIN_WITHIN
-
⊢ ∀net s t. (net within s) within t = net within s ∩ t
- WITHIN_UNIV
-
⊢ ∀x. at x within 𝕌(:real) = at x
- WITHIN
-
⊢ ∀n s x y. netord (n within s) x y ⇔ netord n x y ∧ x ∈ s
- URYSOHN_STRONG
-
⊢ ∀s t a b.
closed s ∧ closed t ∧ (s ∩ t = ∅) ∧ a ≠ b ⇒
∃f.
f continuous_on 𝕌(:real) ∧ (∀x. f x ∈ segment [(a,b)]) ∧
(∀x. (f x = a) ⇔ x ∈ s) ∧ ∀x. (f x = b) ⇔ x ∈ t
- URYSOHN_LOCAL_STRONG
-
⊢ ∀s t u a b.
closed_in (subtopology euclidean u) s ∧
closed_in (subtopology euclidean u) t ∧ (s ∩ t = ∅) ∧ a ≠ b ⇒
∃f.
f continuous_on u ∧ (∀x. x ∈ u ⇒ f x ∈ segment [(a,b)]) ∧
(∀x. x ∈ u ⇒ ((f x = a) ⇔ x ∈ s)) ∧ ∀x. x ∈ u ⇒ ((f x = b) ⇔ x ∈ t)
- URYSOHN_LOCAL
-
⊢ ∀s t u a b.
closed_in (subtopology euclidean u) s ∧
closed_in (subtopology euclidean u) t ∧ (s ∩ t = ∅) ⇒
∃f.
f continuous_on u ∧ (∀x. x ∈ u ⇒ f x ∈ segment [(a,b)]) ∧
(∀x. x ∈ s ⇒ (f x = a)) ∧ ∀x. x ∈ t ⇒ (f x = b)
- URYSOHN
-
⊢ ∀s t a b.
closed s ∧ closed t ∧ (s ∩ t = ∅) ⇒
∃f.
f continuous_on 𝕌(:real) ∧ (∀x. f x ∈ segment [(a,b)]) ∧
(∀x. x ∈ s ⇒ (f x = a)) ∧ ∀x. x ∈ t ⇒ (f x = b)
- UPPER_LOWER_HEMICONTINUOUS_EXPLICIT
-
⊢ ∀f t s.
(∀x. x ∈ s ⇒ f x ⊆ t) ∧
(∀u.
open_in (subtopology euclidean t) u ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ⊆ u}) ∧
(∀u.
closed_in (subtopology euclidean t) u ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ⊆ u}) ⇒
∀x e.
x ∈ s ∧ 0 < e ∧ bounded (f x) ∧ f x ≠ ∅ ⇒
∃d.
0 < d ∧
∀x'.
x' ∈ s ∧ dist (x,x') < d ⇒
(∀y. y ∈ f x ⇒ ∃y'. y' ∈ f x' ∧ dist (y,y') < e) ∧
∀y'. y' ∈ f x' ⇒ ∃y. y ∈ f x ∧ dist (y',y) < e
- UPPER_LOWER_HEMICONTINUOUS
-
⊢ ∀f t s.
(∀x. x ∈ s ⇒ f x ⊆ t) ∧
(∀u.
open_in (subtopology euclidean t) u ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ⊆ u}) ∧
(∀u.
closed_in (subtopology euclidean t) u ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ⊆ u}) ⇒
∀x e.
x ∈ s ∧ 0 < e ∧ bounded (f x) ⇒
∃d. 0 < d ∧ ∀x'. x' ∈ s ∧ dist (x,x') < d ⇒ hausdist (f x,f x') < e
- UPPER_HEMICONTINUOUS
-
⊢ ∀f t s.
(∀x. x ∈ s ⇒ f x ⊆ t) ⇒
((∀u.
open_in (subtopology euclidean t) u ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ⊆ u}) ⇔
∀u.
closed_in (subtopology euclidean t) u ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∩ u ≠ ∅})
- UPPER_BOUND_FINITE_SET_REAL
-
⊢ ∀f s. FINITE s ⇒ ∃a. ∀x. x ∈ s ⇒ f x ≤ a
- UPPER_BOUND_FINITE_SET
-
⊢ ∀f s. FINITE s ⇒ ∃a. ∀x. x ∈ s ⇒ f x ≤ a
- UNIT_INTERVAL_NONEMPTY
-
⊢ interval [(0,1)] ≠ ∅ ∧ interval (0,1) ≠ ∅
- UNION_INTERIOR_SUBSET
-
⊢ ∀s t. interior s ∪ interior t ⊆ interior (s ∪ t)
- UNION_FRONTIER
-
⊢ ∀s t.
frontier s ∪ frontier t =
frontier (s ∪ t) ∪ frontier (s ∩ t) ∪ frontier s ∩ frontier t
- UNIFORMLY_CONVERGENT_EQ_CAUCHY_ALT
-
⊢ ∀P s.
(∃l. ∀e. 0 < e ⇒ ∃N. ∀n x. N ≤ n ∧ P x ⇒ dist (s n x,l x) < e) ⇔
∀e.
0 < e ⇒
∃N. ∀m n x. N ≤ m ∧ N ≤ n ∧ m < n ∧ P x ⇒ dist (s m x,s n x) < e
- UNIFORMLY_CONVERGENT_EQ_CAUCHY
-
⊢ ∀P s.
(∃l. ∀e. 0 < e ⇒ ∃N. ∀n x. N ≤ n ∧ P x ⇒ dist (s n x,l x) < e) ⇔
∀e. 0 < e ⇒ ∃N. ∀m n x. N ≤ m ∧ N ≤ n ∧ P x ⇒ dist (s m x,s n x) < e
- UNIFORMLY_CONTINUOUS_ON_VMUL
-
⊢ ∀s c v.
c uniformly_continuous_on s ⇒ (λx. c x * v) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_SUM
-
⊢ ∀t f s.
FINITE s ∧ (∀a. a ∈ s ⇒ f a uniformly_continuous_on t) ⇒
(λx. sum s (λa. f a x)) uniformly_continuous_on t
- UNIFORMLY_CONTINUOUS_ON_SUBSET
-
⊢ ∀f s t. f uniformly_continuous_on s ∧ t ⊆ s ⇒ f uniformly_continuous_on t
- UNIFORMLY_CONTINUOUS_ON_SUB
-
⊢ ∀f g s.
f uniformly_continuous_on s ∧ g uniformly_continuous_on s ⇒
(λx. f x − g x) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_SETDIST
-
⊢ ∀s t. (λy. setdist ({y},s)) uniformly_continuous_on t
- UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY
-
⊢ ∀f s.
f uniformly_continuous_on s ⇔
∀x y.
(∀n. x n ∈ s) ∧ (∀n. y n ∈ s) ∧ ((λn. x n − y n) --> 0) sequentially ⇒
((λn. f (x n) − f (y n)) --> 0) sequentially
- UNIFORMLY_CONTINUOUS_ON_NEG
-
⊢ ∀f s. f uniformly_continuous_on s ⇒ (λx. -f x) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_MUL
-
⊢ ∀f g s.
f uniformly_continuous_on s ∧ g uniformly_continuous_on s ∧
bounded (IMAGE f s) ∧ bounded (IMAGE g s) ⇒
(λx. f x * g x) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_ID
-
⊢ ∀s. (λx. x) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_EQ
-
⊢ ∀f g s.
(∀x. x ∈ s ⇒ (f x = g x)) ∧ f uniformly_continuous_on s ⇒
g uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_DIST_CLOSEST_POINT
-
⊢ ∀s t.
closed s ∧ s ≠ ∅ ⇒
(λx. dist (x,closest_point s x)) uniformly_continuous_on t
- UNIFORMLY_CONTINUOUS_ON_CONST
-
⊢ ∀s c. (λx. c) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_COMPOSE
-
⊢ ∀f g s.
f uniformly_continuous_on s ∧ g uniformly_continuous_on IMAGE f s ⇒
g ∘ f uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_CMUL
-
⊢ ∀f c s.
f uniformly_continuous_on s ⇒ (λx. c * f x) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_ON_CLOSURE
-
⊢ ∀f s.
f uniformly_continuous_on s ∧ f continuous_on closure s ⇒
f uniformly_continuous_on closure s
- UNIFORMLY_CONTINUOUS_ON_ADD
-
⊢ ∀f g s.
f uniformly_continuous_on s ∧ g uniformly_continuous_on s ⇒
(λx. f x + g x) uniformly_continuous_on s
- UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS
-
⊢ ∀f s. f uniformly_continuous_on s ⇒ f continuous_on s
- UNIFORMLY_CONTINUOUS_IMP_CAUCHY_CONTINUOUS
-
⊢ ∀f s.
f uniformly_continuous_on s ⇒
∀x. cauchy x ∧ (∀n. x n ∈ s) ⇒ cauchy (f ∘ x)
- UNIFORMLY_CONTINUOUS_EXTENDS_TO_CLOSURE
-
⊢ ∀f s.
f uniformly_continuous_on s ⇒
∃g.
g uniformly_continuous_on closure s ∧ (∀x. x ∈ s ⇒ (g x = f x)) ∧
∀h.
h continuous_on closure s ∧ (∀x. x ∈ s ⇒ (h x = f x)) ⇒
∀x. x ∈ closure s ⇒ (h x = g x)
- UNIFORMLY_CAUCHY_IMP_UNIFORMLY_CONVERGENT
-
⊢ ∀P s l.
(∀e. 0 < e ⇒ ∃N. ∀m n x. N ≤ m ∧ N ≤ n ∧ P x ⇒ dist (s m x,s n x) < e) ∧
(∀x. P x ⇒ ∀e. 0 < e ⇒ ∃N. ∀n. N ≤ n ⇒ dist (s n x,l x) < e) ⇒
∀e. 0 < e ⇒ ∃N. ∀n x. N ≤ n ∧ P x ⇒ dist (s n x,l x) < e
- UNIFORM_LIM_SUB
-
⊢ ∀net P f g l m.
(∀e. 0 < e ⇒ eventually (λx. ∀n. P n ⇒ abs (f n x − l n) < e) net) ∧
(∀e. 0 < e ⇒ eventually (λx. ∀n. P n ⇒ abs (g n x − m n) < e) net) ⇒
∀e.
0 < e ⇒
eventually (λx. ∀n. P n ⇒ abs (f n x − g n x − (l n − m n)) < e) net
- UNIFORM_LIM_BILINEAR
-
⊢ ∀net P h f g l m b1 b2.
bilinear h ∧ eventually (λx. ∀n. P n ⇒ abs (l n) ≤ b1) net ∧
eventually (λx. ∀n. P n ⇒ abs (m n) ≤ b2) net ∧
(∀e. 0 < e ⇒ eventually (λx. ∀n. P n ⇒ abs (f n x − l n) < e) net) ∧
(∀e. 0 < e ⇒ eventually (λx. ∀n. P n ⇒ abs (g n x − m n) < e) net) ⇒
∀e.
0 < e ⇒
eventually
(λx. ∀n. P n ⇒ abs (h (f n x) (g n x) − h (l n) (m n)) < e) net
- UNIFORM_LIM_ADD
-
⊢ ∀net P f g l m.
(∀e. 0 < e ⇒ eventually (λx. ∀n. P n ⇒ abs (f n x − l n) < e) net) ∧
(∀e. 0 < e ⇒ eventually (λx. ∀n. P n ⇒ abs (g n x − m n) < e) net) ⇒
∀e.
0 < e ⇒
eventually (λx. ∀n. P n ⇒ abs (f n x + g n x − (l n + m n)) < e) net
- UNCOUNTABLE_REAL
-
⊢ ¬COUNTABLE 𝕌(:real)
- UNCOUNTABLE_OPEN
-
⊢ ∀s. open s ∧ s ≠ ∅ ⇒ ¬COUNTABLE s
- UNCOUNTABLE_INTERVAL
-
⊢ (∀a b. interval (a,b) ≠ ∅ ⇒ ¬COUNTABLE (interval [(a,b)])) ∧
∀a b. interval (a,b) ≠ ∅ ⇒ ¬COUNTABLE (interval (a,b))
- UNCOUNTABLE_EUCLIDEAN
-
⊢ ¬COUNTABLE 𝕌(:real)
- UNBOUNDED_INTER_COBOUNDED
-
⊢ ∀s t. ¬bounded s ∧ bounded (𝕌(:real) DIFF t) ⇒ s ∩ t ≠ ∅
- UNBOUNDED_HALFSPACE_COMPONENT_LT
-
⊢ ∀a. ¬bounded {x | x < a}
- UNBOUNDED_HALFSPACE_COMPONENT_LE
-
⊢ ∀a. ¬bounded {x | x ≤ a}
- UNBOUNDED_HALFSPACE_COMPONENT_GT
-
⊢ ∀a. ¬bounded {x | x > a}
- UNBOUNDED_HALFSPACE_COMPONENT_GE
-
⊢ ∀a. ¬bounded {x | x ≥ a}
- TRIVIAL_LIMIT_WITHIN
-
⊢ ∀a. trivial_limit (at a within s) ⇔ ¬(a limit_point_of s)
- TRIVIAL_LIMIT_SEQUENTIALLY
-
⊢ ¬trivial_limit sequentially
- TRIVIAL_LIMIT_AT_POSINFINITY
-
⊢ ¬trivial_limit at_posinfinity
- TRIVIAL_LIMIT_AT_NEGINFINITY
-
⊢ ¬trivial_limit at_neginfinity
- TRIVIAL_LIMIT_AT_INFINITY
-
⊢ ¬trivial_limit at_infinity
- TRIVIAL_LIMIT_AT
-
⊢ ∀a. ¬trivial_limit (at a)
- TRANSLATION_DIFF
-
⊢ ∀s t.
IMAGE (λx. a + x) (s DIFF t) =
IMAGE (λx. a + x) s DIFF IMAGE (λx. a + x) t
- TRANSITIVE_STEPWISE_LT_EQ
-
⊢ ∀R.
(∀x y z. R x y ∧ R y z ⇒ R x z) ⇒
((∀m n. m < n ⇒ R m n) ⇔ ∀n. R n (SUC n))
- TRANSITIVE_STEPWISE_LT
-
⊢ ∀R.
(∀x y z. R x y ∧ R y z ⇒ R x z) ∧ (∀n. R n (SUC n)) ⇒
∀m n. m < n ⇒ R m n
- TRANSITIVE_STEPWISE_LE_EQ
-
⊢ ∀R.
(∀x. R x x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ⇒
((∀m n. m ≤ n ⇒ R m n) ⇔ ∀n. R n (SUC n))
- TRANSITIVE_STEPWISE_LE
-
⊢ ∀R.
(∀x. R x x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧ (∀n. R n (SUC n)) ⇒
∀m n. m ≤ n ⇒ R m n
- TOPSPACE_SUBTOPOLOGY
-
⊢ ∀top u. topspace (subtopology top u) = topspace top ∩ u
- TOPSPACE_EUCLIDEAN_SUBTOPOLOGY
-
⊢ ∀s. topspace (subtopology euclidean s) = s
- TOPSPACE_EUCLIDEAN
-
⊢ topspace euclidean = 𝕌(:real)
- TENDSTO_LIM
-
⊢ ∀net f l. ¬trivial_limit net ∧ (f --> l) net ⇒ (lim net f = l)
- SYMMETRIC_LINEAR_IMAGE
-
⊢ ∀f s. (∀x. x ∈ s ⇒ -x ∈ s) ∧ linear f ⇒ ∀x. x ∈ IMAGE f s ⇒ -x ∈ IMAGE f s
- SYMMETRIC_INTERIOR
-
⊢ ∀s. (∀x. x ∈ s ⇒ -x ∈ s) ⇒ ∀x. x ∈ interior s ⇒ -x ∈ interior s
- SYMMETRIC_CLOSURE
-
⊢ ∀s. (∀x. x ∈ s ⇒ -x ∈ s) ⇒ ∀x. x ∈ closure s ⇒ -x ∈ closure s
- SURJECTIVE_IMAGE_EQ
-
⊢ ∀s t. (∀y. y ∈ t ⇒ ∃x. f x = y) ∧ (∀x. f x ∈ t ⇔ x ∈ s) ⇒ (IMAGE f s = t)
- SUP_INSERT
-
⊢ ∀x s. bounded s ⇒ (sup (x INSERT s) = if s = ∅ then x else max x (sup s))
- SUMS_SYM
-
⊢ ∀s t. {x + y | x ∈ s ∧ y ∈ t} = {y + x | y ∈ t ∧ x ∈ s}
- SUMS_SUMMABLE
-
⊢ ∀f l s. (f sums l) s ⇒ summable s f
- SUMS_REINDEX_GEN
-
⊢ ∀k a l s. ((λx. a (x + k)) sums l) s ⇔ (a sums l) (IMAGE (λi. i + k) s)
- SUMS_REINDEX
-
⊢ ∀k a l n. ((λx. a (x + k)) sums l) (from n) ⇔ (a sums l) (from (n + k))
- SUMS_OFFSET_REV
-
⊢ ∀f l m n.
(f sums l) (from m) ∧ 0 < m ∧ n ≤ m ⇒
(f sums l + sum (n .. m − 1) f) (from n)
- SUMS_OFFSET
-
⊢ ∀f l m n.
(f sums l) (from m) ∧ 0 < n ∧ m ≤ n ⇒
(f sums l − sum (m .. n − 1) f) (from n)
- SUMS_LIM
-
⊢ ∀f s. (f sums lim sequentially (λn. sum (s ∩ (0 .. n)) f)) s ⇔ summable s f
- SUMS_INTERVALS
-
⊢ (∀a b c d.
interval [(a,b)] ≠ ∅ ∧ interval [(c,d)] ≠ ∅ ⇒
({x + y | x ∈ interval [(a,b)] ∧ y ∈ interval [(c,d)]} =
interval [(a + c,b + d)])) ∧
∀a b c d.
interval (a,b) ≠ ∅ ∧ interval (c,d) ≠ ∅ ⇒
({x + y | x ∈ interval (a,b) ∧ y ∈ interval (c,d)} =
interval (a + c,b + d))
- SUMS_INFSUM
-
⊢ ∀f s. (f sums infsum s f) s ⇔ summable s f
- SUMS_IFF
-
⊢ ∀f g k. (∀x. x ∈ k ⇒ (f x = g x)) ⇒ ((f sums l) k ⇔ (g sums l) k)
- SUMS_FINITE_UNION
-
⊢ ∀f s t l. FINITE t ∧ (f sums l) s ⇒ (f sums l + sum (t DIFF s) f) (s ∪ t)
- SUMS_FINITE_DIFF
-
⊢ ∀f t s l. t ⊆ s ∧ FINITE t ∧ (f sums l) s ⇒ (f sums l − sum t f) (s DIFF t)
- SUMS_EQ
-
⊢ ∀f g k. (∀x. x ∈ k ⇒ (f x = g x)) ∧ (f sums l) k ⇒ (g sums l) k
- SUMS_0
-
⊢ ∀f s. (∀n. n ∈ s ⇒ (f n = 0)) ⇒ (f sums 0) s
- SUMMABLE_TRIVIAL
-
⊢ ∀f. summable ∅ f
- SUMMABLE_SUBSET_ABSCONV
-
⊢ ∀x s t. summable s (λn. abs (x n)) ∧ t ⊆ s ⇒ summable t (λn. abs (x n))
- SUMMABLE_SUBSET
-
⊢ ∀x s t. s ⊆ t ∧ summable t (λi. if i ∈ s then x i else 0) ⇒ summable s x
- SUMMABLE_SUB
-
⊢ ∀x y s. summable s x ∧ summable s y ⇒ summable s (λn. x n − y n)
- SUMMABLE_RESTRICT
-
⊢ ∀f k. summable 𝕌(:num) (λn. if n ∈ k then f n else 0) ⇔ summable k f
- SUMMABLE_REINDEX
-
⊢ ∀k a n. summable (from n) (λx. a (x + k)) ⇔ summable (from (n + k)) a
- SUMMABLE_REARRANGE
-
⊢ ∀x s p. summable s (λn. abs (x n)) ∧ p permutes s ⇒ summable s (x ∘ p)
- SUMMABLE_NEG
-
⊢ ∀x s. summable s x ⇒ summable s (λn. -x n)
- SUMMABLE_LINEAR
-
⊢ ∀f h s. summable s f ∧ linear h ⇒ summable s (λn. h (f n))
- SUMMABLE_IMP_TOZERO
-
⊢ ∀f k. summable k f ⇒ ((λn. if n ∈ k then f n else 0) --> 0) sequentially
- SUMMABLE_IMP_SUMS_BOUNDED
-
⊢ ∀f k. summable (from k) f ⇒ bounded {sum (k .. n) f | n ∈ 𝕌(:num)}
- SUMMABLE_IMP_BOUNDED
-
⊢ ∀f k. summable k f ⇒ bounded (IMAGE f k)
- SUMMABLE_IFF_EVENTUALLY
-
⊢ ∀f g k.
(∃N. ∀n. N ≤ n ∧ n ∈ k ⇒ (f n = g n)) ⇒ (summable k f ⇔ summable k g)
- SUMMABLE_IFF_COFINITE
-
⊢ ∀f s t. FINITE (s DIFF t ∪ (t DIFF s)) ⇒ (summable s f ⇔ summable t f)
- SUMMABLE_IFF
-
⊢ ∀f g k. (∀x. x ∈ k ⇒ (f x = g x)) ⇒ (summable k f ⇔ summable k g)
- SUMMABLE_FROM_ELSEWHERE
-
⊢ ∀f m n. summable (from m) f ⇒ summable (from n) f
- SUMMABLE_EQ_EVENTUALLY
-
⊢ ∀f g k. (∃N. ∀n. N ≤ n ∧ n ∈ k ⇒ (f n = g n)) ∧ summable k f ⇒ summable k g
- SUMMABLE_EQ_COFINITE
-
⊢ ∀f s t. FINITE (s DIFF t ∪ (t DIFF s)) ∧ summable s f ⇒ summable t f
- SUMMABLE_EQ
-
⊢ ∀f g k. (∀x. x ∈ k ⇒ (f x = g x)) ∧ summable k f ⇒ summable k g
- SUMMABLE_COMPONENT
-
⊢ ∀f s. summable s f ⇒ summable s (λi. f i)
- SUMMABLE_COMPARISON
-
⊢ ∀f g s.
summable s g ∧ (∃N. ∀n. n ≥ N ∧ n ∈ s ⇒ abs (f n) ≤ g n) ⇒ summable s f
- SUMMABLE_CMUL
-
⊢ ∀s x c. summable s x ⇒ summable s (λn. c * x n)
- SUMMABLE_CAUCHY
-
⊢ ∀f s.
summable s f ⇔
∀e. 0 < e ⇒ ∃N. ∀m n. m ≥ N ⇒ abs (sum (s ∩ (m .. n)) f) < e
- SUMMABLE_BILINEAR_PARTIAL_PRE
-
⊢ ∀f g h l k.
bilinear h ∧ ((λn. h (f (n + 1)) (g n)) --> l) sequentially ∧
summable (from k) (λn. h (f (n + 1) − f n) (g n)) ⇒
summable (from k) (λn. h (f n) (g n − g (n − 1)))
- SUMMABLE_ADD
-
⊢ ∀x y s. summable s x ∧ summable s y ⇒ summable s (λn. x n + y n)
- SUMMABLE_0
-
⊢ ∀s. summable s (λn. 0)
- SUM_GP_MULTIPLIED
-
⊢ ∀x m n.
m ≤ n ⇒ ((1 − x) * sum (m .. n) (λi. x pow i) = x pow m − x pow SUC n)
- SUM_GP_BASIC
-
⊢ ∀x n. (1 − x) * sum (0 .. n) (λi. x pow i) = 1 − x pow SUC n
- SUM_GP
-
⊢ ∀x m n.
sum (m .. n) (λi. x pow i) =
if n < m then 0
else if x = 1 then &(n + 1 − m)
else (x pow m − x pow SUC n) / (1 − x)
- SUM_DIFF_LEMMA
-
⊢ ∀f k m n.
m ≤ n ⇒
(sum (k ∩ (0 .. n)) f − sum (k ∩ (0 .. m)) f = sum (k ∩ (m + 1 .. n)) f)
- SUM_ABS_TRIANGLE
-
⊢ ∀s f b. FINITE s ∧ sum s (λa. abs (f a)) ≤ b ⇒ abs (sum s f) ≤ b
- SUBTOPOLOGY_UNIV
-
⊢ ∀top. subtopology top 𝕌(:α) = top
- SUBTOPOLOGY_TOPSPACE
-
⊢ ∀top. subtopology top (topspace top) = top
- SUBTOPOLOGY_SUPERSET
-
⊢ ∀top s. topspace top ⊆ s ⇒ (subtopology top s = top)
- SUBSPACE_UNIV
-
⊢ subspace 𝕌(:real)
- SUBSPACE_UNION_CHAIN
-
⊢ ∀s t. subspace s ∧ subspace t ∧ subspace (s ∪ t) ⇒ s ⊆ t ∨ t ⊆ s
- SUBSPACE_TRIVIAL
-
⊢ subspace {0}
- SUBSPACE_TRANSLATION_SELF_EQ
-
⊢ ∀s a. subspace s ⇒ ((IMAGE (λx. a + x) s = s) ⇔ a ∈ s)
- SUBSPACE_TRANSLATION_SELF
-
⊢ ∀s a. subspace s ∧ a ∈ s ⇒ (IMAGE (λx. a + x) s = s)
- SUBSPACE_SUMS
-
⊢ ∀s t. subspace s ∧ subspace t ⇒ subspace {x + y | x ∈ s ∧ y ∈ t}
- SUBSPACE_SUM
-
⊢ ∀s f t. subspace s ∧ FINITE t ∧ (∀x. x ∈ t ⇒ f x ∈ s) ⇒ sum t f ∈ s
- SUBSPACE_SUBSTANDARD
-
⊢ subspace {x | x = 0}
- SUBSPACE_SUB
-
⊢ ∀x y s. subspace s ∧ x ∈ s ∧ y ∈ s ⇒ x − y ∈ s
- SUBSPACE_SPAN
-
⊢ ∀s. subspace (span s)
- SUBSPACE_NEG
-
⊢ ∀x s. subspace s ∧ x ∈ s ⇒ -x ∈ s
- SUBSPACE_MUL
-
⊢ ∀x c s. subspace s ∧ x ∈ s ⇒ c * x ∈ s
- SUBSPACE_LINEAR_PREIMAGE
-
⊢ ∀f s. linear f ∧ subspace s ⇒ subspace {x | f x ∈ s}
- SUBSPACE_LINEAR_IMAGE
-
⊢ ∀f s. linear f ∧ subspace s ⇒ subspace (IMAGE f s)
- SUBSPACE_KERNEL
-
⊢ ∀f. linear f ⇒ subspace {x | f x = 0}
- SUBSPACE_INTER
-
⊢ ∀s t. subspace s ∧ subspace t ⇒ subspace (s ∩ t)
- SUBSPACE_IMP_NONEMPTY
-
⊢ ∀s. subspace s ⇒ s ≠ ∅
- SUBSPACE_BOUNDED_EQ_TRIVIAL
-
⊢ ∀s. subspace s ⇒ (bounded s ⇔ (s = {0}))
- SUBSPACE_BIGINTER
-
⊢ ∀f. (∀s. s ∈ f ⇒ subspace s) ⇒ subspace (BIGINTER f)
- SUBSPACE_ADD
-
⊢ ∀x y s. subspace s ∧ x ∈ s ∧ y ∈ s ⇒ x + y ∈ s
- SUBSPACE_0
-
⊢ subspace s ⇒ 0 ∈ s
- SUBSET_INTERVAL_IMP
-
⊢ (a ≤ c ∧ d ≤ b ⇒ interval [(c,d)] ⊆ interval [(a,b)]) ∧
(a < c ∧ d < b ⇒ interval [(c,d)] ⊆ interval (a,b)) ∧
(a ≤ c ∧ d ≤ b ⇒ interval (c,d) ⊆ interval [(a,b)]) ∧
(a ≤ c ∧ d ≤ b ⇒ interval (c,d) ⊆ interval (a,b))
- SUBSET_INTERVAL
-
⊢ (interval [(c,d)] ⊆ interval [(a,b)] ⇔ c ≤ d ⇒ a ≤ c ∧ d ≤ b) ∧
(interval [(c,d)] ⊆ interval (a,b) ⇔ c ≤ d ⇒ a < c ∧ d < b) ∧
(interval (c,d) ⊆ interval [(a,b)] ⇔ c < d ⇒ a ≤ c ∧ d ≤ b) ∧
(interval (c,d) ⊆ interval (a,b) ⇔ c < d ⇒ a ≤ c ∧ d ≤ b)
- SUBSET_INTERIOR_EQ
-
⊢ ∀s. s ⊆ interior s ⇔ open s
- SUBSET_INTERIOR
-
⊢ ∀s t. s ⊆ t ⇒ interior s ⊆ interior t
- SUBSET_IMAGE
-
⊢ ∀f s t. s ⊆ IMAGE f t ⇔ ∃u. u ⊆ t ∧ (s = IMAGE f u)
- SUBSET_CLOSURE
-
⊢ ∀s t. s ⊆ t ⇒ closure s ⊆ closure t
- SUBSET_CBALL
-
⊢ ∀x d e. d ≤ e ⇒ cball (x,d) ⊆ cball (x,e)
- SUBSET_BIGUNION
-
⊢ ∀f g. f ⊆ g ⇒ BIGUNION f ⊆ BIGUNION g
- SUBSET_BALLS
-
⊢ (∀a a' r r'. ball (a,r) ⊆ ball (a',r') ⇔ dist (a,a') + r ≤ r' ∨ r ≤ 0) ∧
(∀a a' r r'. ball (a,r) ⊆ cball (a',r') ⇔ dist (a,a') + r ≤ r' ∨ r ≤ 0) ∧
(∀a a' r r'. cball (a,r) ⊆ ball (a',r') ⇔ dist (a,a') + r < r' ∨ r < 0) ∧
∀a a' r r'. cball (a,r) ⊆ cball (a',r') ⇔ dist (a,a') + r ≤ r' ∨ r < 0
- SUBSET_BALL
-
⊢ ∀x d e. d ≤ e ⇒ ball (x,d) ⊆ ball (x,e)
- SUBSET_ANTISYM_EQ
-
⊢ ∀s t. s ⊆ t ∧ t ⊆ s ⇔ (s = t)
- SUBORDINATE_PARTITION_OF_UNITY
-
⊢ ∀c s.
s ⊆ BIGUNION c ∧ (∀u. u ∈ c ⇒ open u) ∧
(∀x. x ∈ s ⇒ ∃v. open v ∧ x ∈ v ∧ FINITE {u | u ∈ c ∧ u ∩ v ≠ ∅}) ⇒
∃f.
(∀u. u ∈ c ⇒ f u continuous_on s ∧ ∀x. x ∈ s ⇒ 0 ≤ f u x) ∧
(∀x u. u ∈ c ∧ x ∈ s ∧ x ∉ u ⇒ (f u x = 0)) ∧
(∀x. x ∈ s ⇒ (sum c (λu. f u x) = 1)) ∧
∀x.
x ∈ s ⇒
∃n.
open n ∧ x ∈ n ∧
FINITE {u | u ∈ c ∧ ¬∀x. x ∈ n ⇒ (f u x = 0)}
- SPHERE_UNION_BALL
-
⊢ ∀a r. sphere (a,r) ∪ ball (a,r) = cball (a,r)
- SPHERE_TRANSLATION
-
⊢ ∀a x r. sphere (a + x,r) = IMAGE (λy. a + y) (sphere (x,r))
- SPHERE_SUBSET_CBALL
-
⊢ ∀x e. sphere (x,e) ⊆ cball (x,e)
- SPHERE_SING
-
⊢ ∀x e. (e = 0) ⇒ (sphere (x,e) = {x})
- SPHERE_LINEAR_IMAGE
-
⊢ ∀f x r.
linear f ∧ (∀y. ∃x. f x = y) ∧ (∀x. abs (f x) = abs x) ⇒
(sphere (f x,r) = IMAGE f (sphere (x,r)))
- SPHERE_EQ_SING
-
⊢ ∀a r x. (sphere (a,r) = {x}) ⇔ (x = a) ∧ (r = 0)
- SPHERE_EQ_EMPTY
-
⊢ ∀a r. (sphere (a,r) = ∅) ⇔ r < 0
- SPHERE_EMPTY
-
⊢ ∀a r. r < 0 ⇒ (sphere (a,r) = ∅)
- SPHERE
-
⊢ ∀a r. sphere (a,r) = if r < 0 then ∅ else {a − r; a + r}
- SPANNING_SUBSET_INDEPENDENT
-
⊢ ∀s t. t ⊆ s ∧ independent s ∧ s ⊆ span t ⇒ (s = t)
- SPAN_UNIV
-
⊢ span 𝕌(:real) = 𝕌(:real)
- SPAN_UNION_SUBSET
-
⊢ ∀s t. span s ∪ span t ⊆ span (s ∪ t)
- SPAN_UNION
-
⊢ ∀s t. span (s ∪ t) = {x + y | x ∈ span s ∧ y ∈ span t}
- SPAN_TRANS
-
⊢ ∀x y s. x ∈ span s ∧ y ∈ span (x INSERT s) ⇒ y ∈ span s
- SPAN_SUPERSET
-
⊢ ∀x. x ∈ s ⇒ x ∈ span s
- SPAN_SUM
-
⊢ ∀s f t. FINITE t ∧ (∀x. x ∈ t ⇒ f x ∈ span s) ⇒ sum t f ∈ span s
- SPAN_SUBSPACE
-
⊢ ∀b s. b ⊆ s ∧ s ⊆ span b ∧ subspace s ⇒ (span b = s)
- SPAN_SUBSET_SUBSPACE
-
⊢ ∀s t. s ⊆ t ∧ subspace t ⇒ span s ⊆ t
- SPAN_SUB
-
⊢ ∀x y s. x ∈ span s ∧ y ∈ span s ⇒ x − y ∈ span s
- SPAN_STDBASIS
-
⊢ span {i | 1 ≤ i ∧ i ≤ 1} = 𝕌(:real)
- SPAN_SPAN
-
⊢ ∀s. span (span s) = span s
- SPAN_NEG_EQ
-
⊢ ∀x s. -x ∈ span s ⇔ x ∈ span s
- SPAN_NEG
-
⊢ ∀x s. x ∈ span s ⇒ -x ∈ span s
- SPAN_MUL_EQ
-
⊢ ∀x c s. c ≠ 0 ⇒ (c * x ∈ span s ⇔ x ∈ span s)
- SPAN_MUL
-
⊢ ∀x c s. x ∈ span s ⇒ c * x ∈ span s
- SPAN_MONO
-
⊢ ∀s t. s ⊆ t ⇒ span s ⊆ span t
- SPAN_LINEAR_IMAGE
-
⊢ ∀f s. linear f ⇒ (span (IMAGE f s) = IMAGE f (span s))
- SPAN_INDUCT_ALT
-
⊢ ∀s h. h 0 ∧ (∀c x y. x ∈ s ∧ h y ⇒ h (c * x + y)) ⇒ ∀x. x ∈ span s ⇒ h x
- SPAN_INDUCT
-
⊢ ∀s h. (∀x. x ∈ s ⇒ x ∈ h) ∧ subspace h ⇒ ∀x. x ∈ span s ⇒ h x
- SPAN_INC
-
⊢ ∀s. s ⊆ span s
- SPAN_EXPLICIT
-
⊢ ∀p. span p = {y | ∃s u. FINITE s ∧ s ⊆ p ∧ (sum s (λv. u v * v) = y)}
- SPAN_EQ_SELF
-
⊢ ∀s. (span s = s) ⇔ subspace s
- SPAN_EMPTY
-
⊢ span ∅ = {0}
- SPAN_CLAUSES
-
⊢ (∀a s. a ∈ s ⇒ a ∈ span s) ∧ 0 ∈ span s ∧
(∀x y s. x ∈ span s ∧ y ∈ span s ⇒ x + y ∈ span s) ∧
∀x c s. x ∈ span s ⇒ c * x ∈ span s
- SPAN_CARD_GE_DIM
-
⊢ ∀v b. v ⊆ span b ∧ FINITE b ⇒ dim v ≤ CARD b
- SPAN_BREAKDOWN_EQ
-
⊢ ∀a s. x ∈ span (a INSERT s) ⇔ ∃k. x − k * a ∈ span s
- SPAN_BREAKDOWN
-
⊢ ∀b s a. b ∈ s ∧ a ∈ span s ⇒ ∃k. a − k * b ∈ span (s DELETE b)
- SPAN_ADD_EQ
-
⊢ ∀s x y. x ∈ span s ⇒ (x + y ∈ span s ⇔ y ∈ span s)
- SPAN_ADD
-
⊢ ∀x y s. x ∈ span s ∧ y ∈ span s ⇒ x + y ∈ span s
- SPAN_0
-
⊢ 0 ∈ span s
- SIMPLE_IMAGE_GEN
-
⊢ ∀f P. {f x | P x} = IMAGE f {x | P x}
- SETDIST_ZERO_STRONG
-
⊢ ∀s t. ¬DISJOINT (closure s) (closure t) ⇒ (setdist (s,t) = 0)
- SETDIST_ZERO
-
⊢ ∀s t. ¬DISJOINT s t ⇒ (setdist (s,t) = 0)
- SETDIST_UNIV
-
⊢ (∀s. setdist (s,𝕌(:real)) = 0) ∧ ∀t. setdist (𝕌(:real),t) = 0
- SETDIST_UNIQUE
-
⊢ ∀s t a b d.
a ∈ s ∧ b ∈ t ∧ (dist (a,b) = d) ∧
(∀x y. x ∈ s ∧ y ∈ t ⇒ dist (a,b) ≤ dist (x,y)) ⇒
(setdist (s,t) = d)
- SETDIST_TRIANGLE
-
⊢ ∀s a t. setdist (s,t) ≤ setdist (s,{a}) + setdist ({a},t)
- SETDIST_TRANSLATION
-
⊢ ∀a s t. setdist (IMAGE (λx. a + x) s,IMAGE (λx. a + x) t) = setdist (s,t)
- SETDIST_SYM
-
⊢ ∀s t. setdist (s,t) = setdist (t,s)
- SETDIST_SUBSETS_EQ
-
⊢ ∀s t s' t'.
s' ⊆ s ∧ t' ⊆ t ∧
(∀x y.
x ∈ s ∧ y ∈ t ⇒
∃x' y'. x' ∈ s' ∧ y' ∈ t' ∧ dist (x',y') ≤ dist (x,y)) ⇒
(setdist (s',t') = setdist (s,t))
- SETDIST_SUBSET_RIGHT
-
⊢ ∀s t u. t ≠ ∅ ∧ t ⊆ u ⇒ setdist (s,u) ≤ setdist (s,t)
- SETDIST_SUBSET_LEFT
-
⊢ ∀s t u. s ≠ ∅ ∧ s ⊆ t ⇒ setdist (t,u) ≤ setdist (s,u)
- SETDIST_SINGS
-
⊢ ∀x y. setdist ({x},{y}) = dist (x,y)
- SETDIST_SING_TRIANGLE
-
⊢ ∀s x y. abs (setdist ({x},s) − setdist ({y},s)) ≤ dist (x,y)
- SETDIST_SING_LE_HAUSDIST
-
⊢ ∀s t x. bounded s ∧ bounded t ∧ x ∈ s ⇒ setdist ({x},t) ≤ hausdist (s,t)
- SETDIST_SING_IN_SET
-
⊢ ∀x s. x ∈ s ⇒ (setdist ({x},s) = 0)
- SETDIST_SING_FRONTIER_CASES
-
⊢ ∀s x. setdist ({x},s) = if x ∈ s then 0 else setdist ({x},frontier s)
- SETDIST_SING_FRONTIER
-
⊢ ∀s x. x ∉ s ⇒ (setdist ({x},frontier s) = setdist ({x},s))
- SETDIST_REFL
-
⊢ ∀s. setdist (s,s) = 0
- SETDIST_POS_LE
-
⊢ ∀s t. 0 ≤ setdist (s,t)
- SETDIST_LIPSCHITZ
-
⊢ ∀s t x y. abs (setdist ({x},s) − setdist ({y},s)) ≤ dist (x,y)
- SETDIST_LINEAR_IMAGE
-
⊢ ∀f s t.
linear f ∧ (∀x. abs (f x) = abs x) ⇒
(setdist (IMAGE f s,IMAGE f t) = setdist (s,t))
- SETDIST_LE_SING
-
⊢ ∀s t x. x ∈ s ⇒ setdist (s,t) ≤ setdist ({x},t)
- SETDIST_LE_HAUSDIST
-
⊢ ∀s t. bounded s ∧ bounded t ⇒ setdist (s,t) ≤ hausdist (s,t)
- SETDIST_LE_DIST
-
⊢ ∀s t x y. x ∈ s ∧ y ∈ t ⇒ setdist (s,t) ≤ dist (x,y)
- SETDIST_HAUSDIST_TRIANGLE
-
⊢ ∀s t u.
t ≠ ∅ ∧ bounded t ∧ bounded u ⇒
setdist (s,u) ≤ setdist (s,t) + hausdist (t,u)
- SETDIST_FRONTIERS
-
⊢ ∀s t.
setdist (s,t) =
if DISJOINT s t then setdist (frontier s,frontier t) else 0
- SETDIST_FRONTIER
-
⊢ (∀s t. DISJOINT s t ⇒ (setdist (frontier s,t) = setdist (s,t))) ∧
∀s t. DISJOINT s t ⇒ (setdist (s,frontier t) = setdist (s,t))
- SETDIST_EQ_0_SING
-
⊢ (∀s x. (setdist ({x},s) = 0) ⇔ (s = ∅) ∨ x ∈ closure s) ∧
∀s x. (setdist (s,{x}) = 0) ⇔ (s = ∅) ∨ x ∈ closure s
- SETDIST_EQ_0_COMPACT_CLOSED
-
⊢ ∀s t.
compact s ∧ closed t ⇒
((setdist (s,t) = 0) ⇔ (s = ∅) ∨ (t = ∅) ∨ s ∩ t ≠ ∅)
- SETDIST_EQ_0_CLOSED_IN
-
⊢ ∀u s x.
closed_in (subtopology euclidean u) s ∧ x ∈ u ⇒
((setdist ({x},s) = 0) ⇔ (s = ∅) ∨ x ∈ s)
- SETDIST_EQ_0_CLOSED_COMPACT
-
⊢ ∀s t.
closed s ∧ compact t ⇒
((setdist (s,t) = 0) ⇔ (s = ∅) ∨ (t = ∅) ∨ s ∩ t ≠ ∅)
- SETDIST_EQ_0_CLOSED
-
⊢ ∀s x. closed s ⇒ ((setdist ({x},s) = 0) ⇔ (s = ∅) ∨ x ∈ s)
- SETDIST_EQ_0_BOUNDED
-
⊢ ∀s t.
bounded s ∨ bounded t ⇒
((setdist (s,t) = 0) ⇔ (s = ∅) ∨ (t = ∅) ∨ closure s ∩ closure t ≠ ∅)
- SETDIST_EMPTY
-
⊢ (∀t. setdist (∅,t) = 0) ∧ ∀s. setdist (s,∅) = 0
- SETDIST_DIFFERENCES
-
⊢ ∀s t. setdist (s,t) = setdist ({0},{x − y | x ∈ s ∧ y ∈ t})
- SETDIST_COMPACT_CLOSED
-
⊢ ∀s t.
compact s ∧ closed t ∧ s ≠ ∅ ∧ t ≠ ∅ ⇒
∃x y. x ∈ s ∧ y ∈ t ∧ (dist (x,y) = setdist (s,t))
- SETDIST_CLOSURE
-
⊢ (∀s t. setdist (closure s,t) = setdist (s,t)) ∧
∀s t. setdist (s,closure t) = setdist (s,t)
- SETDIST_CLOSEST_POINT
-
⊢ ∀a s. closed s ∧ s ≠ ∅ ⇒ (setdist ({a},s) = dist (a,closest_point s a))
- SETDIST_CLOSED_COMPACT
-
⊢ ∀s t.
closed s ∧ compact t ∧ s ≠ ∅ ∧ t ≠ ∅ ⇒
∃x y. x ∈ s ∧ y ∈ t ∧ (dist (x,y) = setdist (s,t))
- SETDIST_BALLS
-
⊢ (∀a b r s.
setdist (ball (a,r),ball (b,s)) =
if r ≤ 0 ∨ s ≤ 0 then 0 else max 0 (dist (a,b) − (r + s))) ∧
(∀a b r s.
setdist (ball (a,r),cball (b,s)) =
if r ≤ 0 ∨ s < 0 then 0 else max 0 (dist (a,b) − (r + s))) ∧
(∀a b r s.
setdist (cball (a,r),ball (b,s)) =
if r < 0 ∨ s ≤ 0 then 0 else max 0 (dist (a,b) − (r + s))) ∧
∀a b r s.
setdist (cball (a,r),cball (b,s)) =
if r < 0 ∨ s < 0 then 0 else max 0 (dist (a,b) − (r + s))
- SET_DIFF_FRONTIER
-
⊢ ∀s. s DIFF frontier s = interior s
- SERIES_UNIQUE
-
⊢ ∀f l l' s. (f sums l) s ∧ (f sums l') s ⇒ (l = l')
- SERIES_TRIVIAL
-
⊢ ∀f. (f sums 0) ∅
- SERIES_TERMS_TOZERO
-
⊢ ∀f l n. (f sums l) (from n) ⇒ (f --> 0) sequentially
- SERIES_SUM
-
⊢ ∀f l k s.
FINITE s ∧ s ⊆ k ∧ (∀x. x ∉ s ⇒ (f x = 0)) ∧ (sum s f = l) ⇒
(f sums l) k
- SERIES_SUBSET
-
⊢ ∀x s t l. s ⊆ t ∧ ((λi. if i ∈ s then x i else 0) sums l) t ⇒ (x sums l) s
- SERIES_SUB
-
⊢ ∀x x0 y y0 s.
(x sums x0) s ∧ (y sums y0) s ⇒ ((λn. x n − y n) sums x0 − y0) s
- SERIES_RESTRICT
-
⊢ ∀f k l. ((λn. if n ∈ k then f n else 0) sums l) 𝕌(:num) ⇔ (f sums l) k
- SERIES_REARRANGE_EQ
-
⊢ ∀x s p l.
summable s (λn. abs (x n)) ∧ p permutes s ⇒
((x ∘ p sums l) s ⇔ (x sums l) s)
- SERIES_REARRANGE
-
⊢ ∀x s p l.
summable s (λn. abs (x n)) ∧ p permutes s ∧ (x sums l) s ⇒
(x ∘ p sums l) s
- SERIES_RATIO
-
⊢ ∀c a s N.
c < 1 ∧ (∀n. n ≥ N ⇒ abs (a (SUC n)) ≤ c * abs (a n)) ⇒ ∃l. (a sums l) s
- SERIES_NEG
-
⊢ ∀x x0 s. (x sums x0) s ⇒ ((λn. -x n) sums -x0) s
- SERIES_LINEAR
-
⊢ ∀f h l s. (f sums l) s ∧ linear h ⇒ ((λn. h (f n)) sums h l) s
- SERIES_INJECTIVE_IMAGE_STRONG
-
⊢ ∀x s f.
summable (IMAGE f s) (λn. abs (x n)) ∧
(∀m n. m ∈ s ∧ n ∈ s ∧ (f m = f n) ⇒ (m = n)) ⇒
((λn. sum (IMAGE f s ∩ (0 .. n)) x − sum (s ∩ (0 .. n)) (x ∘ f)) --> 0)
sequentially
- SERIES_INJECTIVE_IMAGE
-
⊢ ∀x s f l.
summable (IMAGE f s) (λn. abs (x n)) ∧
(∀m n. m ∈ s ∧ n ∈ s ∧ (f m = f n) ⇒ (m = n)) ⇒
((x ∘ f sums l) s ⇔ (x sums l) (IMAGE f s))
- SERIES_GOESTOZERO
-
⊢ ∀s x.
summable s x ⇒
∀e. 0 < e ⇒ eventually (λn. n ∈ s ⇒ abs (x n) < e) sequentially
- SERIES_FROM
-
⊢ ∀f l k. (f sums l) (from k) ⇔ ((λn. sum (k .. n) f) --> l) sequentially
- SERIES_FINITE_SUPPORT
-
⊢ ∀f s k.
FINITE (s ∩ k) ∧ (∀x. x ∈ k ∧ x ∉ s ⇒ (f x = 0)) ⇒
(f sums sum (s ∩ k) f) k
- SERIES_FINITE
-
⊢ ∀f s. FINITE s ⇒ (f sums sum s f) s
- SERIES_DROP_POS
-
⊢ ∀f s a. (f sums a) s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ a
- SERIES_DROP_LE
-
⊢ ∀f g s a b. (f sums a) s ∧ (g sums b) s ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒ a ≤ b
- SERIES_DIRICHLET_BILINEAR
-
⊢ ∀f g h k m p l.
bilinear h ∧ bounded {sum (m .. n) f | n ∈ 𝕌(:num)} ∧
summable (from p) (λn. abs (g (n + 1) − g n)) ∧
((λn. h (g (n + 1)) (sum (1 .. n) f)) --> l) sequentially ⇒
summable (from k) (λn. h (g n) (f n))
- SERIES_DIRICHLET
-
⊢ ∀f g N k m.
bounded {sum (m .. n) f | n ∈ 𝕌(:num)} ∧ (∀n. N ≤ n ⇒ g (n + 1) ≤ g n) ∧
(g --> 0) sequentially ⇒
summable (from k) (λn. g n * f n)
- SERIES_DIFFS
-
⊢ ∀f k. (f --> 0) sequentially ⇒ ((λn. f n − f (n + 1)) sums f k) (from k)
- SERIES_COMPONENT
-
⊢ ∀f s l. (f sums l) s ⇒ ((λi. f i) sums l) s
- SERIES_COMPARISON_UNIFORM
-
⊢ ∀f g P s.
(∃l. (g sums l) s) ∧ (∃N. ∀n x. N ≤ n ∧ n ∈ s ∧ P x ⇒ abs (f x n) ≤ g n) ⇒
∃l.
∀e.
0 < e ⇒
∃N. ∀n x. N ≤ n ∧ P x ⇒ dist (sum (s ∩ (0 .. n)) (f x),l x) < e
- SERIES_COMPARISON_BOUND
-
⊢ ∀f g s a.
(g sums a) s ∧ (∀i. i ∈ s ⇒ abs (f i) ≤ g i) ⇒
∃l. (f sums l) s ∧ abs l ≤ a
- SERIES_COMPARISON
-
⊢ ∀f g s.
(∃l. (g sums l) s) ∧ (∃N. ∀n. n ≥ N ∧ n ∈ s ⇒ abs (f n) ≤ g n) ⇒
∃l. (f sums l) s
- SERIES_CMUL
-
⊢ ∀x x0 c s. (x sums x0) s ⇒ ((λn. c * x n) sums c * x0) s
- SERIES_CAUCHY_UNIFORM
-
⊢ ∀P f k.
(∃l.
∀e.
0 < e ⇒
∃N. ∀n x. N ≤ n ∧ P x ⇒ dist (sum (k ∩ (0 .. n)) (f x),l x) < e) ⇔
∀e. 0 < e ⇒ ∃N. ∀m n x. N ≤ m ∧ P x ⇒ abs (sum (k ∩ (m .. n)) (f x)) < e
- SERIES_CAUCHY
-
⊢ ∀f s.
(∃l. (f sums l) s) ⇔
∀e. 0 < e ⇒ ∃N. ∀m n. m ≥ N ⇒ abs (sum (s ∩ (m .. n)) f) < e
- SERIES_BOUND
-
⊢ ∀f g s a b.
(f sums a) s ∧ (g sums b) s ∧ (∀i. i ∈ s ⇒ abs (f i) ≤ g i) ⇒ abs a ≤ b
- SERIES_ADD
-
⊢ ∀x x0 y y0 s.
(x sums x0) s ∧ (y sums y0) s ⇒ ((λn. x n + y n) sums x0 + y0) s
- SERIES_ABSCONV_IMP_CONV
-
⊢ ∀x k. summable k (λn. abs (x n)) ⇒ summable k x
- SERIES_0
-
⊢ ∀s. ((λn. 0) sums 0) s
- SEQUENTIALLY
-
⊢ ∀m n. netord sequentially m n ⇔ m ≥ n
- SEQUENCE_UNIQUE_LIMPT
-
⊢ ∀f l l'.
(f --> l) sequentially ∧ l' limit_point_of {y | ∃n. y = f n} ⇒ (l' = l)
- SEQUENCE_INFINITE_LEMMA
-
⊢ ∀f l. (∀n. f n ≠ l) ∧ (f --> l) sequentially ⇒ INFINITE {y | (∃n. y = f n)}
- SEQUENCE_CAUCHY_WLOG
-
⊢ ∀P s.
(∀m n. P m ∧ P n ⇒ dist (s m,s n) < e) ⇔
∀m n. P m ∧ P n ∧ m ≤ n ⇒ dist (s m,s n) < e
- SEQ_OFFSET_REV
-
⊢ ∀f l k. ((λi. f (i + k)) --> l) sequentially ⇒ (f --> l) sequentially
- SEQ_OFFSET_NEG
-
⊢ ∀f l k. (f --> l) sequentially ⇒ ((λi. f (i − k)) --> l) sequentially
- SEQ_OFFSET
-
⊢ ∀f l k. (f --> l) sequentially ⇒ ((λi. f (i + k)) --> l) sequentially
- SEQ_HARMONIC_OFFSET
-
⊢ ∀a. ((λn. (&n + a)⁻¹) --> 0) sequentially
- SEQ_HARMONIC
-
⊢ ((λn. (&n)⁻¹) --> 0) sequentially
- SEPARATION_T2
-
⊢ ∀x y. x ≠ y ⇔ ∃u v. open u ∧ open v ∧ x ∈ u ∧ y ∈ v ∧ (u ∩ v = ∅)
- SEPARATION_T1
-
⊢ ∀x y. x ≠ y ⇔ ∃u v. open u ∧ open v ∧ x ∈ u ∧ y ∉ u ∧ x ∉ v ∧ y ∈ v
- SEPARATION_T0
-
⊢ ∀x y. x ≠ y ⇔ ∃u. open u ∧ (x ∈ u ⇎ y ∈ u)
- SEPARATION_NORMAL_LOCAL
-
⊢ ∀s t u.
closed_in (subtopology euclidean u) s ∧
closed_in (subtopology euclidean u) t ∧ (s ∩ t = ∅) ⇒
∃s' t'.
open_in (subtopology euclidean u) s' ∧
open_in (subtopology euclidean u) t' ∧ s ⊆ s' ∧ t ⊆ t' ∧
(s' ∩ t' = ∅)
- SEPARATION_NORMAL_COMPACT
-
⊢ ∀s t.
compact s ∧ closed t ∧ (s ∩ t = ∅) ⇒
∃u v.
open u ∧ compact (closure u) ∧ open v ∧ s ⊆ u ∧ t ⊆ v ∧ (u ∩ v = ∅)
- SEPARATION_NORMAL
-
⊢ ∀s t.
closed s ∧ closed t ∧ (s ∩ t = ∅) ⇒
∃u v. open u ∧ open v ∧ s ⊆ u ∧ t ⊆ v ∧ (u ∩ v = ∅)
- SEPARATION_HAUSDORFF
-
⊢ ∀x y. x ≠ y ⇒ ∃u v. open u ∧ open v ∧ x ∈ u ∧ y ∈ v ∧ (u ∩ v = ∅)
- SEPARATION_CLOSURES
-
⊢ ∀s t.
(s ∩ closure t = ∅) ∧ (t ∩ closure s = ∅) ⇒
∃u v. DISJOINT u v ∧ open u ∧ open v ∧ s ⊆ u ∧ t ⊆ v
- SEPARATE_POINT_CLOSED
-
⊢ ∀s a. closed s ∧ a ∉ s ⇒ ∃d. 0 < d ∧ ∀x. x ∈ s ⇒ d ≤ dist (a,x)
- SEPARATE_COMPACT_CLOSED
-
⊢ ∀s t.
compact s ∧ closed t ∧ (s ∩ t = ∅) ⇒
∃d. 0 < d ∧ ∀x y. x ∈ s ∧ y ∈ t ⇒ d ≤ dist (x,y)
- SEPARATE_CLOSED_COMPACT
-
⊢ ∀s t.
closed s ∧ compact t ∧ (s ∩ t = ∅) ⇒
∃d. 0 < d ∧ ∀x y. x ∈ s ∧ y ∈ t ⇒ d ≤ dist (x,y)
- SEGMENT_TRANSLATION
-
⊢ (∀c a b. segment [(c + a,c + b)] = IMAGE (λx. c + x) (segment [(a,b)])) ∧
∀c a b. segment (c + a,c + b) = IMAGE (λx. c + x) (segment (a,b))
- SEGMENT_TO_POINT_EXISTS
-
⊢ ∀s a. closed s ∧ s ≠ ∅ ⇒ ∃b. b ∈ s ∧ (segment (a,b) ∩ s = ∅)
- SEGMENT_TO_CLOSEST_POINT
-
⊢ ∀s a. closed s ∧ s ≠ ∅ ⇒ (segment (a,closest_point s a) ∩ s = ∅)
- SEGMENT_SYM
-
⊢ (∀a b. segment [(a,b)] = segment [(b,a)]) ∧
∀a b. segment (a,b) = segment (b,a)
- SEGMENT_SCALAR_MULTIPLE
-
⊢ (∀a b v. segment [(a * v,b * v)] = {x * v | a ≤ x ∧ x ≤ b ∨ b ≤ x ∧ x ≤ a}) ∧
∀a b v.
v ≠ 0 ⇒
(segment (a * v,b * v) = {x * v | a < x ∧ x < b ∨ b < x ∧ x < a})
- SEGMENT_REFL
-
⊢ (∀a. segment [(a,a)] = {a}) ∧ ∀a. segment (a,a) = ∅
- SEGMENT_OPEN_SUBSET_CLOSED
-
⊢ ∀a b. segment (a,b) ⊆ segment [(a,b)]
- SEGMENT_CLOSED_OPEN
-
⊢ ∀a b. segment [(a,b)] = segment (a,b) ∪ {a; b}
- segment
-
⊢ (segment [(a,b)] = {(1 − u) * a + u * b | 0 ≤ u ∧ u ≤ 1}) ∧
(segment (a,b) = segment [(a,b)] DIFF {a; b})
- SEGMENT
-
⊢ (∀a b.
segment [(a,b)] = if a ≤ b then interval [(a,b)] else interval [(b,a)]) ∧
∀a b. segment (a,b) = if a ≤ b then interval (a,b) else interval (b,a)
- REGULAR_OPEN_INTER
-
⊢ ∀s t.
(interior (closure s) = s) ∧ (interior (closure t) = t) ⇒
(interior (closure (s ∩ t)) = s ∩ t)
- REGULAR_CLOSED_UNION
-
⊢ ∀s t.
(closure (interior s) = s) ∧ (closure (interior t) = t) ⇒
(closure (interior (s ∪ t)) = s ∪ t)
- REGULAR_CLOSED_BIGUNION
-
⊢ ∀f.
FINITE f ∧ (∀t. t ∈ f ⇒ (closure (interior t) = t)) ⇒
(closure (interior (BIGUNION f)) = BIGUNION f)
- REFLECT_INTERVAL
-
⊢ (∀a b. IMAGE (λx. -x) (interval [(a,b)]) = interval [(-b,-a)]) ∧
∀a b. IMAGE (λx. -x) (interval (a,b)) = interval (-b,-a)
- REAL_WLOG_LT
-
⊢ (∀x. P x x) ∧ (∀x y. P x y ⇔ P y x) ∧ (∀x y. x < y ⇒ P x y) ⇒ ∀x y. P x y
- REAL_WLOG_LE
-
⊢ (∀x y. P x y ⇔ P y x) ∧ (∀x y. x ≤ y ⇒ P x y) ⇒ ∀x y. P x y
- REAL_SETDIST_LT_EXISTS
-
⊢ ∀s t b.
s ≠ ∅ ∧ t ≠ ∅ ∧ setdist (s,t) < b ⇒ ∃x y. x ∈ s ∧ y ∈ t ∧ dist (x,y) < b
- REAL_POW_LE_1
-
⊢ ∀n x. 1 ≤ x ⇒ 1 ≤ x pow n
- REAL_POW_LBOUND
-
⊢ ∀x n. 0 ≤ x ⇒ 1 + &n * x ≤ (1 + x) pow n
- REAL_POW_1_LE
-
⊢ ∀n x. 0 ≤ x ∧ x ≤ 1 ⇒ x pow n ≤ 1
- REAL_OF_NUM_GE
-
⊢ ∀m n. &m ≥ &n ⇔ m ≥ n
- REAL_LT_POW2
-
⊢ ∀n. 0 < 2 pow n
- REAL_LT_MIN
-
⊢ ∀x y z. z < min x y ⇔ z < x ∧ z < y
- REAL_LT_LCANCEL_IMP
-
⊢ ∀x y z. 0 < x ∧ x * y < x * z ⇒ y < z
- REAL_LT_INV2
-
⊢ ∀x y. 0 < x ∧ x < y ⇒ y⁻¹ < x⁻¹
- REAL_LT_INF_FINITE
-
⊢ ∀s a. FINITE s ∧ s ≠ ∅ ⇒ (a < inf s ⇔ ∀x. x ∈ s ⇒ a < x)
- REAL_LT_HAUSDIST_POINT_EXISTS
-
⊢ ∀s t x d.
bounded s ∧ bounded t ∧ t ≠ ∅ ∧ hausdist (s,t) < d ∧ x ∈ s ⇒
∃y. y ∈ t ∧ dist (x,y) < d
- REAL_LT_AFFINITY
-
⊢ ∀m c x y. 0 < m ⇒ (y < m * x + c ⇔ m⁻¹ * y + -(c / m) < x)
- REAL_LE_SQUARE_ABS
-
⊢ ∀x y. abs x ≤ abs y ⇔ x pow 2 ≤ y pow 2
- REAL_LE_SETDIST_EQ
-
⊢ ∀d s t.
d ≤ setdist (s,t) ⇔
(∀x y. x ∈ s ∧ y ∈ t ⇒ d ≤ dist (x,y)) ∧ ((s = ∅) ∨ (t = ∅) ⇒ d ≤ 0)
- REAL_LE_SETDIST
-
⊢ ∀s t d.
s ≠ ∅ ∧ t ≠ ∅ ∧ (∀x y. x ∈ s ∧ y ∈ t ⇒ d ≤ dist (x,y)) ⇒
d ≤ setdist (s,t)
- REAL_LE_LMUL1
-
⊢ ∀x y z. 0 ≤ x ∧ y ≤ z ⇒ x * y ≤ x * z
- REAL_LE_INV2
-
⊢ ∀x y. 0 < x ∧ x ≤ y ⇒ y⁻¹ ≤ x⁻¹
- REAL_LE_INF_FINITE
-
⊢ ∀s a. FINITE s ∧ s ≠ ∅ ⇒ (a ≤ inf s ⇔ ∀x. x ∈ s ⇒ a ≤ x)
- REAL_LE_HAUSDIST
-
⊢ ∀s t a b c z.
s ≠ ∅ ∧ t ≠ ∅ ∧ (∀x. x ∈ s ⇒ setdist ({x},t) ≤ b) ∧
(∀y. y ∈ t ⇒ setdist ({y},s) ≤ c) ∧
(z ∈ s ∧ a ≤ setdist ({z},t) ∨ z ∈ t ∧ a ≤ setdist ({z},s)) ⇒
a ≤ hausdist (s,t)
- REAL_LE_BETWEEN
-
⊢ ∀a b. a ≤ b ⇔ ∃x. a ≤ x ∧ x ≤ b
- REAL_LE_AFFINITY
-
⊢ ∀m c x y. 0 < m ⇒ (y ≤ m * x + c ⇔ m⁻¹ * y + -(c / m) ≤ x)
- REAL_INV_LE_1
-
⊢ ∀x. 1 ≤ x ⇒ x⁻¹ ≤ 1
- REAL_INV_1_LE
-
⊢ ∀x. 0 < x ∧ x ≤ 1 ⇒ 1 ≤ x⁻¹
- REAL_INF_LT_FINITE
-
⊢ ∀s a. FINITE s ∧ s ≠ ∅ ⇒ (inf s < a ⇔ ∃x. x ∈ s ∧ x < a)
- REAL_INF_LE_FINITE
-
⊢ ∀s a. FINITE s ∧ s ≠ ∅ ⇒ (inf s ≤ a ⇔ ∃x. x ∈ s ∧ x ≤ a)
- REAL_HAUSDIST_LE_SUMS
-
⊢ ∀s t b.
s ≠ ∅ ∧ t ≠ ∅ ∧ s ⊆ {y + z | y ∈ t ∧ z ∈ cball (0,b)} ∧
t ⊆ {y + z | y ∈ s ∧ z ∈ cball (0,b)} ⇒
hausdist (s,t) ≤ b
- REAL_HAUSDIST_LE_EQ
-
⊢ ∀s t b.
s ≠ ∅ ∧ t ≠ ∅ ∧ bounded s ∧ bounded t ⇒
(hausdist (s,t) ≤ b ⇔
(∀x. x ∈ s ⇒ setdist ({x},t) ≤ b) ∧ ∀y. y ∈ t ⇒ setdist ({y},s) ≤ b)
- REAL_HAUSDIST_LE
-
⊢ ∀s t b.
s ≠ ∅ ∧ t ≠ ∅ ∧ (∀x. x ∈ s ⇒ setdist ({x},t) ≤ b) ∧
(∀y. y ∈ t ⇒ setdist ({y},s) ≤ b) ⇒
hausdist (s,t) ≤ b
- REAL_HALF
-
⊢ (∀e. 0 < e / 2 ⇔ 0 < e) ∧ (∀e. e / 2 + e / 2 = e) ∧ ∀e. 2 * (e / 2) = e
- REAL_EQ_SQUARE_ABS
-
⊢ ∀x y. (abs x = abs y) ⇔ (x pow 2 = y pow 2)
- REAL_EQ_RINV
-
⊢ ∀x. (x = -x) ⇔ (x = 0)
- REAL_EQ_LINV
-
⊢ ∀x. (-x = x) ⇔ (x = 0)
- REAL_EQ_AFFINITY
-
⊢ ∀m c x y. m ≠ 0 ⇒ ((y = m * x + c) ⇔ (m⁻¹ * y + -(c / m) = x))
- REAL_CONVEX_BOUND_LE
-
⊢ ∀x y a u v. x ≤ a ∧ y ≤ a ∧ 0 ≤ u ∧ 0 ≤ v ∧ (u + v = 1) ⇒ u * x + v * y ≤ a
- REAL_CHOOSE_SIZE
-
⊢ ∀c. 0 ≤ c ⇒ ∃x. abs x = c
- REAL_CHOOSE_DIST
-
⊢ ∀x e. 0 ≤ e ⇒ ∃y. dist (x,y) = e
- REAL_BOUNDS_LT
-
⊢ ∀x k. -k < x ∧ x < k ⇔ abs x < k
- REAL_ARCH_RDIV_EQ_0
-
⊢ ∀x c. 0 ≤ x ∧ 0 ≤ c ∧ (∀m. 0 < m ⇒ &m * x ≤ c) ⇒ (x = 0)
- REAL_ARCH_POW_INV
-
⊢ ∀x y. 0 < y ∧ x < 1 ⇒ ∃n. x pow n < y
- REAL_ARCH_POW2
-
⊢ ∀x. ∃n. x < 2 pow n
- REAL_ARCH_POW
-
⊢ ∀x y. 1 < x ⇒ ∃n. y < x pow n
- REAL_ARCH_INV
-
⊢ ∀e. 0 < e ⇔ ∃n. n ≠ 0 ∧ 0 < (&n)⁻¹ ∧ (&n)⁻¹ < e
- REAL_AFFINITY_LT
-
⊢ ∀m c x y. 0 < m ⇒ (m * x + c < y ⇔ x < m⁻¹ * y + -(c / m))
- REAL_AFFINITY_LE
-
⊢ ∀m c x y. 0 < m ⇒ (m * x + c ≤ y ⇔ x ≤ m⁻¹ * y + -(c / m))
- REAL_AFFINITY_EQ
-
⊢ ∀m c x y. m ≠ 0 ⇒ ((m * x + c = y) ⇔ (x = m⁻¹ * y + -(c / m)))
- QUOTIENT_MAP_RESTRICT
-
⊢ ∀f s t c.
IMAGE f s ⊆ t ∧
(∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)) ∧
(open_in (subtopology euclidean t) c ∨
closed_in (subtopology euclidean t) c) ⇒
∀u.
u ⊆ c ⇒
(open_in (subtopology euclidean {x | x ∈ s ∧ f x ∈ c})
{x | x ∈ {x | x ∈ s ∧ f x ∈ c} ∧ f x ∈ u} ⇔
open_in (subtopology euclidean c) u)
- QUOTIENT_MAP_OPEN_MAP_EQ
-
⊢ ∀f s t.
IMAGE f s ⊆ t ∧
(∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)) ⇒
((∀k.
open_in (subtopology euclidean s) k ⇒
open_in (subtopology euclidean t) (IMAGE f k)) ⇔
∀k.
open_in (subtopology euclidean s) k ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ IMAGE f k})
- QUOTIENT_MAP_OPEN_CLOSED
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)) ⇔
∀u.
u ⊆ t ⇒
(closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
closed_in (subtopology euclidean t) u))
- QUOTIENT_MAP_IMP_CONTINUOUS_OPEN
-
⊢ ∀f s t.
IMAGE f s ⊆ t ∧
(∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)) ⇒
f continuous_on s
- QUOTIENT_MAP_IMP_CONTINUOUS_CLOSED
-
⊢ ∀f s t.
IMAGE f s ⊆ t ∧
(∀u.
u ⊆ t ⇒
(closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
closed_in (subtopology euclidean t) u)) ⇒
f continuous_on s
- QUOTIENT_MAP_FROM_SUBSET
-
⊢ ∀f s t u.
f continuous_on t ∧ IMAGE f t ⊆ u ∧ s ⊆ t ∧ (IMAGE f s = u) ∧
(∀v.
v ⊆ u ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ v} ⇔
open_in (subtopology euclidean u) v)) ⇒
∀v.
v ⊆ u ⇒
(open_in (subtopology euclidean t) {x | x ∈ t ∧ f x ∈ v} ⇔
open_in (subtopology euclidean u) v)
- QUOTIENT_MAP_FROM_COMPOSITION
-
⊢ ∀f g s t u.
f continuous_on s ∧ IMAGE f s ⊆ t ∧ g continuous_on t ∧ IMAGE g t ⊆ u ∧
(∀v.
v ⊆ u ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ (g ∘ f) x ∈ v} ⇔
open_in (subtopology euclidean u) v)) ⇒
∀v.
v ⊆ u ⇒
(open_in (subtopology euclidean t) {x | x ∈ t ∧ g x ∈ v} ⇔
open_in (subtopology euclidean u) v)
- QUOTIENT_MAP_COMPOSE
-
⊢ ∀f g s t u.
IMAGE f s ⊆ t ∧
(∀v.
v ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ v} ⇔
open_in (subtopology euclidean t) v)) ∧
(∀v.
v ⊆ u ⇒
(open_in (subtopology euclidean t) {x | x ∈ t ∧ g x ∈ v} ⇔
open_in (subtopology euclidean u) v)) ⇒
∀v.
v ⊆ u ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ (g ∘ f) x ∈ v} ⇔
open_in (subtopology euclidean u) v)
- QUOTIENT_MAP_CLOSED_MAP_EQ
-
⊢ ∀f s t.
IMAGE f s ⊆ t ∧
(∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)) ⇒
((∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean t) (IMAGE f k)) ⇔
∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ IMAGE f k})
- QUASICOMPACT_OPEN_CLOSED
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀u.
u ⊆ t ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇒
open_in (subtopology euclidean t) u) ⇔
∀u.
u ⊆ t ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇒
closed_in (subtopology euclidean t) u)
- PROPER_MAP_FROM_COMPOSITION_RIGHT
-
⊢ ∀f g s t u.
f continuous_on s ∧ IMAGE f s ⊆ t ∧ g continuous_on t ∧ IMAGE g t ⊆ u ∧
(∀k. k ⊆ u ∧ compact k ⇒ compact {x | x ∈ s ∧ (g ∘ f) x ∈ k}) ⇒
∀k. k ⊆ t ∧ compact k ⇒ compact {x | x ∈ s ∧ f x ∈ k}
- PROPER_MAP_FROM_COMPOSITION_LEFT
-
⊢ ∀f g s t u.
f continuous_on s ∧ (IMAGE f s = t) ∧ g continuous_on t ∧
IMAGE g t ⊆ u ∧
(∀k. k ⊆ u ∧ compact k ⇒ compact {x | x ∈ s ∧ (g ∘ f) x ∈ k}) ⇒
∀k. k ⊆ u ∧ compact k ⇒ compact {x | x ∈ t ∧ g x ∈ k}
- PROPER_MAP_FROM_COMPACT
-
⊢ ∀f s k.
f continuous_on s ∧ IMAGE f s ⊆ t ∧ compact s ∧
closed_in (subtopology euclidean t) k ⇒
compact {x | x ∈ s ∧ f x ∈ k}
- PROPER_MAP_COMPOSE
-
⊢ ∀f g s t u.
IMAGE f s ⊆ t ∧
(∀k. k ⊆ t ∧ compact k ⇒ compact {x | x ∈ s ∧ f x ∈ k}) ∧
(∀k. k ⊆ u ∧ compact k ⇒ compact {x | x ∈ t ∧ g x ∈ k}) ⇒
∀k. k ⊆ u ∧ compact k ⇒ compact {x | x ∈ s ∧ (g ∘ f) x ∈ k}
- PROPER_MAP
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀k. k ⊆ t ∧ compact k ⇒ compact {x | x ∈ s ∧ f x ∈ k}) ⇔
(∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean t) (IMAGE f k)) ∧
∀a. a ∈ t ⇒ compact {x | x ∈ s ∧ (f x = a)})
- POWERSET_CLAUSES
-
⊢ ({s | s ⊆ ∅} = {∅}) ∧
∀a t.
{s | s ⊆ a INSERT t} = {s | s ⊆ t} ∪ IMAGE (λs. a INSERT s) {s | s ⊆ t}
- PERMUTES_INJECTIVE
-
⊢ ∀p s. p permutes s ⇒ ∀x y. (p x = p y) ⇔ (x = y)
- PERMUTES_IMAGE
-
⊢ ∀p s. p permutes s ⇒ (IMAGE p s = s)
- PASTING_LEMMA_EXISTS_CLOSED
-
⊢ ∀f t s k.
FINITE k ∧ s ⊆ BIGUNION {t i | i ∈ k} ∧
(∀i.
i ∈ k ⇒
closed_in (subtopology euclidean s) (t i) ∧ f i continuous_on t i) ∧
(∀i j x. i ∈ k ∧ j ∈ k ∧ x ∈ s ∩ t i ∩ t j ⇒ (f i x = f j x)) ⇒
∃g. g continuous_on s ∧ ∀x i. i ∈ k ∧ x ∈ s ∩ t i ⇒ (g x = f i x)
- PASTING_LEMMA_EXISTS
-
⊢ ∀f t s k.
s ⊆ BIGUNION {t i | i ∈ k} ∧
(∀i.
i ∈ k ⇒
open_in (subtopology euclidean s) (t i) ∧ f i continuous_on t i) ∧
(∀i j x. i ∈ k ∧ j ∈ k ∧ x ∈ s ∩ t i ∩ t j ⇒ (f i x = f j x)) ⇒
∃g. g continuous_on s ∧ ∀x i. i ∈ k ∧ x ∈ s ∩ t i ⇒ (g x = f i x)
- PASTING_LEMMA_CLOSED
-
⊢ ∀f g t s k.
FINITE k ∧
(∀i.
i ∈ k ⇒
closed_in (subtopology euclidean s) (t i) ∧ f i continuous_on t i) ∧
(∀i j x. i ∈ k ∧ j ∈ k ∧ x ∈ s ∩ t i ∩ t j ⇒ (f i x = f j x)) ∧
(∀x. x ∈ s ⇒ ∃j. j ∈ k ∧ x ∈ t j ∧ (g x = f j x)) ⇒
g continuous_on s
- PASTING_LEMMA
-
⊢ ∀f g t s k.
(∀i.
i ∈ k ⇒
open_in (subtopology euclidean s) (t i) ∧ f i continuous_on t i) ∧
(∀i j x. i ∈ k ∧ j ∈ k ∧ x ∈ s ∩ t i ∩ t j ⇒ (f i x = f j x)) ∧
(∀x. x ∈ s ⇒ ∃j. j ∈ k ∧ x ∈ t j ∧ (g x = f j x)) ⇒
g continuous_on s
- PARTIAL_SUMS_DROP_LE_INFSUM
-
⊢ ∀f s n.
(∀i. i ∈ s ⇒ 0 ≤ f i) ∧ summable s f ⇒ sum (s ∩ (0 .. n)) f ≤ infsum s f
- PARTIAL_SUMS_COMPONENT_LE_INFSUM
-
⊢ ∀f s n.
(∀i. i ∈ s ⇒ 0 ≤ f i) ∧ summable s f ⇒ sum (s ∩ (0 .. n)) f ≤ infsum s f
- PAIRWISE_SING
-
⊢ ∀r x. pairwise r {x} ⇔ T
- PAIRWISE_MONO
-
⊢ ∀r s t. pairwise r s ∧ t ⊆ s ⇒ pairwise r t
- PAIRWISE_INSERT
-
⊢ ∀r x s.
pairwise r (x INSERT s) ⇔
(∀y. y ∈ s ∧ y ≠ x ⇒ r x y ∧ r y x) ∧ pairwise r s
- PAIRWISE_IMAGE
-
⊢ ∀r f. pairwise r (IMAGE f s) ⇔ pairwise (λx y. f x ≠ f y ⇒ r (f x) (f y)) s
- PAIRWISE_EMPTY
-
⊢ ∀r. pairwise r ∅ ⇔ T
- PAIRWISE_DISJOINT_COMPONENTS
-
⊢ ∀u. pairwise DISJOINT (components u)
- OPEN_UNIV
-
⊢ open 𝕌(:real)
- OPEN_UNION_COMPACT_SUBSETS
-
⊢ ∀s.
open s ⇒
∃f.
(∀n. compact (f n)) ∧ (∀n. f n ⊆ s) ∧
(∀n. f n ⊆ interior (f (n + 1))) ∧
(BIGUNION {f n | n ∈ 𝕌(:num)} = s) ∧
∀k. compact k ∧ k ⊆ s ⇒ ∃N. ∀n. n ≥ N ⇒ k ⊆ f n
- OPEN_UNION
-
⊢ ∀s t. open s ∧ open t ⇒ open (s ∪ t)
- OPEN_TRANSLATION_EQ
-
⊢ ∀a s. open (IMAGE (λx. a + x) s) ⇔ open s
- OPEN_TRANSLATION
-
⊢ ∀s a. open s ⇒ open (IMAGE (λx. a + x) s)
- OPEN_SURJECTIVE_LINEAR_IMAGE
-
⊢ ∀f. linear f ∧ (∀y. ∃x. f x = y) ⇒ ∀s. open s ⇒ open (IMAGE f s)
- OPEN_SUMS
-
⊢ ∀s t. open s ∨ open t ⇒ open {x + y | x ∈ s ∧ y ∈ t}
- OPEN_SUBSET_INTERIOR
-
⊢ ∀s t. open s ⇒ (s ⊆ interior t ⇔ s ⊆ t)
- OPEN_SUBSET
-
⊢ ∀s t. s ⊆ t ∧ open s ⇒ open_in (subtopology euclidean t) s
- OPEN_SUB_OPEN
-
⊢ ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃t. open t ∧ x ∈ t ∧ t ⊆ s
- OPEN_SEGMENT_LINEAR_IMAGE
-
⊢ ∀f a b.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(segment (f a,f b) = IMAGE f (segment (a,b)))
- OPEN_SEGMENT_ALT
-
⊢ ∀a b. a ≠ b ⇒ (segment (a,b) = {(1 − u) * a + u * b | 0 < u ∧ u < 1})
- OPEN_SEGMENT
-
⊢ ∀a b. open (segment (a,b))
- OPEN_SCALING
-
⊢ ∀s c. c ≠ 0 ∧ open s ⇒ open (IMAGE (λx. c * x) s)
- OPEN_POSITIVE_ORTHANT
-
⊢ open {x | 0 < x}
- OPEN_POSITIVE_MULTIPLES
-
⊢ ∀s. open s ⇒ open {c * x | 0 < c ∧ x ∈ s}
- OPEN_OPEN_IN_TRANS
-
⊢ ∀s t. open s ∧ open t ∧ t ⊆ s ⇒ open_in (subtopology euclidean s) t
- OPEN_NEGATIONS
-
⊢ ∀s. open s ⇒ open (IMAGE (λx. -x) s)
- OPEN_MAP_RESTRICT
-
⊢ ∀f s t t'.
(∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)) ∧ t' ⊆ t ⇒
∀u.
open_in (subtopology euclidean {x | x ∈ s ∧ f x ∈ t'}) u ⇒
open_in (subtopology euclidean t') (IMAGE f u)
- OPEN_MAP_INTERIORS
-
⊢ ∀f.
(∀s. open s ⇒ open (IMAGE f s)) ⇔
∀s. IMAGE f (interior s) ⊆ interior (IMAGE f s)
- OPEN_MAP_IMP_QUOTIENT_MAP
-
⊢ ∀f s.
f continuous_on s ∧
(∀t.
open_in (subtopology euclidean s) t ⇒
open_in (subtopology euclidean (IMAGE f s)) (IMAGE f t)) ⇒
∀t.
t ⊆ IMAGE f s ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t} ⇔
open_in (subtopology euclidean (IMAGE f s)) t)
- OPEN_MAP_IMP_CLOSED_MAP
-
⊢ ∀f s t.
(IMAGE f s = t) ∧
(∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)) ∧
(∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ IMAGE f u}) ⇒
∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)
- OPEN_MAP_IFF_LOWER_HEMICONTINUOUS_PREIMAGE
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)) ⇔
∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t)
{y | y ∈ t ∧ {x | x ∈ s ∧ (f x = y)} ⊆ u})
- OPEN_MAP_FROM_COMPOSITION_SURJECTIVE
-
⊢ ∀f g s t u.
f continuous_on s ∧ (IMAGE f s = t) ∧ IMAGE g t ⊆ u ∧
(∀k.
open_in (subtopology euclidean s) k ⇒
open_in (subtopology euclidean u) (IMAGE (g ∘ f) k)) ⇒
∀k.
open_in (subtopology euclidean t) k ⇒
open_in (subtopology euclidean u) (IMAGE g k)
- OPEN_MAP_FROM_COMPOSITION_INJECTIVE
-
⊢ ∀f g s t u.
IMAGE f s ⊆ t ∧ IMAGE g t ⊆ u ∧ g continuous_on t ∧
(∀x y. x ∈ t ∧ y ∈ t ∧ (g x = g y) ⇒ (x = y)) ∧
(∀k.
open_in (subtopology euclidean s) k ⇒
open_in (subtopology euclidean u) (IMAGE (g ∘ f) k)) ⇒
∀k.
open_in (subtopology euclidean s) k ⇒
open_in (subtopology euclidean t) (IMAGE f k)
- OPEN_MAP_CLOSED_SUPERSET_PREIMAGE_EQ
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀k.
open_in (subtopology euclidean s) k ⇒
open_in (subtopology euclidean t) (IMAGE f k)) ⇔
∀u w.
closed_in (subtopology euclidean s) u ∧ w ⊆ t ∧
{x | x ∈ s ∧ f x ∈ w} ⊆ u ⇒
∃v.
closed_in (subtopology euclidean t) v ∧ w ⊆ v ∧
{x | x ∈ s ∧ f x ∈ v} ⊆ u)
- OPEN_MAP_CLOSED_SUPERSET_PREIMAGE
-
⊢ ∀f s t u w.
(∀k.
open_in (subtopology euclidean s) k ⇒
open_in (subtopology euclidean t) (IMAGE f k)) ∧
closed_in (subtopology euclidean s) u ∧ w ⊆ t ∧
{x | x ∈ s ∧ f x ∈ w} ⊆ u ⇒
∃v.
closed_in (subtopology euclidean t) v ∧ w ⊆ v ∧
{x | x ∈ s ∧ f x ∈ v} ⊆ u
- OPEN_INTERVAL_RIGHT
-
⊢ ∀a. open {x | a < x}
- OPEN_INTERVAL_MIDPOINT
-
⊢ ∀a b. interval (a,b) ≠ ∅ ⇒ 2⁻¹ * (a + b) ∈ interval (a,b)
- OPEN_INTERVAL_LEMMA
-
⊢ ∀a b x. a < x ∧ x < b ⇒ ∃d. 0 < d ∧ ∀x'. abs (x' − x) < d ⇒ a < x' ∧ x' < b
- OPEN_INTERVAL_LEFT
-
⊢ ∀b. open {x | x < b}
- OPEN_INTERVAL_EQ
-
⊢ (∀a b. open (interval [(a,b)]) ⇔ (interval [(a,b)] = ∅)) ∧
∀a b. open (interval (a,b))
- OPEN_INTERVAL
-
⊢ ∀a b. open (interval (a,b))
- OPEN_INTERIOR
-
⊢ ∀s. open (interior s)
- OPEN_INTER_CLOSURE_SUBSET
-
⊢ ∀s t. open s ⇒ s ∩ closure t ⊆ closure (s ∩ t)
- OPEN_INTER_CLOSURE_EQ_EMPTY
-
⊢ ∀s t. open s ⇒ ((s ∩ closure t = ∅) ⇔ (s ∩ t = ∅))
- OPEN_INTER
-
⊢ ∀s t. open s ∧ open t ⇒ open (s ∩ t)
- OPEN_IN_TRANS_EQ
-
⊢ ∀s t.
(∀u.
open_in (subtopology euclidean t) u ⇒
open_in (subtopology euclidean s) t) ⇔
open_in (subtopology euclidean s) t
- OPEN_IN_TRANS
-
⊢ ∀s t u.
open_in (subtopology euclidean t) s ∧
open_in (subtopology euclidean u) t ⇒
open_in (subtopology euclidean u) s
- OPEN_IN_SUBTOPOLOGY_UNION
-
⊢ ∀top s t u.
open_in (subtopology top t) s ∧ open_in (subtopology top u) s ⇒
open_in (subtopology top (t ∪ u)) s
- OPEN_IN_SUBTOPOLOGY_REFL
-
⊢ ∀top u. open_in (subtopology top u) u ⇔ u ⊆ topspace top
- OPEN_IN_SUBTOPOLOGY_INTER_SUBSET
-
⊢ ∀s u v.
open_in (subtopology euclidean u) (u ∩ s) ∧ v ⊆ u ⇒
open_in (subtopology euclidean v) (v ∩ s)
- OPEN_IN_SUBTOPOLOGY_EMPTY
-
⊢ ∀top s. open_in (subtopology top ∅) s ⇔ (s = ∅)
- OPEN_IN_SUBTOPOLOGY
-
⊢ ∀top u s. open_in (subtopology top u) s ⇔ ∃t. open_in top t ∧ (s = t ∩ u)
- OPEN_IN_SUBSET_TRANS
-
⊢ ∀s t u.
open_in (subtopology euclidean u) s ∧ s ⊆ t ∧ t ⊆ u ⇒
open_in (subtopology euclidean t) s
- OPEN_IN_SING
-
⊢ ∀s a. open_in (subtopology euclidean s) {a} ⇔ a ∈ s ∧ ¬(a limit_point_of s)
- OPEN_IN_REFL
-
⊢ ∀s. open_in (subtopology euclidean s) s
- OPEN_IN_OPEN_TRANS
-
⊢ ∀s t. open_in (subtopology euclidean t) s ∧ open t ⇒ open s
- OPEN_IN_OPEN_INTER
-
⊢ ∀u s. open s ⇒ open_in (subtopology euclidean u) (u ∩ s)
- OPEN_IN_OPEN_EQ
-
⊢ ∀s t. open s ⇒ (open_in (subtopology euclidean s) t ⇔ open t ∧ t ⊆ s)
- OPEN_IN_OPEN
-
⊢ ∀s u. open_in (subtopology euclidean u) s ⇔ ∃t. open t ∧ (s = u ∩ t)
- OPEN_IN_LOCALLY_COMPACT
-
⊢ ∀s t.
locally compact s ⇒
(open_in (subtopology euclidean s) t ⇔
t ⊆ s ∧
∀k. compact k ∧ k ⊆ s ⇒ open_in (subtopology euclidean k) (k ∩ t))
- OPEN_IN_INTER_OPEN
-
⊢ ∀s t u.
open_in (subtopology euclidean u) s ∧ open t ⇒
open_in (subtopology euclidean u) (s ∩ t)
- OPEN_IN_IMP_SUBSET
-
⊢ ∀top s t. open_in (subtopology top s) t ⇒ t ⊆ s
- OPEN_IN_DELETE
-
⊢ ∀u s a.
open_in (subtopology euclidean u) s ⇒
open_in (subtopology euclidean u) (s DELETE a)
- OPEN_IN_CONTAINS_CBALL
-
⊢ ∀s t.
open_in (subtopology euclidean t) s ⇔
s ⊆ t ∧ ∀x. x ∈ s ⇒ ∃e. 0 < e ∧ cball (x,e) ∩ t ⊆ s
- OPEN_IN_CONTAINS_BALL
-
⊢ ∀s t.
open_in (subtopology euclidean t) s ⇔
s ⊆ t ∧ ∀x. x ∈ s ⇒ ∃e. 0 < e ∧ ball (x,e) ∩ t ⊆ s
- OPEN_IN_CONNECTED_COMPONENT
-
⊢ ∀s x.
FINITE {connected_component s x | x | x ∈ s} ⇒
open_in (subtopology euclidean s) (connected_component s x)
- OPEN_IN
-
⊢ ∀s. open s ⇔ open_in euclidean s
- open_in
-
⊢ ∀u s.
open_in (subtopology euclidean u) s ⇔
s ⊆ u ∧ ∀x. x ∈ s ⇒ ∃e. 0 < e ∧ ∀x'. x' ∈ u ∧ dist (x',x) < e ⇒ x' ∈ s
- OPEN_IMP_LOCALLY_COMPACT
-
⊢ ∀s. open s ⇒ locally compact s
- OPEN_IMP_INFINITE
-
⊢ ∀s. open s ⇒ (s = ∅) ∨ INFINITE s
- OPEN_HALFSPACE_LT
-
⊢ ∀a b. open {x | a * x < b}
- OPEN_HALFSPACE_GT
-
⊢ ∀a b. open {x | a * x > b}
- OPEN_HALFSPACE_COMPONENT_LT
-
⊢ ∀a. open {x | x < a}
- OPEN_HALFSPACE_COMPONENT_GT
-
⊢ ∀a. open {x | x > a}
- OPEN_EXISTS_IN
-
⊢ ∀P Q. (∀a. P a ⇒ open {x | Q a x}) ⇒ open {x | (∃a. P a ∧ Q a x)}
- OPEN_EXISTS
-
⊢ ∀Q. (∀a. open {x | Q a x}) ⇒ open {x | (∃a. Q a x)}
- OPEN_EMPTY
-
⊢ open ∅
- OPEN_DIFF
-
⊢ ∀s t. open s ∧ closed t ⇒ open (s DIFF t)
- OPEN_DELETE
-
⊢ ∀s x. open s ⇒ open (s DELETE x)
- OPEN_CONTAINS_OPEN_INTERVAL
-
⊢ ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃a b. x ∈ interval (a,b) ∧ interval (a,b) ⊆ s
- OPEN_CONTAINS_INTERVAL_OPEN_INTERVAL
-
⊢ (∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃a b. x ∈ interval (a,b) ∧ interval [(a,b)] ⊆ s) ∧
∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃a b. x ∈ interval (a,b) ∧ interval (a,b) ⊆ s
- OPEN_CONTAINS_INTERVAL
-
⊢ ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃a b. x ∈ interval (a,b) ∧ interval [(a,b)] ⊆ s
- OPEN_CONTAINS_CBALL_EQ
-
⊢ ∀s. open s ⇒ ∀x. x ∈ s ⇔ ∃e. 0 < e ∧ cball (x,e) ⊆ s
- OPEN_CONTAINS_CBALL
-
⊢ ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃e. 0 < e ∧ cball (x,e) ⊆ s
- OPEN_CONTAINS_BALL_EQ
-
⊢ ∀s. open s ⇒ ∀x. x ∈ s ⇔ ∃e. 0 < e ∧ ball (x,e) ⊆ s
- OPEN_CONTAINS_BALL
-
⊢ ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃e. 0 < e ∧ ball (x,e) ⊆ s
- OPEN_CLOSED_INTERVAL_CONVEX
-
⊢ ∀a b x y e.
x ∈ interval (a,b) ∧ y ∈ interval [(a,b)] ∧ 0 < e ∧ e ≤ 1 ⇒
e * x + (1 − e) * y ∈ interval (a,b)
- OPEN_CLOSED_INTERVAL
-
⊢ ∀a b. interval (a,b) = interval [(a,b)] DIFF {a; b}
- OPEN_CLOSED
-
⊢ ∀s. open s ⇔ closed (𝕌(:real) DIFF s)
- OPEN_BIJECTIVE_LINEAR_IMAGE_EQ
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ∧ (∀y. ∃x. f x = y) ⇒
(open (IMAGE f s) ⇔ open s)
- OPEN_BIGUNION
-
⊢ (∀s. s ∈ f ⇒ open s) ⇒ open (BIGUNION f)
- OPEN_BIGINTER
-
⊢ ∀s. FINITE s ∧ (∀t. t ∈ s ⇒ open t) ⇒ open (BIGINTER s)
- OPEN_BALL
-
⊢ ∀x e. open (ball (x,e))
- OPEN_AFFINITY
-
⊢ ∀s a c. open s ∧ c ≠ 0 ⇒ open (IMAGE (λx. a + c * x) s)
- OPEN
-
⊢ ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃e. 0 < e ∧ ∀x'. abs (x' − x) < e ⇒ x' ∈ s
- OLDNET
-
⊢ ∀n x y.
netord n x x ∧ netord n y y ⇒
∃z. netord n z z ∧ ∀w. netord n w z ⇒ netord n w x ∧ netord n w y
- NOWHERE_DENSE_UNION
-
⊢ ∀s t.
(interior (closure (s ∪ t)) = ∅) ⇔
(interior (closure s) = ∅) ∧ (interior (closure t) = ∅)
- NOWHERE_DENSE_COUNTABLE_BIGUNION_CLOSED
-
⊢ ∀g.
COUNTABLE g ∧ (∀s. s ∈ g ⇒ closed s ∧ (interior s = ∅)) ⇒
(interior (BIGUNION g) = ∅)
- NOWHERE_DENSE_COUNTABLE_BIGUNION
-
⊢ ∀g.
COUNTABLE g ∧ (∀s. s ∈ g ⇒ (interior (closure s) = ∅)) ⇒
(interior (BIGUNION g) = ∅)
- NOWHERE_DENSE
-
⊢ ∀s.
(interior (closure s) = ∅) ⇔
∀t. open t ∧ t ≠ ∅ ⇒ ∃u. open u ∧ u ≠ ∅ ∧ u ⊆ t ∧ (u ∩ s = ∅)
- NOT_INTERVAL_UNIV
-
⊢ (∀a b. interval [(a,b)] ≠ 𝕌(:real)) ∧ ∀a b. interval (a,b) ≠ 𝕌(:real)
- NOT_EVENTUALLY
-
⊢ ∀net p. (∀x. ¬p x) ∧ ¬trivial_limit net ⇒ ¬eventually p net
- NOT_EQ
-
⊢ ∀a b. a ≠ b ⇔ a ≠ b
- NOT_BOUNDED_UNIV
-
⊢ ¬bounded 𝕌(:real)
- NONTRIVIAL_LIMIT_WITHIN
-
⊢ ∀net s. trivial_limit net ⇒ trivial_limit (net within s)
- NO_LIMIT_POINT_IMP_CLOSED
-
⊢ ∀s. ¬(∃x. x limit_point_of s) ⇒ closed s
- NETLIMIT_WITHIN_INTERIOR
-
⊢ ∀s x. x ∈ interior s ⇒ (netlimit (at x within s) = x)
- NETLIMIT_WITHIN
-
⊢ ∀a s. ¬trivial_limit (at a within s) ⇒ (netlimit (at a within s) = a)
- NETLIMIT_AT
-
⊢ ∀a. netlimit (at a) = a
- net_tybij
-
⊢ (∀a. mk_net (netord a) = a) ∧
∀r.
(∀x y. (∀z. r z x ⇒ r z y) ∨ ∀z. r z y ⇒ r z x) ⇔
(netord (mk_net r) = r)
- NET_DILEMMA
-
⊢ ∀net.
(∃a. (∃x. netord net x a) ∧ ∀x. netord net x a ⇒ P x) ∧
(∃b. (∃x. netord net x b) ∧ ∀x. netord net x b ⇒ Q x) ⇒
∃c. (∃x. netord net x c) ∧ ∀x. netord net x c ⇒ P x ∧ Q x
- NET
-
⊢ ∀n x y. (∀z. netord n z x ⇒ netord n z y) ∨ ∀z. netord n z y ⇒ netord n z x
- NEGATIONS_SPHERE
-
⊢ ∀r. IMAGE (λx. -x) (sphere (0,r)) = sphere (0,r)
- NEGATIONS_CBALL
-
⊢ ∀r. IMAGE (λx. -x) (cball (0,r)) = cball (0,r)
- NEGATIONS_BALL
-
⊢ ∀r. IMAGE (λx. -x) (ball (0,r)) = ball (0,r)
- MUMFORD_LEMMA
-
⊢ ∀f s t y.
f continuous_on s ∧ IMAGE f s ⊆ t ∧ locally compact s ∧ y ∈ t ∧
compact {x | x ∈ s ∧ (f x = y)} ⇒
∃u v.
open_in (subtopology euclidean s) u ∧
open_in (subtopology euclidean t) v ∧ {x | x ∈ s ∧ (f x = y)} ⊆ u ∧
y ∈ v ∧ IMAGE f u ⊆ v ∧
∀k. k ⊆ v ∧ compact k ⇒ compact {x | x ∈ u ∧ f x ∈ k}
- MUL_CAUCHY_SCHWARZ_EQUAL
-
⊢ ∀x y. ((x * y) pow 2 = x * x * (y * y)) ⇔ collinear {0; x; y}
- MONOTONE_SUBSEQUENCE
-
⊢ ∀s.
∃r.
(∀m n. m < n ⇒ r m < r n) ∧
((∀m n. m ≤ n ⇒ s (r m) ≤ s (r n)) ∨ ∀m n. m ≤ n ⇒ s (r n) ≤ s (r m))
- MONOTONE_BIGGER
-
⊢ ∀r. (∀m n. m < n ⇒ r m < r n) ⇒ ∀n. n ≤ r n
- MIDPOINT_SYM
-
⊢ ∀a b. midpoint (a,b) = midpoint (b,a)
- MIDPOINT_REFL
-
⊢ ∀x. midpoint (x,x) = x
- MIDPOINT_LINEAR_IMAGE
-
⊢ ∀f a b. linear f ⇒ (midpoint (f a,f b) = f (midpoint (a,b)))
- MIDPOINT_IN_SEGMENT
-
⊢ (∀a b. midpoint (a,b) ∈ segment [(a,b)]) ∧
∀a b. midpoint (a,b) ∈ segment (a,b) ⇔ a ≠ b
- MIDPOINT_EQ_ENDPOINT
-
⊢ ∀a b.
((midpoint (a,b) = a) ⇔ (a = b)) ∧ ((midpoint (a,b) = b) ⇔ (a = b)) ∧
((a = midpoint (a,b)) ⇔ (a = b)) ∧ ((b = midpoint (a,b)) ⇔ (a = b))
- MIDPOINT_COLLINEAR
-
⊢ ∀a b c.
a ≠ c ⇒
((b = midpoint (a,c)) ⇔ collinear {a; b; c} ∧ (dist (a,b) = dist (b,c)))
- MAXIMAL_INDEPENDENT_SUBSET_EXTEND
-
⊢ ∀s v. s ⊆ v ∧ independent s ⇒ ∃b. s ⊆ b ∧ b ⊆ v ∧ independent b ∧ v ⊆ span b
- MAXIMAL_INDEPENDENT_SUBSET
-
⊢ ∀v. ∃b. b ⊆ v ∧ independent b ∧ v ⊆ span b
- MAPPING_CONNECTED_ONTO_SEGMENT
-
⊢ ∀s a b.
connected s ∧ ¬(∃a. s ⊆ {a}) ⇒
∃f. f continuous_on s ∧ (IMAGE f s = segment [(a,b)])
- LT_NZ
-
⊢ ∀n. 0 < n ⇔ n ≠ 0
- LT_EXISTS
-
⊢ ∀m n. m < n ⇔ ∃d. n = m + SUC d
- LOWER_HEMICONTINUOUS
-
⊢ ∀f t s.
(∀x. x ∈ s ⇒ f x ⊆ t) ⇒
((∀u.
closed_in (subtopology euclidean t) u ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ⊆ u}) ⇔
∀u.
open_in (subtopology euclidean t) u ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∩ u ≠ ∅})
- LOCALLY_TRANSLATION
-
⊢ ∀P.
(∀a s. P (IMAGE (λx. a + x) s) ⇔ P s) ⇒
∀a s. locally P (IMAGE (λx. a + x) s) ⇔ locally P s
- LOCALLY_SING
-
⊢ ∀P a. locally P {a} ⇔ P {a}
- LOCALLY_OPEN_SUBSET
-
⊢ ∀P s t. locally P s ∧ open_in (subtopology euclidean s) t ⇒ locally P t
- LOCALLY_OPEN_MAP_IMAGE
-
⊢ ∀P Q f s.
f continuous_on s ∧
(∀t.
open_in (subtopology euclidean s) t ⇒
open_in (subtopology euclidean (IMAGE f s)) (IMAGE f t)) ∧
(∀t. t ⊆ s ∧ P t ⇒ Q (IMAGE f t)) ∧ locally P s ⇒
locally Q (IMAGE f s)
- LOCALLY_MONO
-
⊢ ∀P Q s. (∀t. P t ⇒ Q t) ∧ locally P s ⇒ locally Q s
- LOCALLY_INTER
-
⊢ ∀P.
(∀s t. P s ∧ P t ⇒ P (s ∩ t)) ⇒
∀s t. locally P s ∧ locally P t ⇒ locally P (s ∩ t)
- LOCALLY_INJECTIVE_LINEAR_IMAGE
-
⊢ ∀P Q.
(∀f s. linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒ (P (IMAGE f s) ⇔ Q s)) ⇒
∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(locally P (IMAGE f s) ⇔ locally Q s)
- LOCALLY_EMPTY
-
⊢ ∀P. locally P ∅
- LOCALLY_DIFF_CLOSED
-
⊢ ∀P s t.
locally P s ∧ closed_in (subtopology euclidean s) t ⇒
locally P (s DIFF t)
- LOCALLY_COMPACT_UNIV
-
⊢ locally compact 𝕌(:real)
- LOCALLY_COMPACT_TRANSLATION_EQ
-
⊢ ∀a s. locally compact (IMAGE (λx. a + x) s) ⇔ locally compact s
- LOCALLY_COMPACT_PROPER_IMAGE_EQ
-
⊢ ∀f s.
f continuous_on s ∧
(∀k. k ⊆ IMAGE f s ∧ compact k ⇒ compact {x | x ∈ s ∧ f x ∈ k}) ⇒
(locally compact s ⇔ locally compact (IMAGE f s))
- LOCALLY_COMPACT_PROPER_IMAGE
-
⊢ ∀f s.
f continuous_on s ∧
(∀k. k ⊆ IMAGE f s ∧ compact k ⇒ compact {x | x ∈ s ∧ f x ∈ k}) ∧
locally compact s ⇒
locally compact (IMAGE f s)
- LOCALLY_COMPACT_OPEN_UNION
-
⊢ ∀s t.
locally compact s ∧ locally compact t ∧
open_in (subtopology euclidean (s ∪ t)) s ∧
open_in (subtopology euclidean (s ∪ t)) t ⇒
locally compact (s ∪ t)
- LOCALLY_COMPACT_OPEN_INTER_CLOSURE
-
⊢ ∀s. locally compact s ⇒ ∃t. open t ∧ (s = t ∩ closure s)
- LOCALLY_COMPACT_OPEN_IN
-
⊢ ∀s t.
open_in (subtopology euclidean s) t ∧ locally compact s ⇒
locally compact t
- LOCALLY_COMPACT_INTER_CBALLS
-
⊢ ∀s.
locally compact s ⇔
∀x. x ∈ s ⇒ ∃e. 0 < e ∧ ∀d. d ≤ e ⇒ closed (cball (x,d) ∩ s)
- LOCALLY_COMPACT_INTER_CBALL
-
⊢ ∀s. locally compact s ⇔ ∀x. x ∈ s ⇒ ∃e. 0 < e ∧ closed (cball (x,e) ∩ s)
- LOCALLY_COMPACT_INTER
-
⊢ ∀s t. locally compact s ∧ locally compact t ⇒ locally compact (s ∩ t)
- LOCALLY_COMPACT_DELETE
-
⊢ ∀s a. locally compact s ⇒ locally compact (s DELETE a)
- LOCALLY_COMPACT_COMPACT_SUBOPEN
-
⊢ ∀s.
locally compact s ⇔
∀k t.
k ⊆ s ∧ compact k ∧ open t ∧ k ⊆ t ⇒
∃u v.
k ⊆ u ∧ u ⊆ v ∧ u ⊆ t ∧ v ⊆ s ∧
open_in (subtopology euclidean s) u ∧ compact v
- LOCALLY_COMPACT_COMPACT_ALT
-
⊢ ∀s.
locally compact s ⇔
∀k.
k ⊆ s ∧ compact k ⇒
∃u.
k ⊆ u ∧ open_in (subtopology euclidean s) u ∧
compact (closure u) ∧ closure u ⊆ s
- LOCALLY_COMPACT_COMPACT
-
⊢ ∀s.
locally compact s ⇔
∀k.
k ⊆ s ∧ compact k ⇒
∃u v.
k ⊆ u ∧ u ⊆ v ∧ v ⊆ s ∧ open_in (subtopology euclidean s) u ∧
compact v
- LOCALLY_COMPACT_CLOSED_UNION
-
⊢ ∀s t.
locally compact s ∧ locally compact t ∧
closed_in (subtopology euclidean (s ∪ t)) s ∧
closed_in (subtopology euclidean (s ∪ t)) t ⇒
locally compact (s ∪ t)
- LOCALLY_COMPACT_CLOSED_INTER_OPEN
-
⊢ ∀s. locally compact s ⇔ ∃t u. closed t ∧ open u ∧ (s = t ∩ u)
- LOCALLY_COMPACT_CLOSED_IN_OPEN
-
⊢ ∀s. locally compact s ⇒ ∃t. open t ∧ closed_in (subtopology euclidean t) s
- LOCALLY_COMPACT_CLOSED_IN
-
⊢ ∀s t.
closed_in (subtopology euclidean s) t ∧ locally compact s ⇒
locally compact t
- LOCALLY_COMPACT_ALT
-
⊢ ∀s.
locally compact s ⇔
∀x.
x ∈ s ⇒
∃u.
x ∈ u ∧ open_in (subtopology euclidean s) u ∧
compact (closure u) ∧ closure u ⊆ s
- LOCALLY_COMPACT
-
⊢ ∀s.
locally compact s ⇔
∀x.
x ∈ s ⇒
∃u v.
x ∈ u ∧ u ⊆ v ∧ v ⊆ s ∧ open_in (subtopology euclidean s) u ∧
compact v
- LOCALLY_CLOSED
-
⊢ ∀s. locally closed s ⇔ locally compact s
- LINEAR_ZERO
-
⊢ linear (λx. 0)
- LINEAR_UNIFORMLY_CONTINUOUS_ON
-
⊢ ∀f s. linear f ⇒ f uniformly_continuous_on s
- LINEAR_SUM_MUL
-
⊢ ∀f s c v.
linear f ∧ FINITE s ⇒
(f (sum s (λi. c i * v i)) = sum s (λi. c i * f (v i)))
- LINEAR_SUM
-
⊢ ∀f g s. linear f ∧ FINITE s ⇒ (f (sum s g) = sum s (f ∘ g))
- LINEAR_SUB
-
⊢ ∀f x y. linear f ⇒ (f (x − y) = f x − f y)
- LINEAR_SCALING
-
⊢ ∀c. linear (λx. c * x)
- LINEAR_OPEN_MAPPING
-
⊢ ∀f g. linear f ∧ linear g ∧ (f ∘ g = I) ⇒ ∀s. open s ⇒ open (IMAGE f s)
- LINEAR_NEGATION
-
⊢ linear (λx. -x)
- LINEAR_NEG
-
⊢ ∀f x. linear f ⇒ (f (-x) = -f x)
- LINEAR_MUL_COMPONENT
-
⊢ ∀f v. linear f ⇒ linear (λx. f x * v)
- LINEAR_LIM_0
-
⊢ ∀f. linear f ⇒ (f --> 0) (at 0)
- LINEAR_INVERTIBLE_BOUNDED_BELOW_POS
-
⊢ ∀f g.
linear f ∧ linear g ∧ (g ∘ f = I) ⇒
∃B. 0 < B ∧ ∀x. B * abs x ≤ abs (f x)
- LINEAR_INVERTIBLE_BOUNDED_BELOW
-
⊢ ∀f g. linear f ∧ linear g ∧ (g ∘ f = I) ⇒ ∃B. ∀x. B * abs x ≤ abs (f x)
- LINEAR_INTERIOR_IMAGE_SUBSET
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
interior (IMAGE f s) ⊆ IMAGE f (interior s)
- LINEAR_INJECTIVE_LEFT_INVERSE
-
⊢ ∀f.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
∃g. linear g ∧ (g ∘ f = (λx. x))
- LINEAR_INJECTIVE_IMP_SURJECTIVE
-
⊢ ∀f. linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒ ∀y. ∃x. f x = y
- LINEAR_INJECTIVE_BOUNDED_BELOW_POS
-
⊢ ∀f.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
∃B. 0 < B ∧ ∀x. abs x * B ≤ abs (f x)
- LINEAR_INJECTIVE_0_SUBSPACE
-
⊢ ∀f s.
linear f ∧ subspace s ⇒
((∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇔
∀x. x ∈ s ∧ (f x = 0) ⇒ (x = 0))
- LINEAR_INDEPENDENT_EXTEND_LEMMA
-
⊢ ∀f b.
FINITE b ⇒
independent b ⇒
∃g.
(∀x y. x ∈ span b ∧ y ∈ span b ⇒ (g (x + y) = g x + g y)) ∧
(∀x c. x ∈ span b ⇒ (g (c * x) = c * g x)) ∧ ∀x. x ∈ b ⇒ (g x = f x)
- LINEAR_INDEPENDENT_EXTEND
-
⊢ ∀f b. independent b ⇒ ∃g. linear g ∧ ∀x. x ∈ b ⇒ (g x = f x)
- LINEAR_IMAGE_SUBSET_INTERIOR
-
⊢ ∀f s.
linear f ∧ (∀y. ∃x. f x = y) ⇒
IMAGE f (interior s) ⊆ interior (IMAGE f s)
- LINEAR_ID
-
⊢ linear (λx. x)
- LINEAR_EQ_STDBASIS
-
⊢ ∀f g. linear f ∧ linear g ∧ (∀i. 1 ≤ i ∧ i ≤ 1 ⇒ (f i = g i)) ⇒ (f = g)
- LINEAR_EQ_0_SPAN
-
⊢ ∀f b. linear f ∧ (∀x. x ∈ b ⇒ (f x = 0)) ⇒ ∀x. x ∈ span b ⇒ (f x = 0)
- LINEAR_EQ_0
-
⊢ ∀f b s.
linear f ∧ s ⊆ span b ∧ (∀x. x ∈ b ⇒ (f x = 0)) ⇒ ∀x. x ∈ s ⇒ (f x = 0)
- LINEAR_EQ
-
⊢ ∀f g b s.
linear f ∧ linear g ∧ s ⊆ span b ∧ (∀x. x ∈ b ⇒ (f x = g x)) ⇒
∀x. x ∈ s ⇒ (f x = g x)
- LINEAR_CONTINUOUS_WITHIN
-
⊢ ∀f s x. linear f ⇒ f continuous (at x within s)
- LINEAR_CONTINUOUS_ON_COMPOSE
-
⊢ ∀f g s. f continuous_on s ∧ linear g ⇒ (λx. g (f x)) continuous_on s
- LINEAR_CONTINUOUS_ON
-
⊢ ∀f s. linear f ⇒ f continuous_on s
- LINEAR_CONTINUOUS_COMPOSE
-
⊢ ∀net f g. f continuous net ∧ linear g ⇒ (λx. g (f x)) continuous net
- LINEAR_CONTINUOUS_AT
-
⊢ ∀f a. linear f ⇒ f continuous at a
- LINEAR_COMPOSE_SUM
-
⊢ ∀f s. FINITE s ∧ (∀a. a ∈ s ⇒ linear (f a)) ⇒ linear (λx. sum s (λa. f a x))
- LINEAR_COMPOSE_SUB
-
⊢ ∀f g. linear f ∧ linear g ⇒ linear (λx. f x − g x)
- LINEAR_COMPOSE_NEG
-
⊢ ∀f. linear f ⇒ linear (λx. -f x)
- LINEAR_COMPOSE_CMUL
-
⊢ ∀f c. linear f ⇒ linear (λx. c * f x)
- LINEAR_COMPOSE_ADD
-
⊢ ∀f g. linear f ∧ linear g ⇒ linear (λx. f x + g x)
- LINEAR_COMPOSE
-
⊢ ∀f g. linear f ∧ linear g ⇒ linear (g ∘ f)
- LINEAR_CMUL
-
⊢ ∀f c x. linear f ⇒ (f (c * x) = c * f x)
- LINEAR_BOUNDED_POS
-
⊢ ∀f. linear f ⇒ ∃B. 0 < B ∧ ∀x. abs (f x) ≤ B * abs x
- LINEAR_BOUNDED
-
⊢ ∀f. linear f ⇒ ∃B. ∀x. abs (f x) ≤ B * abs x
- LINEAR_ADD
-
⊢ ∀f x y. linear f ⇒ (f (x + y) = f x + f y)
- LINEAR_0
-
⊢ ∀f. linear f ⇒ (f 0 = 0)
- LIMPT_UNIV
-
⊢ ∀x. x limit_point_of 𝕌(:real)
- LIMPT_SUBSET
-
⊢ ∀x s t. x limit_point_of s ∧ s ⊆ t ⇒ x limit_point_of t
- LIMPT_SING
-
⊢ ∀x y. ¬(x limit_point_of {y})
- LIMPT_SEQUENTIAL_INJ
-
⊢ ∀x s.
x limit_point_of s ⇔
∃f.
(∀n. f n ∈ s DELETE x) ∧ (∀m n. (f m = f n) ⇔ (m = n)) ∧
(f --> x) sequentially
- LIMPT_SEQUENTIAL
-
⊢ ∀x s.
x limit_point_of s ⇔ ∃f. (∀n. f n ∈ s DELETE x) ∧ (f --> x) sequentially
- LIMPT_OF_UNIV
-
⊢ ∀x. x limit_point_of 𝕌(:real)
- LIMPT_OF_SEQUENCE_SUBSEQUENCE
-
⊢ ∀f l.
l limit_point_of IMAGE f 𝕌(:num) ⇒
∃r. (∀m n. m < n ⇒ r m < r n) ∧ (f ∘ r --> l) sequentially
- LIMPT_OF_OPEN_IN
-
⊢ ∀s t x.
open_in (subtopology euclidean s) t ∧ x limit_point_of s ∧ x ∈ t ⇒
x limit_point_of t
- LIMPT_OF_OPEN
-
⊢ ∀s x. open s ∧ x ∈ s ⇒ x limit_point_of s
- LIMPT_OF_LIMPTS
-
⊢ ∀x s. x limit_point_of {y | y limit_point_of s} ⇒ x limit_point_of s
- LIMPT_OF_CLOSURE
-
⊢ ∀x s. x limit_point_of closure s ⇔ x limit_point_of s
- LIMPT_INSERT
-
⊢ ∀s x y. x limit_point_of y INSERT s ⇔ x limit_point_of s
- LIMPT_INJECTIVE_LINEAR_IMAGE_EQ
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(f x limit_point_of IMAGE f s ⇔ x limit_point_of s)
- LIMPT_INFINITE_OPEN_BALL_CBALL
-
⊢ (∀s x. x limit_point_of s ⇔ ∀t. x ∈ t ∧ open t ⇒ INFINITE (s ∩ t)) ∧
(∀s x. x limit_point_of s ⇔ ∀e. 0 < e ⇒ INFINITE (s ∩ ball (x,e))) ∧
∀s x. x limit_point_of s ⇔ ∀e. 0 < e ⇒ INFINITE (s ∩ cball (x,e))
- LIMPT_INFINITE_OPEN
-
⊢ ∀s x. x limit_point_of s ⇔ ∀t. x ∈ t ∧ open t ⇒ INFINITE (s ∩ t)
- LIMPT_INFINITE_CBALL
-
⊢ ∀s x. x limit_point_of s ⇔ ∀e. 0 < e ⇒ INFINITE (s ∩ cball (x,e))
- LIMPT_INFINITE_BALL
-
⊢ ∀s x. x limit_point_of s ⇔ ∀e. 0 < e ⇒ INFINITE (s ∩ ball (x,e))
- LIMPT_EMPTY
-
⊢ ∀x. ¬(x limit_point_of ∅)
- LIMPT_BALL
-
⊢ ∀x y e. y limit_point_of ball (x,e) ⇔ 0 < e ∧ y ∈ cball (x,e)
- LIMPT_APPROACHABLE_LE
-
⊢ ∀x s.
x limit_point_of s ⇔ ∀e. 0 < e ⇒ ∃x'. x' ∈ s ∧ x' ≠ x ∧ dist (x',x) ≤ e
- LIMPT_APPROACHABLE
-
⊢ ∀x s.
x limit_point_of s ⇔ ∀e. 0 < e ⇒ ∃x'. x' ∈ s ∧ x' ≠ x ∧ dist (x',x) < e
- LIMIT_POINT_UNION
-
⊢ ∀s t x. x limit_point_of s ∪ t ⇔ x limit_point_of s ∨ x limit_point_of t
- LIMIT_POINT_FINITE
-
⊢ ∀s a. FINITE s ⇒ ¬(a limit_point_of s)
- LIM_WITHIN_UNION
-
⊢ (f --> l) (at x within s ∪ t) ⇔
(f --> l) (at x within s) ∧ (f --> l) (at x within t)
- LIM_WITHIN_SUBSET
-
⊢ ∀f l a s. (f --> l) (at a within s) ∧ t ⊆ s ⇒ (f --> l) (at a within t)
- LIM_WITHIN_OPEN
-
⊢ ∀f l a s. a ∈ s ∧ open s ⇒ ((f --> l) (at a within s) ⇔ (f --> l) (at a))
- LIM_WITHIN_LE
-
⊢ ∀f l a s.
(f --> l) (at a within s) ⇔
∀e.
0 < e ⇒
∃d.
0 < d ∧
∀x. x ∈ s ∧ 0 < dist (x,a) ∧ dist (x,a) ≤ d ⇒ dist (f x,l) < e
- LIM_WITHIN_INTERIOR
-
⊢ ∀f l s x. x ∈ interior s ⇒ ((f --> l) (at x within s) ⇔ (f --> l) (at x))
- LIM_WITHIN_ID
-
⊢ ∀a s. ((λx. x) --> a) (at a within s)
- LIM_WITHIN_EMPTY
-
⊢ ∀f l x. (f --> l) (at x within ∅)
- LIM_WITHIN_CLOSED_TRIVIAL
-
⊢ ∀a s. closed s ∧ a ∉ s ⇒ trivial_limit (at a within s)
- LIM_WITHIN
-
⊢ ∀f l a s.
(f --> l) (at a within s) ⇔
∀e.
0 < e ⇒
∃d.
0 < d ∧
∀x. x ∈ s ∧ 0 < dist (x,a) ∧ dist (x,a) < d ⇒ dist (f x,l) < e
- LIM_VMUL
-
⊢ ∀net c d v. (c --> d) net ⇒ ((λx. c x * v) --> (d * v)) net
- LIM_UNIQUE
-
⊢ ∀net f l l'. ¬trivial_limit net ∧ (f --> l) net ∧ (f --> l') net ⇒ (l = l')
- LIM_UNION_UNIV
-
⊢ ∀f x l s t.
(f --> l) (at x within s) ∧ (f --> l) (at x within t) ∧
(s ∪ t = 𝕌(:real)) ⇒
(f --> l) (at x)
- LIM_UNION
-
⊢ ∀f x l s t.
(f --> l) (at x within s) ∧ (f --> l) (at x within t) ⇒
(f --> l) (at x within s ∪ t)
- LIM_TRANSFORM_WITHIN_SET_IMP
-
⊢ ∀f l a s t.
eventually (λx. x ∈ t ⇒ x ∈ s) (at a) ∧ (f --> l) (at a within s) ⇒
(f --> l) (at a within t)
- LIM_TRANSFORM_WITHIN_SET
-
⊢ ∀f a s t.
eventually (λx. x ∈ s ⇔ x ∈ t) (at a) ⇒
((f --> l) (at a within s) ⇔ (f --> l) (at a within t))
- LIM_TRANSFORM_WITHIN_OPEN_IN
-
⊢ ∀f g s t a l.
open_in (subtopology euclidean t) s ∧ a ∈ s ∧
(∀x. x ∈ s ∧ x ≠ a ⇒ (f x = g x)) ∧ (f --> l) (at a within t) ⇒
(g --> l) (at a within t)
- LIM_TRANSFORM_WITHIN_OPEN
-
⊢ ∀f g s a l.
open s ∧ a ∈ s ∧ (∀x. x ∈ s ∧ x ≠ a ⇒ (f x = g x)) ∧ (f --> l) (at a) ⇒
(g --> l) (at a)
- LIM_TRANSFORM_WITHIN
-
⊢ ∀f g x s d.
0 < d ∧
(∀x'. x' ∈ s ∧ 0 < dist (x',x) ∧ dist (x',x) < d ⇒ (f x' = g x')) ∧
(f --> l) (at x within s) ⇒
(g --> l) (at x within s)
- LIM_TRANSFORM_EVENTUALLY
-
⊢ ∀net f g l. eventually (λx. f x = g x) net ∧ (f --> l) net ⇒ (g --> l) net
- LIM_TRANSFORM_EQ
-
⊢ ∀net f g l. ((λx. f x − g x) --> 0) net ⇒ ((f --> l) net ⇔ (g --> l) net)
- LIM_TRANSFORM_BOUND
-
⊢ ∀f g.
eventually (λn. abs (f n) ≤ abs (g n)) net ∧ (g --> 0) net ⇒
(f --> 0) net
- LIM_TRANSFORM_AWAY_WITHIN
-
⊢ ∀f g a b s.
a ≠ b ∧ (∀x. x ∈ s ∧ x ≠ a ∧ x ≠ b ⇒ (f x = g x)) ∧
(f --> l) (at a within s) ⇒
(g --> l) (at a within s)
- LIM_TRANSFORM_AWAY_AT
-
⊢ ∀f g a b.
a ≠ b ∧ (∀x. x ≠ a ∧ x ≠ b ⇒ (f x = g x)) ∧ (f --> l) (at a) ⇒
(g --> l) (at a)
- LIM_TRANSFORM_AT
-
⊢ ∀f g x d.
0 < d ∧ (∀x'. 0 < dist (x',x) ∧ dist (x',x) < d ⇒ (f x' = g x')) ∧
(f --> l) (at x) ⇒
(g --> l) (at x)
- LIM_TRANSFORM
-
⊢ ∀net f g l. ((λx. f x − g x) --> 0) net ∧ (f --> l) net ⇒ (g --> l) net
- LIM_SUM
-
⊢ ∀net f l s.
FINITE s ∧ (∀i. i ∈ s ⇒ (f i --> l i) net) ⇒
((λx. sum s (λi. f i x)) --> sum s l) net
- LIM_SUBSEQUENCE
-
⊢ ∀s r l.
(∀m n. m < n ⇒ r m < r n) ∧ (s --> l) sequentially ⇒
(s ∘ r --> l) sequentially
- LIM_SUB
-
⊢ ∀net f g l m.
(f --> l) net ∧ (g --> m) net ⇒ ((λx. f x − g x) --> (l − m)) net
- LIM_SEQUENTIALLY
-
⊢ ∀s l. (s --> l) sequentially ⇔ ∀e. 0 < e ⇒ ∃N. ∀n. N ≤ n ⇒ dist (s n,l) < e
- LIM_POSINFINITY_SEQUENTIALLY
-
⊢ ∀f l. (f --> l) at_posinfinity ⇒ ((λn. f (&n)) --> l) sequentially
- LIM_NULL_SUM
-
⊢ ∀net f s.
FINITE s ∧ (∀a. a ∈ s ⇒ ((λx. f x a) --> 0) net) ⇒
((λx. sum s (f x)) --> 0) net
- LIM_NULL_SUB
-
⊢ ∀net f g. (f --> 0) net ∧ (g --> 0) net ⇒ ((λx. f x − g x) --> 0) net
- LIM_NULL_COMPARISON
-
⊢ ∀net f g.
eventually (λx. abs (f x) ≤ g x) net ∧ ((λx. g x) --> 0) net ⇒
(f --> 0) net
- LIM_NULL_CMUL_EQ
-
⊢ ∀net f c. c ≠ 0 ⇒ (((λx. c * f x) --> 0) net ⇔ (f --> 0) net)
- LIM_NULL_CMUL_BOUNDED
-
⊢ ∀f g B.
eventually (λa. (g a = 0) ∨ abs (f a) ≤ B) net ∧ (g --> 0) net ⇒
((λn. f n * g n) --> 0) net
- LIM_NULL_CMUL
-
⊢ ∀net f c. (f --> 0) net ⇒ ((λx. c * f x) --> 0) net
- LIM_NULL_ADD
-
⊢ ∀net f g. (f --> 0) net ∧ (g --> 0) net ⇒ ((λx. f x + g x) --> 0) net
- LIM_NULL_ABS
-
⊢ ∀net f. (f --> 0) net ⇔ ((λx. abs (f x)) --> 0) net
- LIM_NULL
-
⊢ ∀net f l. (f --> l) net ⇔ ((λx. f x − l) --> 0) net
- LIM_NEG_EQ
-
⊢ ∀net f l. ((λx. -f x) --> -l) net ⇔ (f --> l) net
- LIM_NEG
-
⊢ ∀net f l. (f --> l) net ⇒ ((λx. -f x) --> -l) net
- LIM_MUL
-
⊢ ∀net f l c d.
(c --> d) net ∧ (f --> l) net ⇒ ((λx. c x * f x) --> (d * l)) net
- LIM_MIN
-
⊢ ∀net f g l m.
(f --> l) net ∧ (g --> m) net ⇒ ((λx. min (f x) (g x)) --> min l m) net
- LIM_MAX
-
⊢ ∀net f g l m.
(f --> l) net ∧ (g --> m) net ⇒ ((λx. max (f x) (g x)) --> max l m) net
- LIM_LINEAR
-
⊢ ∀net h f l. (f --> l) net ∧ linear h ⇒ ((λx. h (f x)) --> h l) net
- LIM_LIFT_DOT
-
⊢ ∀f a. (f --> l) net ⇒ ((λy. a * f y) --> (a * l)) net
- LIM_INV
-
⊢ ∀net f l. (f --> l) net ∧ l ≠ 0 ⇒ (realinv ∘ f --> l⁻¹) net
- LIM_INFINITY_POSINFINITY
-
⊢ ∀f l. (f --> l) at_infinity ⇒ (f --> l) at_posinfinity
- LIM_IN_CLOSED_SET
-
⊢ ∀net f s l.
closed s ∧ eventually (λx. f x ∈ s) net ∧ ¬trivial_limit net ∧
(f --> l) net ⇒
l ∈ s
- LIM_EVENTUALLY
-
⊢ ∀net f l. eventually (λx. f x = l) net ⇒ (f --> l) net
- LIM_DROP_UBOUND
-
⊢ ∀net f l b.
(f --> l) net ∧ ¬trivial_limit net ∧ eventually (λx. f x ≤ b) net ⇒
l ≤ b
- LIM_DROP_LE
-
⊢ ∀net f g l m.
¬trivial_limit net ∧ (f --> l) net ∧ (g --> m) net ∧
eventually (λx. f x ≤ g x) net ⇒
l ≤ m
- LIM_DROP_LBOUND
-
⊢ ∀net f l b.
(f --> l) net ∧ ¬trivial_limit net ∧ eventually (λx. b ≤ f x) net ⇒
b ≤ l
- LIM_CONTINUOUS_FUNCTION
-
⊢ ∀f net g l. f continuous at l ∧ (g --> l) net ⇒ ((λx. f (g x)) --> f l) net
- LIM_CONST_EQ
-
⊢ ∀net c d. ((λx. c) --> d) net ⇔ trivial_limit net ∨ (c = d)
- LIM_CONST
-
⊢ ∀net a. ((λx. a) --> a) net
- LIM_CONG_WITHIN
-
⊢ (∀x. x ≠ a ⇒ (f x = g x)) ⇒
(((λx. f x) --> l) (at a within s) ⇔ (g --> l) (at a within s))
- LIM_CONG_AT
-
⊢ (∀x. x ≠ a ⇒ (f x = g x)) ⇒ (((λx. f x) --> l) (at a) ⇔ (g --> l) (at a))
- LIM_COMPOSE_WITHIN
-
⊢ ∀net f g s y z.
(f --> y) net ∧ eventually (λw. f w ∈ s ∧ ((f w = y) ⇒ (g y = z))) net ∧
(g --> z) (at y within s) ⇒
(g ∘ f --> z) net
- LIM_COMPOSE_AT
-
⊢ ∀net f g y z.
(f --> y) net ∧ eventually (λw. (f w = y) ⇒ (g y = z)) net ∧
(g --> z) (at y) ⇒
(g ∘ f --> z) net
- LIM_COMPONENT_UBOUND
-
⊢ ∀net f l b k.
¬trivial_limit net ∧ (f --> l) net ∧ eventually (λx. f x ≤ b) net ⇒
l ≤ b
- LIM_COMPONENT_LE
-
⊢ ∀net f g l m.
¬trivial_limit net ∧ (f --> l) net ∧ (g --> m) net ∧
eventually (λx. f x ≤ g x) net ⇒
l ≤ m
- LIM_COMPONENT_LBOUND
-
⊢ ∀net f l b.
¬trivial_limit net ∧ (f --> l) net ∧ eventually (λx. b ≤ f x) net ⇒
b ≤ l
- LIM_COMPONENT_EQ
-
⊢ ∀net f i l b.
(f --> l) net ∧ ¬trivial_limit net ∧ eventually (λx. f x = b) net ⇒
(l = b)
- LIM_COMPONENT
-
⊢ ∀net f i l. (f --> l) net ⇒ ((λa. f a) --> l) net
- LIM_CMUL_EQ
-
⊢ ∀net f l c. c ≠ 0 ⇒ (((λx. c * f x) --> (c * l)) net ⇔ (f --> l) net)
- LIM_CMUL
-
⊢ ∀f l c. (f --> l) net ⇒ ((λx. c * f x) --> (c * l)) net
- LIM_CASES_SEQUENTIALLY
-
⊢ ∀f g l m.
(((λn. if m ≤ n then f n else g n) --> l) sequentially ⇔
(f --> l) sequentially) ∧
(((λn. if m < n then f n else g n) --> l) sequentially ⇔
(f --> l) sequentially) ∧
(((λn. if n ≤ m then f n else g n) --> l) sequentially ⇔
(g --> l) sequentially) ∧
(((λn. if n < m then f n else g n) --> l) sequentially ⇔
(g --> l) sequentially)
- LIM_CASES_FINITE_SEQUENTIALLY
-
⊢ ∀f g l.
FINITE {n | P n} ⇒
(((λn. if P n then f n else g n) --> l) sequentially ⇔
(g --> l) sequentially)
- LIM_CASES_COFINITE_SEQUENTIALLY
-
⊢ ∀f g l.
FINITE {n | (¬P n)} ⇒
(((λn. if P n then f n else g n) --> l) sequentially ⇔
(f --> l) sequentially)
- LIM_BILINEAR
-
⊢ ∀net h f g l m.
(f --> l) net ∧ (g --> m) net ∧ bilinear h ⇒
((λx. h (f x) (g x)) --> h l m) net
- LIM_AT_ZERO
-
⊢ ∀f l a. (f --> l) (at a) ⇔ ((λx. f (a + x)) --> l) (at 0)
- LIM_AT_WITHIN
-
⊢ ∀f l a s. (f --> l) (at a) ⇒ (f --> l) (at a within s)
- LIM_AT_POSINFINITY
-
⊢ ∀f l.
(f --> l) at_posinfinity ⇔ ∀e. 0 < e ⇒ ∃b. ∀x. x ≥ b ⇒ dist (f x,l) < e
- LIM_AT_NEGINFINITY
-
⊢ ∀f l.
(f --> l) at_neginfinity ⇔ ∀e. 0 < e ⇒ ∃b. ∀x. x ≤ b ⇒ dist (f x,l) < e
- LIM_AT_LE
-
⊢ ∀f l a.
(f --> l) (at a) ⇔
∀e.
0 < e ⇒
∃d. 0 < d ∧ ∀x. 0 < dist (x,a) ∧ dist (x,a) ≤ d ⇒ dist (f x,l) < e
- LIM_AT_INFINITY_POS
-
⊢ ∀f l.
(f --> l) at_infinity ⇔
∀e. 0 < e ⇒ ∃b. 0 < b ∧ ∀x. abs x ≥ b ⇒ dist (f x,l) < e
- LIM_AT_INFINITY
-
⊢ ∀f l.
(f --> l) at_infinity ⇔ ∀e. 0 < e ⇒ ∃b. ∀x. abs x ≥ b ⇒ dist (f x,l) < e
- LIM_AT_ID
-
⊢ ∀a. ((λx. x) --> a) (at a)
- LIM_AT
-
⊢ ∀f l a.
(f --> l) (at a) ⇔
∀e.
0 < e ⇒
∃d. 0 < d ∧ ∀x. 0 < dist (x,a) ∧ dist (x,a) < d ⇒ dist (f x,l) < e
- LIM_ADD
-
⊢ ∀net f g l m.
(f --> l) net ∧ (g --> m) net ⇒ ((λx. f x + g x) --> (l + m)) net
- LIM_ABS_UBOUND
-
⊢ ∀net f l b.
¬trivial_limit net ∧ (f --> l) net ∧ eventually (λx. abs (f x) ≤ b) net ⇒
abs l ≤ b
- LIM_ABS_LBOUND
-
⊢ ∀net f l b.
¬trivial_limit net ∧ (f --> l) net ∧ eventually (λx. b ≤ abs (f x)) net ⇒
b ≤ abs l
- LIM_ABS
-
⊢ ∀net f l. (f --> l) net ⇒ ((λx. abs (f x)) --> abs l) net
- LIM
-
⊢ (f --> l) net ⇔
trivial_limit net ∨
∀e. 0 < e ⇒ ∃y. (∃x. netord net x y) ∧ ∀x. netord net x y ⇒ dist (f x,l) < e
- LIFT_TO_QUOTIENT_SPACE_UNIQUE
-
⊢ ∀f g s t u.
(IMAGE f s = t) ∧ (IMAGE g s = u) ∧
(∀v.
v ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ v} ⇔
open_in (subtopology euclidean t) v)) ∧
(∀v.
v ⊆ u ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ g x ∈ v} ⇔
open_in (subtopology euclidean u) v)) ∧
(∀x y. x ∈ s ∧ y ∈ s ⇒ ((f x = f y) ⇔ (g x = g y))) ⇒
t homeomorphic u
- LIFT_TO_QUOTIENT_SPACE
-
⊢ ∀f h s t u.
(IMAGE f s = t) ∧
(∀v.
v ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ v} ⇔
open_in (subtopology euclidean t) v)) ∧ h continuous_on s ∧
(IMAGE h s = u) ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (h x = h y)) ⇒
∃g. g continuous_on t ∧ (IMAGE g t = u) ∧ ∀x. x ∈ s ⇒ (h x = g (f x))
- LEBESGUE_COVERING_LEMMA
-
⊢ ∀s c.
compact s ∧ c ≠ ∅ ∧ s ⊆ BIGUNION c ∧ (∀b. b ∈ c ⇒ open b) ⇒
∃d. 0 < d ∧ ∀t. t ⊆ s ∧ diameter t ≤ d ⇒ ∃b. b ∈ c ∧ t ⊆ b
- LE_EXISTS
-
⊢ ∀m n. m ≤ n ⇔ ∃d. n = m + d
- LE_ADDR
-
⊢ ∀m n. n ≤ m + n
- LE_ADD
-
⊢ ∀m n. m ≤ m + n
- LE_1
-
⊢ (∀n. n ≠ 0 ⇒ 0 < n) ∧ (∀n. n ≠ 0 ⇒ 1 ≤ n) ∧ (∀n. 0 < n ⇒ n ≠ 0) ∧
(∀n. 0 < n ⇒ 1 ≤ n) ∧ (∀n. 1 ≤ n ⇒ 0 < n) ∧ ∀n. 1 ≤ n ⇒ n ≠ 0
- LAMBDA_PAIR
-
⊢ (λ(x,y). P x y) = (λp. P (FST p) (SND p))
- JOINABLE_CONNECTED_COMPONENT_EQ
-
⊢ ∀s t x y.
connected t ∧ t ⊆ s ∧ connected_component s x ∩ t ≠ ∅ ∧
connected_component s y ∩ t ≠ ∅ ⇒
(connected_component s x = connected_component s y)
- JOINABLE_COMPONENTS_EQ
-
⊢ ∀s t c1 c2.
connected t ∧ t ⊆ s ∧ c1 ∈ components s ∧ c2 ∈ components s ∧
c1 ∩ t ≠ ∅ ∧ c2 ∩ t ≠ ∅ ⇒
(c1 = c2)
- ISTOPLOGY_SUBTOPOLOGY
-
⊢ ∀top u. istopology {s ∩ u | open_in top s}
- ISOMETRY_ON_IMP_CONTINUOUS_ON
-
⊢ ∀f.
(∀x y. x ∈ s ∧ y ∈ s ⇒ (dist (f x,f y) = dist (x,y))) ⇒
f continuous_on s
- ISOMETRY_IMP_OPEN_MAP
-
⊢ ∀f s t u.
(IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ⇒ (dist (f x,f y) = dist (x,y))) ∧
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)
- ISOMETRY_IMP_HOMEOMORPHISM_COMPACT
-
⊢ ∀f s.
compact s ∧ IMAGE f s ⊆ s ∧
(∀x y. x ∈ s ∧ y ∈ s ⇒ (dist (f x,f y) = dist (x,y))) ⇒
∃g. homeomorphism (s,s) (f,g)
- ISOMETRY_IMP_EMBEDDING
-
⊢ ∀f s t.
(IMAGE f s = t) ∧ (∀x y. x ∈ s ∧ y ∈ s ⇒ (dist (f x,f y) = dist (x,y))) ⇒
∃g. homeomorphism (s,t) (f,g)
- IS_INTERVAL_UNIV
-
⊢ is_interval 𝕌(:real)
- IS_INTERVAL_SING
-
⊢ ∀a. is_interval {a}
- IS_INTERVAL_SCALING_EQ
-
⊢ ∀s c. is_interval (IMAGE (λx. c * x) s) ⇔ (c = 0) ∨ is_interval s
- IS_INTERVAL_SCALING
-
⊢ ∀s c. is_interval s ⇒ is_interval (IMAGE (λx. c * x) s)
- IS_INTERVAL_POINTWISE
-
⊢ ∀s x. is_interval s ⇒ (∃a. a ∈ s ∧ (a = x)) ⇒ x ∈ s
- IS_INTERVAL_INTERVAL
-
⊢ ∀a b. is_interval (interval (a,b)) ∧ is_interval (interval [(a,b)])
- IS_INTERVAL_INTER
-
⊢ ∀s t. is_interval s ∧ is_interval t ⇒ is_interval (s ∩ t)
- IS_INTERVAL_IMP_LOCALLY_COMPACT
-
⊢ ∀s. is_interval s ⇒ locally compact s
- IS_INTERVAL_EMPTY
-
⊢ is_interval ∅
- IS_INTERVAL_COMPACT
-
⊢ ∀s. is_interval s ∧ compact s ⇔ ∃a b. s = interval [(a,b)]
- IS_INTERVAL_CASES
-
⊢ ∀s.
is_interval s ⇔
(s = ∅) ∨ (s = 𝕌(:real)) ∨ (∃a. s = {x | a < x}) ∨
(∃a. s = {x | a ≤ x}) ∨ (∃b. s = {x | x ≤ b}) ∨ (∃b. s = {x | x < b}) ∨
(∃a b. s = {x | a < x ∧ x < b}) ∨ (∃a b. s = {x | a < x ∧ x ≤ b}) ∨
(∃a b. s = {x | a ≤ x ∧ x < b}) ∨ ∃a b. s = {x | a ≤ x ∧ x ≤ b}
- IS_INTERVAL
-
⊢ ∀s. is_interval s ⇔ ∀a b x. a ∈ s ∧ b ∈ s ∧ a ≤ x ∧ x ≤ b ⇒ x ∈ s
- INTERVAL_TRANSLATION
-
⊢ (∀c a b. interval [(c + a,c + b)] = IMAGE (λx. c + x) (interval [(a,b)])) ∧
∀c a b. interval (c + a,c + b) = IMAGE (λx. c + x) (interval (a,b))
- INTERVAL_SUBSET_IS_INTERVAL
-
⊢ ∀s a b.
is_interval s ⇒
(interval [(a,b)] ⊆ s ⇔ (interval [(a,b)] = ∅) ∨ a ∈ s ∧ b ∈ s)
- INTERVAL_SING
-
⊢ (interval [(a,a)] = {a}) ∧ (interval (a,a) = ∅)
- INTERVAL_OPEN_SUBSET_CLOSED
-
⊢ ∀a b. interval (a,b) ⊆ interval [(a,b)]
- INTERVAL_NE_EMPTY
-
⊢ (interval [(a,b)] ≠ ∅ ⇔ a ≤ b) ∧ (interval (a,b) ≠ ∅ ⇔ a < b)
- INTERVAL_IMAGE_STRETCH_INTERVAL
-
⊢ ∀a b m.
∃u v. IMAGE (λx. @f. f = m 1 * x) (interval [(a,b)]) = interval [(u,v)]
- INTERVAL_EQ_EMPTY
-
⊢ ∀a b. (b < a ⇔ (interval [(a,b)] = ∅)) ∧ (b ≤ a ⇔ (interval (a,b) = ∅))
- INTERVAL_CONTAINS_COMPACT_NEIGHBOURHOOD
-
⊢ ∀s x.
is_interval s ∧ x ∈ s ⇒
∃a b d.
0 < d ∧ x ∈ interval [(a,b)] ∧ interval [(a,b)] ⊆ s ∧
ball (x,d) ∩ s ⊆ interval [(a,b)]
- INTERVAL_CASES
-
⊢ ∀x. x ∈ interval [(a,b)] ⇒ x ∈ interval (a,b) ∨ (x = a) ∨ (x = b)
- interval
-
⊢ (interval (a,b) = {x | a < x ∧ x < b}) ∧
(interval [(a,b)] = {x | a ≤ x ∧ x ≤ b})
- INTERVAL
-
⊢ (∀a b.
interval [(a,b)] =
if a ≤ b then cball (midpoint (a,b),dist (a,b) / 2) else ∅) ∧
∀a b.
interval (a,b) =
if a < b then ball (midpoint (a,b),dist (a,b) / 2) else ∅
- INTERIOR_UNIV
-
⊢ interior 𝕌(:real) = 𝕌(:real)
- INTERIOR_UNIQUE
-
⊢ ∀s t. t ⊆ s ∧ open t ∧ (∀t'. t' ⊆ s ∧ open t' ⇒ t' ⊆ t) ⇒ (interior s = t)
- INTERIOR_UNIONS_OPEN_SUBSETS
-
⊢ ∀s. BIGUNION {t | open t ∧ t ⊆ s} = interior s
- INTERIOR_UNION_EQ_EMPTY
-
⊢ ∀s t.
closed s ∨ closed t ⇒
((interior (s ∪ t) = ∅) ⇔ (interior s = ∅) ∧ (interior t = ∅))
- INTERIOR_TRANSLATION
-
⊢ ∀a s. interior (IMAGE (λx. a + x) s) = IMAGE (λx. a + x) (interior s)
- INTERIOR_SUBSET
-
⊢ ∀s. interior s ⊆ s
- INTERIOR_STANDARD_HYPERPLANE
-
⊢ ∀a. interior {x | x = a} = ∅
- INTERIOR_SING
-
⊢ ∀a. interior {a} = ∅
- INTERIOR_OPEN
-
⊢ ∀s. open s ⇒ (interior s = s)
- INTERIOR_NEGATIONS
-
⊢ ∀s. interior (IMAGE (λx. -x) s) = IMAGE (λx. -x) (interior s)
- INTERIOR_MAXIMAL_EQ
-
⊢ ∀s t. open s ⇒ (s ⊆ interior t ⇔ s ⊆ t)
- INTERIOR_MAXIMAL
-
⊢ ∀s t. t ⊆ s ∧ open t ⇒ t ⊆ interior s
- INTERIOR_LIMIT_POINT
-
⊢ ∀s x. x ∈ interior s ⇒ x limit_point_of s
- INTERIOR_INTERVAL
-
⊢ (∀a b. interior (interval [(a,b)]) = interval (a,b)) ∧
∀a b. interior (interval (a,b)) = interval (a,b)
- INTERIOR_INTERIOR
-
⊢ ∀s. interior (interior s) = interior s
- INTERIOR_INTER
-
⊢ ∀s t. interior (s ∩ t) = interior s ∩ interior t
- INTERIOR_INJECTIVE_LINEAR_IMAGE
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(interior (IMAGE f s) = IMAGE f (interior s))
- INTERIOR_IMAGE_SUBSET
-
⊢ ∀f s.
(∀x. f continuous at x) ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
interior (IMAGE f s) ⊆ IMAGE f (interior s)
- INTERIOR_HYPERPLANE
-
⊢ ∀a b. a ≠ 0 ⇒ (interior {x | a * x = b} = ∅)
- INTERIOR_HALFSPACE_LE
-
⊢ ∀a b. a ≠ 0 ⇒ (interior {x | a * x ≤ b} = {x | a * x < b})
- INTERIOR_HALFSPACE_GE
-
⊢ ∀a b. a ≠ 0 ⇒ (interior {x | a * x ≥ b} = {x | a * x > b})
- INTERIOR_HALFSPACE_COMPONENT_LE
-
⊢ ∀a. interior {x | x ≤ a} = {x | x < a}
- INTERIOR_HALFSPACE_COMPONENT_GE
-
⊢ ∀a. interior {x | x ≥ a} = {x | x > a}
- INTERIOR_FRONTIER_EMPTY
-
⊢ ∀s. open s ∨ closed s ⇒ (interior (frontier s) = ∅)
- INTERIOR_FRONTIER
-
⊢ ∀s. interior (frontier s) = interior (closure s) DIFF closure (interior s)
- INTERIOR_FINITE_BIGINTER
-
⊢ ∀s. FINITE s ⇒ (interior (BIGINTER s) = BIGINTER (IMAGE interior s))
- INTERIOR_EQ_EMPTY_ALT
-
⊢ ∀s. (interior s = ∅) ⇔ ∀t. open t ∧ t ≠ ∅ ⇒ t DIFF s ≠ ∅
- INTERIOR_EQ_EMPTY
-
⊢ ∀s. (interior s = ∅) ⇔ ∀t. open t ∧ t ⊆ s ⇒ (t = ∅)
- INTERIOR_EQ
-
⊢ ∀s. (interior s = s) ⇔ open s
- INTERIOR_EMPTY
-
⊢ interior ∅ = ∅
- INTERIOR_DIFF
-
⊢ ∀s t. interior (s DIFF t) = interior s DIFF closure t
- INTERIOR_COMPLEMENT
-
⊢ ∀s. interior (𝕌(:real) DIFF s) = 𝕌(:real) DIFF closure s
- INTERIOR_CLOSURE_INTER_OPEN
-
⊢ ∀s t.
open s ∧ open t ⇒
(interior (closure (s ∩ t)) =
interior (closure s) ∩ interior (closure t))
- INTERIOR_CLOSURE_IDEMP
-
⊢ ∀s. interior (closure (interior (closure s))) = interior (closure s)
- INTERIOR_CLOSURE
-
⊢ ∀s. interior s = 𝕌(:real) DIFF closure (𝕌(:real) DIFF s)
- INTERIOR_CLOSED_UNION_EMPTY_INTERIOR
-
⊢ ∀s t. closed s ∧ (interior t = ∅) ⇒ (interior (s ∪ t) = interior s)
- INTERIOR_CLOSED_INTERVAL
-
⊢ ∀a b. interior (interval [(a,b)]) = interval (a,b)
- INTERIOR_CLOSED_EQ_EMPTY_AS_FRONTIER
-
⊢ ∀s. closed s ∧ (interior s = ∅) ⇔ ∃t. open t ∧ (s = frontier t)
- INTERIOR_CBALL
-
⊢ ∀x e. interior (cball (x,e)) = ball (x,e)
- INTERIOR_BIJECTIVE_LINEAR_IMAGE
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ∧ (∀y. ∃x. f x = y) ⇒
(interior (IMAGE f s) = IMAGE f (interior s))
- INTERIOR_BIGINTER_SUBSET
-
⊢ ∀f. interior (BIGINTER f) ⊆ BIGINTER (IMAGE interior f)
- INTERIOR_BALL
-
⊢ ∀a r. interior (ball (a,r)) = ball (a,r)
- INTER_INTERVAL_MIXED_EQ_EMPTY
-
⊢ ∀a b c d.
interval (c,d) ≠ ∅ ⇒
((interval (a,b) ∩ interval [(c,d)] = ∅) ⇔
(interval (a,b) ∩ interval (c,d) = ∅))
- INTER_INTERVAL
-
⊢ interval [(a,b)] ∩ interval [(c,d)] = interval [(max a c,min b d)]
- INTER_BIGUNION
-
⊢ (∀s t. BIGUNION s ∩ t = BIGUNION {x ∩ t | x ∈ s}) ∧
∀s t. t ∩ BIGUNION s = BIGUNION {t ∩ x | x ∈ s}
- INTER_BALLS_EQ_EMPTY
-
⊢ (∀a b r s.
(ball (a,r) ∩ ball (b,s) = ∅) ⇔ r ≤ 0 ∨ s ≤ 0 ∨ r + s ≤ dist (a,b)) ∧
(∀a b r s.
(ball (a,r) ∩ cball (b,s) = ∅) ⇔ r ≤ 0 ∨ s < 0 ∨ r + s ≤ dist (a,b)) ∧
(∀a b r s.
(cball (a,r) ∩ ball (b,s) = ∅) ⇔ r < 0 ∨ s ≤ 0 ∨ r + s ≤ dist (a,b)) ∧
∀a b r s.
(cball (a,r) ∩ cball (b,s) = ∅) ⇔ r < 0 ∨ s < 0 ∨ r + s < dist (a,b)
- INJECTIVE_MAP_OPEN_IFF_CLOSED
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
((∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)) ⇔
∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u))
- INJECTIVE_IMP_ISOMETRIC
-
⊢ ∀f s.
closed s ∧ subspace s ∧ linear f ∧ (∀x. x ∈ s ∧ (f x = 0) ⇒ (x = 0)) ⇒
∃e. 0 < e ∧ ∀x. x ∈ s ⇒ abs (f x) ≥ e * abs x
- INFSUM_UNIQUE
-
⊢ ∀f l s. (f sums l) s ⇒ (infsum s f = l)
- INFSUM_SUB
-
⊢ ∀x y s.
summable s x ∧ summable s y ⇒
(infsum s (λi. x i − y i) = infsum s x − infsum s y)
- INFSUM_RESTRICT
-
⊢ ∀k a. infsum 𝕌(:num) (λn. if n ∈ k then a n else 0) = infsum k a
- INFSUM_NEG
-
⊢ ∀s x. summable s x ⇒ (infsum s (λn. -x n) = -infsum s x)
- INFSUM_LINEAR
-
⊢ ∀f h s. summable s f ∧ linear h ⇒ (infsum s (λn. h (f n)) = h (infsum s f))
- INFSUM_EQ
-
⊢ ∀f g k.
summable k f ∧ summable k g ∧ (∀x. x ∈ k ⇒ (f x = g x)) ⇒
(infsum k f = infsum k g)
- INFSUM_CMUL
-
⊢ ∀s x c. summable s x ⇒ (infsum s (λn. c * x n) = c * infsum s x)
- INFSUM_ADD
-
⊢ ∀x y s.
summable s x ∧ summable s y ⇒
(infsum s (λi. x i + y i) = infsum s x + infsum s y)
- INFSUM_0
-
⊢ infsum s (λi. 0) = 0
- INFINITE_SUPERSET
-
⊢ ∀s t. INFINITE s ∧ s ⊆ t ⇒ INFINITE t
- INFINITE_OPEN_IN
-
⊢ ∀u s.
open_in (subtopology euclidean u) s ∧ (∃x. x ∈ s ∧ x limit_point_of u) ⇒
INFINITE s
- INFINITE_FROM
-
⊢ ∀n. INFINITE (from n)
- INF_INSERT
-
⊢ ∀x s. bounded s ⇒ (inf (x INSERT s) = if s = ∅ then x else min x (inf s))
- INF_FINITE_LEMMA
-
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ ∃b. b ∈ s ∧ ∀x. x ∈ s ⇒ b ≤ x
- INF_FINITE
-
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ inf s ∈ s ∧ ∀x. x ∈ s ⇒ inf s ≤ x
- INDEPENDENT_STDBASIS
-
⊢ independent {i | 1 ≤ i ∧ i ≤ 1}
- INDEPENDENT_SPAN_BOUND
-
⊢ ∀s t. FINITE t ∧ independent s ∧ s ⊆ span t ⇒ FINITE s ∧ CARD s ≤ CARD t
- INDEPENDENT_SING
-
⊢ ∀x. independent {x} ⇔ x ≠ 0
- INDEPENDENT_NONZERO
-
⊢ ∀s. independent s ⇒ 0 ∉ s
- INDEPENDENT_MONO
-
⊢ ∀s t. independent t ∧ s ⊆ t ⇒ independent s
- INDEPENDENT_INSERT
-
⊢ ∀a s.
independent (a INSERT s) ⇔
if a ∈ s then independent s else independent s ∧ a ∉ span s
- INDEPENDENT_INJECTIVE_IMAGE_GEN
-
⊢ ∀f s.
independent s ∧ linear f ∧
(∀x y. x ∈ span s ∧ y ∈ span s ∧ (f x = f y) ⇒ (x = y)) ⇒
independent (IMAGE f s)
- INDEPENDENT_INJECTIVE_IMAGE
-
⊢ ∀f s.
independent s ∧ linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
independent (IMAGE f s)
- INDEPENDENT_EMPTY
-
⊢ independent ∅
- INDEPENDENT_CARD_LE_DIM
-
⊢ ∀v b. b ⊆ v ∧ independent b ⇒ FINITE b ∧ CARD b ≤ dim v
- INDEPENDENT_BOUND
-
⊢ ∀s. independent s ⇒ FINITE s ∧ CARD s ≤ 1
- IN_SPHERE_0
-
⊢ ∀x e. x ∈ sphere (0,e) ⇔ (abs x = e)
- IN_SPHERE
-
⊢ ∀x y e. y ∈ sphere (x,e) ⇔ (dist (x,y) = e)
- IN_SPAN_INSERT
-
⊢ ∀a b s. a ∈ span (b INSERT s) ∧ a ∉ span s ⇒ b ∈ span (a INSERT s)
- IN_SPAN_DELETE
-
⊢ ∀a b s. a ∈ span s ∧ a ∉ span (s DELETE b) ⇒ b ∈ span (a INSERT s DELETE b)
- IN_SEGMENT_COMPONENT
-
⊢ ∀a b x i. x ∈ segment [(a,b)] ⇒ min a b ≤ x ∧ x ≤ max a b
- IN_SEGMENT
-
⊢ ∀a b x.
(x ∈ segment [(a,b)] ⇔ ∃u. 0 ≤ u ∧ u ≤ 1 ∧ (x = (1 − u) * a + u * b)) ∧
(x ∈ segment (a,b) ⇔
a ≠ b ∧ ∃u. 0 < u ∧ u < 1 ∧ (x = (1 − u) * a + u * b))
- IN_OPEN_SEGMENT_ALT
-
⊢ ∀a b x. x ∈ segment (a,b) ⇔ x ∈ segment [(a,b)] ∧ x ≠ a ∧ x ≠ b ∧ a ≠ b
- IN_OPEN_SEGMENT
-
⊢ ∀a b x. x ∈ segment (a,b) ⇔ x ∈ segment [(a,b)] ∧ x ≠ a ∧ x ≠ b
- IN_INTERVAL_REFLECT
-
⊢ (∀a b x. -x ∈ interval [(-b,-a)] ⇔ x ∈ interval [(a,b)]) ∧
∀a b x. -x ∈ interval (-b,-a) ⇔ x ∈ interval (a,b)
- IN_INTERVAL
-
⊢ (x ∈ interval (a,b) ⇔ a < x ∧ x < b) ∧
(x ∈ interval [(a,b)] ⇔ a ≤ x ∧ x ≤ b)
- IN_INTERIOR_LINEAR_IMAGE
-
⊢ ∀f g s x.
linear f ∧ linear g ∧ (f ∘ g = I) ∧ x ∈ interior s ⇒
f x ∈ interior (IMAGE f s)
- IN_INTERIOR_CBALL
-
⊢ ∀x s. x ∈ interior s ⇔ ∃e. 0 < e ∧ cball (x,e) ⊆ s
- IN_INTERIOR
-
⊢ ∀x s. x ∈ interior s ⇔ ∃e. 0 < e ∧ ball (x,e) ⊆ s
- IN_DIRECTION
-
⊢ ∀a v x y.
netord (a in_direction v) x y ⇔
0 < dist (x,a) ∧ dist (x,a) ≤ dist (y,a) ∧ ∃c. 0 ≤ c ∧ (x − a = c * v)
- IN_COMPONENTS_SUBSET
-
⊢ ∀s c. c ∈ components s ⇒ c ⊆ s
- IN_COMPONENTS_SELF
-
⊢ ∀s. s ∈ components s ⇔ connected s ∧ s ≠ ∅
- IN_COMPONENTS_NONEMPTY
-
⊢ ∀s c. c ∈ components s ⇒ c ≠ ∅
- IN_COMPONENTS_MAXIMAL
-
⊢ ∀s c.
c ∈ components s ⇔
c ≠ ∅ ∧ c ⊆ s ∧ connected c ∧
∀c'. c' ≠ ∅ ∧ c ⊆ c' ∧ c' ⊆ s ∧ connected c' ⇒ (c' = c)
- IN_COMPONENTS_CONNECTED
-
⊢ ∀s c. c ∈ components s ⇒ connected c
- IN_COMPONENTS_BIGUNION_COMPLEMENT
-
⊢ ∀s c. c ∈ components s ⇒ (s DIFF c = BIGUNION (components s DELETE c))
- IN_COMPONENTS
-
⊢ ∀u s. s ∈ components u ⇔ ∃x. x ∈ u ∧ (s = connected_component u x)
- IN_CLOSURE_DELETE
-
⊢ ∀s x. x ∈ closure (s DELETE x) ⇔ x limit_point_of s
- IN_CBALL_0
-
⊢ ∀x e. x ∈ cball (0,e) ⇔ abs x ≤ e
- IN_CBALL
-
⊢ ∀x y e. y ∈ cball (x,e) ⇔ dist (x,y) ≤ e
- IN_BALL_0
-
⊢ ∀x e. x ∈ ball (0,e) ⇔ abs x < e
- IN_BALL
-
⊢ ∀x y e. y ∈ ball (x,e) ⇔ dist (x,y) < e
- IMAGE_TWIZZLE_INTERVAL
-
⊢ ∀p a b. IMAGE (λx. x) (interval [(a,b)]) = interval [(a,b)]
- IMAGE_STRETCH_INTERVAL
-
⊢ ∀a b m.
IMAGE (λx. @f. f = m 1 * x) (interval [(a,b)]) =
if interval [(a,b)] = ∅ then ∅
else
interval
[((@f. f = min (m 1 * a) (m 1 * b)),@f. f = max (m 1 * a) (m 1 * b))]
- IMAGE_SING
-
⊢ ∀f a. IMAGE f {a} = {f a}
- IMAGE_CLOSURE_SUBSET
-
⊢ ∀f s t.
f continuous_on closure s ∧ closed t ∧ IMAGE f s ⊆ t ⇒
IMAGE f (closure s) ⊆ t
- IMAGE_AFFINITY_INTERVAL
-
⊢ ∀a b m c.
IMAGE (λx. m * x + c) (interval [(a,b)]) =
if interval [(a,b)] = ∅ then ∅
else if 0 ≤ m then interval [(m * a + c,m * b + c)]
else interval [(m * b + c,m * a + c)]
- HOMEOMORPHISM_SYM
-
⊢ ∀f g s t. homeomorphism (s,t) (f,g) ⇔ homeomorphism (t,s) (g,f)
- HOMEOMORPHISM_OF_SUBSETS
-
⊢ ∀f g s t s' t'.
homeomorphism (s,t) (f,g) ∧ s' ⊆ s ∧ t' ⊆ t ∧ (IMAGE f s' = t') ⇒
homeomorphism (s',t') (f,g)
- HOMEOMORPHISM_LOCALLY
-
⊢ ∀P Q f g.
(∀s t. homeomorphism (s,t) (f,g) ⇒ (P s ⇔ Q t)) ⇒
∀s t. homeomorphism (s,t) (f,g) ⇒ (locally P s ⇔ locally Q t)
- HOMEOMORPHISM_INJECTIVE_OPEN_MAP_EQ
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
((∃g. homeomorphism (s,t) (f,g)) ⇔
∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u))
- HOMEOMORPHISM_INJECTIVE_OPEN_MAP
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧
(∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)) ⇒
∃g. homeomorphism (s,t) (f,g)
- HOMEOMORPHISM_INJECTIVE_CLOSED_MAP_EQ
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
((∃g. homeomorphism (s,t) (f,g)) ⇔
∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u))
- HOMEOMORPHISM_INJECTIVE_CLOSED_MAP
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧
(∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)) ⇒
∃g. homeomorphism (s,t) (f,g)
- HOMEOMORPHISM_IMP_QUOTIENT_MAP
-
⊢ ∀f g s t.
homeomorphism (s,t) (f,g) ⇒
∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)
- HOMEOMORPHISM_IMP_OPEN_MAP
-
⊢ ∀f g s t u.
homeomorphism (s,t) (f,g) ∧ open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)
- HOMEOMORPHISM_IMP_CLOSED_MAP
-
⊢ ∀f g s t u.
homeomorphism (s,t) (f,g) ∧ closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)
- HOMEOMORPHISM_ID
-
⊢ ∀s. homeomorphism (s,s) ((λx. x),(λx. x))
- HOMEOMORPHISM_FROM_COMPOSITION_SURJECTIVE
-
⊢ ∀f g s t u.
f continuous_on s ∧ (IMAGE f s = t) ∧ g continuous_on t ∧
IMAGE g t ⊆ u ∧ (∃h. homeomorphism (s,u) (g ∘ f,h)) ⇒
(∃f'. homeomorphism (s,t) (f,f')) ∧ ∃g'. homeomorphism (t,u) (g,g')
- HOMEOMORPHISM_FROM_COMPOSITION_INJECTIVE
-
⊢ ∀f g s t u.
f continuous_on s ∧ IMAGE f s ⊆ t ∧ g continuous_on t ∧ IMAGE g t ⊆ u ∧
(∀x y. x ∈ t ∧ y ∈ t ∧ (g x = g y) ⇒ (x = y)) ∧
(∃h. homeomorphism (s,u) (g ∘ f,h)) ⇒
(∃f'. homeomorphism (s,t) (f,f')) ∧ ∃g'. homeomorphism (t,u) (g,g')
- HOMEOMORPHISM_COMPOSE
-
⊢ ∀f g h k s t u.
homeomorphism (s,t) (f,g) ∧ homeomorphism (t,u) (h,k) ⇒
homeomorphism (s,u) (h ∘ f,g ∘ k)
- HOMEOMORPHISM_COMPACT
-
⊢ ∀s f t.
compact s ∧ f continuous_on s ∧ (IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
∃g. homeomorphism (s,t) (f,g)
- HOMEOMORPHISM
-
⊢ ∀s t f g.
homeomorphism (s,t) (f,g) ⇔
f continuous_on s ∧ IMAGE f s ⊆ t ∧ g continuous_on t ∧ IMAGE g t ⊆ s ∧
(∀x. x ∈ s ⇒ (g (f x) = x)) ∧ ∀y. y ∈ t ⇒ (f (g y) = y)
- HOMEOMORPHIC_TRANSLATION_SELF
-
⊢ ∀a s. IMAGE (λx. a + x) s homeomorphic s
- HOMEOMORPHIC_TRANSLATION_RIGHT_EQ
-
⊢ ∀a s t. s homeomorphic IMAGE (λx. a + x) t ⇔ s homeomorphic t
- HOMEOMORPHIC_TRANSLATION_LEFT_EQ
-
⊢ ∀a s t. IMAGE (λx. a + x) s homeomorphic t ⇔ s homeomorphic t
- HOMEOMORPHIC_TRANSLATION
-
⊢ ∀s a. s homeomorphic IMAGE (λx. a + x) s
- HOMEOMORPHIC_TRANS
-
⊢ ∀s t u. s homeomorphic t ∧ t homeomorphic u ⇒ s homeomorphic u
- HOMEOMORPHIC_SYM
-
⊢ ∀s t. s homeomorphic t ⇔ t homeomorphic s
- HOMEOMORPHIC_STANDARD_HYPERPLANE_HYPERPLANE
-
⊢ ∀a b c. a ≠ 0 ⇒ {x | x = c} homeomorphic {x | a * x = b}
- HOMEOMORPHIC_SPHERE
-
⊢ ∀a b d e. 0 < d ∧ 0 < e ⇒ sphere (a,d) homeomorphic sphere (b,e)
- HOMEOMORPHIC_SING
-
⊢ ∀a b. {a} homeomorphic {b}
- HOMEOMORPHIC_SCALING_RIGHT
-
⊢ ∀c. 0 < c ⇒ ∀s t. s homeomorphic IMAGE (λx. c * x) t ⇔ s homeomorphic t
- HOMEOMORPHIC_SCALING_LEFT
-
⊢ ∀c. 0 < c ⇒ ∀s t. IMAGE (λx. c * x) s homeomorphic t ⇔ s homeomorphic t
- HOMEOMORPHIC_SCALING
-
⊢ ∀s c. c ≠ 0 ⇒ s homeomorphic IMAGE (λx. c * x) s
- HOMEOMORPHIC_REFL
-
⊢ ∀s. s homeomorphic s
- HOMEOMORPHIC_OPEN_INTERVALS
-
⊢ ∀a b c d. a < b ∧ c < d ⇒ interval (a,b) homeomorphic interval (c,d)
- HOMEOMORPHIC_OPEN_INTERVAL_UNIV
-
⊢ ∀a b. a < b ⇒ interval (a,b) homeomorphic 𝕌(:real)
- HOMEOMORPHIC_ONE_POINT_COMPACTIFICATIONS
-
⊢ ∀s t a b.
compact s ∧ compact t ∧ a ∈ s ∧ b ∈ t ∧
s DELETE a homeomorphic t DELETE b ⇒
s homeomorphic t
- HOMEOMORPHIC_MINIMAL
-
⊢ ∀s t.
s homeomorphic t ⇔
∃f g.
(∀x. x ∈ s ⇒ f x ∈ t ∧ (g (f x) = x)) ∧
(∀y. y ∈ t ⇒ g y ∈ s ∧ (f (g y) = y)) ∧ f continuous_on s ∧
g continuous_on t
- HOMEOMORPHIC_LOCALLY
-
⊢ ∀P Q.
(∀s t. s homeomorphic t ⇒ (P s ⇔ Q t)) ⇒
∀s t. s homeomorphic t ⇒ (locally P s ⇔ locally Q t)
- HOMEOMORPHIC_LOCAL_COMPACTNESS
-
⊢ ∀s t. s homeomorphic t ⇒ (locally compact s ⇔ locally compact t)
- HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_SELF
-
⊢ ∀f s. linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒ IMAGE f s homeomorphic s
- HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_RIGHT_EQ
-
⊢ ∀f s t.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(s homeomorphic IMAGE f t ⇔ s homeomorphic t)
- HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_LEFT_EQ
-
⊢ ∀f s t.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(IMAGE f s homeomorphic t ⇔ s homeomorphic t)
- HOMEOMORPHIC_IMP_CARD_EQ
-
⊢ ∀s t. s homeomorphic t ⇒ s ≈ t
- HOMEOMORPHIC_HYPERPLANES
-
⊢ ∀a b c d. a ≠ 0 ∧ c ≠ 0 ⇒ {x | a * x = b} homeomorphic {x | c * x = d}
- HOMEOMORPHIC_HYPERPLANE_STANDARD_HYPERPLANE
-
⊢ ∀a b c. a ≠ 0 ⇒ {x | a * x = b} homeomorphic {x | x = c}
- HOMEOMORPHIC_FINITENESS
-
⊢ ∀s t. s homeomorphic t ⇒ (FINITE s ⇔ FINITE t)
- HOMEOMORPHIC_FINITE_STRONG
-
⊢ ∀s t.
FINITE s ∨ FINITE t ⇒
(s homeomorphic t ⇔ FINITE s ∧ FINITE t ∧ (CARD s = CARD t))
- HOMEOMORPHIC_FINITE
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (s homeomorphic t ⇔ (CARD s = CARD t))
- HOMEOMORPHIC_EMPTY
-
⊢ (∀s. s homeomorphic ∅ ⇔ (s = ∅)) ∧ ∀s. ∅ homeomorphic s ⇔ (s = ∅)
- HOMEOMORPHIC_CONNECTEDNESS
-
⊢ ∀s t. s homeomorphic t ⇒ (connected s ⇔ connected t)
- HOMEOMORPHIC_COMPACTNESS
-
⊢ ∀s t. s homeomorphic t ⇒ (compact s ⇔ compact t)
- HOMEOMORPHIC_COMPACT
-
⊢ ∀s f t.
compact s ∧ f continuous_on s ∧ (IMAGE f s = t) ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
s homeomorphic t
- HOMEOMORPHIC_CBALL
-
⊢ ∀a b d e. 0 < d ∧ 0 < e ⇒ cball (a,d) homeomorphic cball (b,e)
- HOMEOMORPHIC_BALLS_CBALL_SPHERE
-
⊢ (∀a b d e. 0 < d ∧ 0 < e ⇒ ball (a,d) homeomorphic ball (b,e)) ∧
(∀a b d e. 0 < d ∧ 0 < e ⇒ cball (a,d) homeomorphic cball (b,e)) ∧
∀a b d e. 0 < d ∧ 0 < e ⇒ sphere (a,d) homeomorphic sphere (b,e)
- HOMEOMORPHIC_BALLS
-
⊢ ∀a b d e. 0 < d ∧ 0 < e ⇒ ball (a,d) homeomorphic ball (b,e)
- HOMEOMORPHIC_AFFINITY
-
⊢ ∀s a c. c ≠ 0 ⇒ s homeomorphic IMAGE (λx. a + c * x) s
- HEINE_BOREL_LEMMA
-
⊢ ∀s.
compact s ⇒
∀t.
s ⊆ BIGUNION t ∧ (∀b. b ∈ t ⇒ open b) ⇒
∃e. 0 < e ∧ ∀x. x ∈ s ⇒ ∃b. b ∈ t ∧ ball (x,e) ⊆ b
- HEINE_BOREL_IMP_BOLZANO_WEIERSTRASS
-
⊢ ∀s.
(∀f.
(∀t. t ∈ f ⇒ open t) ∧ s ⊆ BIGUNION f ⇒
∃f'. f' ⊆ f ∧ FINITE f' ∧ s ⊆ BIGUNION f') ⇒
∀t. INFINITE t ∧ t ⊆ s ⇒ ∃x. x ∈ s ∧ x limit_point_of t
- HAUSDIST_UNION_LE
-
⊢ ∀s t u.
bounded s ∧ bounded t ∧ bounded u ∧ t ≠ ∅ ∧ u ≠ ∅ ⇒
hausdist (s ∪ t,s ∪ u) ≤ hausdist (t,u)
- HAUSDIST_TRIANGLE
-
⊢ ∀s t u.
bounded s ∧ bounded t ∧ bounded u ∧ t ≠ ∅ ⇒
hausdist (s,u) ≤ hausdist (s,t) + hausdist (t,u)
- HAUSDIST_TRANSLATION
-
⊢ ∀a s t. hausdist (IMAGE (λx. a + x) s,IMAGE (λx. a + x) t) = hausdist (s,t)
- HAUSDIST_TRANS
-
⊢ ∀s t u.
bounded s ∧ bounded t ∧ bounded u ∧ t ≠ ∅ ⇒
hausdist (s,u) ≤ hausdist (s,t) + hausdist (t,u)
- HAUSDIST_SYM
-
⊢ ∀s t. hausdist (s,t) = hausdist (t,s)
- HAUSDIST_SINGS
-
⊢ ∀x y. hausdist ({x},{y}) = dist (x,y)
- HAUSDIST_SETDIST_TRIANGLE
-
⊢ ∀s t u.
t ≠ ∅ ∧ bounded s ∧ bounded t ⇒
setdist (s,u) ≤ hausdist (s,t) + setdist (t,u)
- HAUSDIST_REFL
-
⊢ ∀s. hausdist (s,s) = 0
- HAUSDIST_POS_LE
-
⊢ ∀s t. 0 ≤ hausdist (s,t)
- HAUSDIST_NONTRIVIAL_ALT
-
⊢ ∀s t.
bounded s ∧ bounded t ∧ s ≠ ∅ ∧ t ≠ ∅ ⇒
(hausdist (s,t) =
max (sup {setdist ({x},t) | x ∈ s}) (sup {setdist ({y},s) | y ∈ t}))
- HAUSDIST_NONTRIVIAL
-
⊢ ∀s t.
bounded s ∧ bounded t ∧ s ≠ ∅ ∧ t ≠ ∅ ⇒
(hausdist (s,t) =
sup ({setdist ({x},t) | x ∈ s} ∪ {setdist ({y},s) | y ∈ t}))
- HAUSDIST_LINEAR_IMAGE
-
⊢ ∀f s t.
linear f ∧ (∀x. abs (f x) = abs x) ⇒
(hausdist (IMAGE f s,IMAGE f t) = hausdist (s,t))
- HAUSDIST_INSERT_LE
-
⊢ ∀s t a.
bounded s ∧ bounded t ∧ s ≠ ∅ ∧ t ≠ ∅ ⇒
hausdist (a INSERT s,a INSERT t) ≤ hausdist (s,t)
- HAUSDIST_EQ_0
-
⊢ ∀s t.
bounded s ∧ bounded t ⇒
((hausdist (s,t) = 0) ⇔ (s = ∅) ∨ (t = ∅) ∨ (closure s = closure t))
- HAUSDIST_EQ
-
⊢ ∀s t s' t'.
(∀b.
(∀x. x ∈ s ⇒ setdist ({x},t) ≤ b) ∧
(∀y. y ∈ t ⇒ setdist ({y},s) ≤ b) ⇔
(∀x. x ∈ s' ⇒ setdist ({x},t') ≤ b) ∧
∀y. y ∈ t' ⇒ setdist ({y},s') ≤ b) ⇒
(hausdist (s,t) = hausdist (s',t'))
- HAUSDIST_EMPTY
-
⊢ (∀t. hausdist (∅,t) = 0) ∧ ∀s. hausdist (s,∅) = 0
- HAUSDIST_COMPACT_SUMS
-
⊢ ∀s t.
bounded s ∧ compact t ∧ t ≠ ∅ ⇒
s ⊆ {y + z | y ∈ t ∧ z ∈ cball (0,hausdist (s,t))}
- HAUSDIST_COMPACT_NONTRIVIAL
-
⊢ ∀s t.
compact s ∧ compact t ∧ s ≠ ∅ ∧ t ≠ ∅ ⇒
(hausdist (s,t) =
inf
{e |
0 ≤ e ∧ s ⊆ {x + y | x ∈ t ∧ abs y ≤ e} ∧
t ⊆ {x + y | x ∈ s ∧ abs y ≤ e}})
- HAUSDIST_COMPACT_EXISTS
-
⊢ ∀s t.
bounded s ∧ compact t ∧ t ≠ ∅ ⇒
∀x. x ∈ s ⇒ ∃y. y ∈ t ∧ dist (x,y) ≤ hausdist (s,t)
- HAUSDIST_CLOSURE
-
⊢ (∀s t. hausdist (closure s,t) = hausdist (s,t)) ∧
∀s t. hausdist (s,closure t) = hausdist (s,t)
- HAUSDIST_ALT
-
⊢ ∀s t.
bounded s ∧ bounded t ∧ s ≠ ∅ ∧ t ≠ ∅ ⇒
(hausdist (s,t) =
sup {abs (setdist ({x},s) − setdist ({x},t)) | x ∈ 𝕌(:real)})
- HAS_SIZE_STDBASIS
-
⊢ {i | 1 ≤ i ∧ i ≤ 1} HAS_SIZE 1
- GREATER_EQ_REFL
-
⊢ ∀m. m ≥ m
- GDELTA_COMPLEMENT
-
⊢ ∀s. gdelta (𝕌(:real) DIFF s) ⇔ fsigma s
- FUNCTION_FACTORS_LEFT_GEN
-
⊢ ∀P f g.
(∀x y. P x ∧ P y ∧ (g x = g y) ⇒ (f x = f y)) ⇔
∃h. ∀x. P x ⇒ (f x = h (g x))
- FUN_IN_IMAGE
-
⊢ ∀f s x. x ∈ s ⇒ f x ∈ IMAGE f s
- FSIGMA_COMPLEMENT
-
⊢ ∀s. fsigma (𝕌(:real) DIFF s) ⇔ gdelta s
- FRONTIER_UNIV
-
⊢ frontier 𝕌(:real) = ∅
- FRONTIER_UNION_SUBSET
-
⊢ ∀s t. frontier (s ∪ t) ⊆ frontier s ∪ frontier t
- FRONTIER_UNION
-
⊢ ∀s t.
(closure s ∩ closure t = ∅) ⇒
(frontier (s ∪ t) = frontier s ∪ frontier t)
- FRONTIER_SUBSET_EQ
-
⊢ ∀s. frontier s ⊆ s ⇔ closed s
- FRONTIER_SUBSET_COMPACT
-
⊢ ∀s. compact s ⇒ frontier s ⊆ s
- FRONTIER_SUBSET_CLOSED
-
⊢ ∀s. closed s ⇒ frontier s ⊆ s
- FRONTIER_STRADDLE
-
⊢ ∀a s.
a ∈ frontier s ⇔
∀e. 0 < e ⇒ (∃x. x ∈ s ∧ dist (a,x) < e) ∧ ∃x. x ∉ s ∧ dist (a,x) < e
- FRONTIER_SING
-
⊢ ∀a. frontier {a} = {a}
- FRONTIER_OPEN_INTERVAL
-
⊢ ∀a b.
frontier (interval (a,b)) =
if interval (a,b) = ∅ then ∅ else interval [(a,b)] DIFF interval (a,b)
- FRONTIER_INTERIORS
-
⊢ ∀s. frontier s = 𝕌(:real) DIFF interior s DIFF interior (𝕌(:real) DIFF s)
- FRONTIER_INTERIOR_SUBSET
-
⊢ ∀s. frontier (interior s) ⊆ frontier s
- FRONTIER_INTER_SUBSET_INTER
-
⊢ ∀s t. frontier (s ∩ t) ⊆ closure s ∩ frontier t ∪ frontier s ∩ closure t
- FRONTIER_INTER_SUBSET
-
⊢ ∀s t. frontier (s ∩ t) ⊆ frontier s ∪ frontier t
- FRONTIER_HALFSPACE_LT
-
⊢ ∀a b. ¬((a = 0) ∧ (b = 0)) ⇒ (frontier {x | a * x < b} = {x | a * x = b})
- FRONTIER_HALFSPACE_LE
-
⊢ ∀a b. ¬((a = 0) ∧ (b = 0)) ⇒ (frontier {x | a * x ≤ b} = {x | a * x = b})
- FRONTIER_HALFSPACE_GT
-
⊢ ∀a b. ¬((a = 0) ∧ (b = 0)) ⇒ (frontier {x | a * x > b} = {x | a * x = b})
- FRONTIER_HALFSPACE_GE
-
⊢ ∀a b. ¬((a = 0) ∧ (b = 0)) ⇒ (frontier {x | a * x ≥ b} = {x | a * x = b})
- FRONTIER_FRONTIER_SUBSET
-
⊢ ∀s. frontier (frontier s) ⊆ frontier s
- FRONTIER_FRONTIER_FRONTIER
-
⊢ ∀s. frontier (frontier (frontier s)) = frontier (frontier s)
- FRONTIER_FRONTIER
-
⊢ ∀s. open s ∨ closed s ⇒ (frontier (frontier s) = frontier s)
- FRONTIER_EMPTY
-
⊢ frontier ∅ = ∅
- FRONTIER_DISJOINT_EQ
-
⊢ ∀s. (frontier s ∩ s = ∅) ⇔ open s
- FRONTIER_COMPLEMENT
-
⊢ ∀s. frontier (𝕌(:real) DIFF s) = frontier s
- FRONTIER_CLOSURES
-
⊢ ∀s. frontier s = closure s ∩ closure (𝕌(:real) DIFF s)
- FRONTIER_CLOSURE_SUBSET
-
⊢ ∀s. frontier (closure s) ⊆ frontier s
- FRONTIER_CLOSED_INTERVAL
-
⊢ ∀a b. frontier (interval [(a,b)]) = interval [(a,b)] DIFF interval (a,b)
- FRONTIER_CLOSED
-
⊢ ∀s. closed (frontier s)
- FRONTIER_CBALL
-
⊢ ∀a e. frontier (cball (a,e)) = sphere (a,e)
- FRONTIER_BALL
-
⊢ ∀a e. 0 < e ⇒ (frontier (ball (a,e)) = sphere (a,e))
- FROM_INTER_NUMSEG_MAX
-
⊢ ∀m n p. from p ∩ (m .. n) = MAX p m .. n
- FROM_INTER_NUMSEG_GEN
-
⊢ ∀k m n. from k ∩ (m .. n) = if m < k then k .. n else m .. n
- FROM_INTER_NUMSEG
-
⊢ ∀k n. from k ∩ (0 .. n) = k .. n
- FORALL_SUC
-
⊢ (∀n. n ≠ 0 ⇒ P n) ⇔ ∀n. P (SUC n)
- FORALL_POS_MONO_1
-
⊢ ∀P. (∀d e. d < e ∧ P d ⇒ P e) ∧ (∀n. P (&n + 1)⁻¹) ⇒ ∀e. 0 < e ⇒ P e
- FORALL_POS_MONO
-
⊢ ∀P. (∀d e. d < e ∧ P d ⇒ P e) ∧ (∀n. n ≠ 0 ⇒ P (&n)⁻¹) ⇒ ∀e. 0 < e ⇒ P e
- FORALL_IN_GSPEC
-
⊢ (∀P f. (∀z. z ∈ {f x | P x} ⇒ Q z) ⇔ ∀x. P x ⇒ Q (f x)) ∧
(∀P f. (∀z. z ∈ {f x y | P x y} ⇒ Q z) ⇔ ∀x y. P x y ⇒ Q (f x y)) ∧
∀P f. (∀z. z ∈ {f w x y | P w x y} ⇒ Q z) ⇔ ∀w x y. P w x y ⇒ Q (f w x y)
- FORALL_IN_CLOSURE_EQ
-
⊢ ∀f s t.
closed t ∧ f continuous_on closure s ⇒
((∀x. x ∈ closure s ⇒ f x ∈ t) ⇔ ∀x. x ∈ s ⇒ f x ∈ t)
- FORALL_IN_CLOSURE
-
⊢ ∀f s t.
closed t ∧ f continuous_on closure s ∧ (∀x. x ∈ s ⇒ f x ∈ t) ⇒
∀x. x ∈ closure s ⇒ f x ∈ t
- FORALL_FINITE_SUBSET_IMAGE
-
⊢ ∀P f s.
(∀t. FINITE t ∧ t ⊆ IMAGE f s ⇒ P t) ⇔
∀t. FINITE t ∧ t ⊆ s ⇒ P (IMAGE f t)
- FORALL_EVENTUALLY
-
⊢ ∀net p s.
FINITE s ∧ s ≠ ∅ ⇒
((∀a. a ∈ s ⇒ eventually (p a) net) ⇔
eventually (λx. ∀a. a ∈ s ⇒ p a x) net)
- FINITE_SUBSET_IMAGE
-
⊢ ∀f s t.
FINITE t ∧ t ⊆ IMAGE f s ⇔ ∃s'. FINITE s' ∧ s' ⊆ s ∧ (t = IMAGE f s')
- FINITE_SPHERE
-
⊢ ∀a r. FINITE (sphere (a,r))
- FINITE_SET_AVOID
-
⊢ ∀a s. FINITE s ⇒ ∃d. 0 < d ∧ ∀x. x ∈ s ∧ x ≠ a ⇒ d ≤ dist (a,x)
- FINITE_POWERSET
-
⊢ ∀s. FINITE s ⇒ FINITE {t | t ⊆ s}
- FINITE_INTERVAL
-
⊢ (∀a b. FINITE (interval [(a,b)]) ⇔ b ≤ a) ∧
∀a b. FINITE (interval (a,b)) ⇔ b ≤ a
- FINITE_INTER_NUMSEG
-
⊢ ∀s m n. FINITE (s ∩ (m .. n))
- FINITE_IMP_NOT_OPEN
-
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ ¬open s
- FINITE_IMP_COMPACT
-
⊢ ∀s. FINITE s ⇒ compact s
- FINITE_IMP_CLOSED_IN
-
⊢ ∀s t. FINITE s ∧ s ⊆ t ⇒ closed_in (subtopology euclidean t) s
- FINITE_IMP_CLOSED
-
⊢ ∀s. FINITE s ⇒ closed s
- FINITE_IMP_BOUNDED
-
⊢ ∀s. FINITE s ⇒ bounded s
- FINITE_CBALL
-
⊢ ∀a r. FINITE (cball (a,r)) ⇔ r ≤ 0
- FINITE_BALL
-
⊢ ∀a r. FINITE (ball (a,r)) ⇔ r ≤ 0
- EXTENSION_FROM_CLOPEN
-
⊢ ∀f s t u.
open_in (subtopology euclidean s) t ∧
closed_in (subtopology euclidean s) t ∧ f continuous_on t ∧
IMAGE f t ⊆ u ∧ ((u = ∅) ⇒ (s = ∅)) ⇒
∃g. g continuous_on s ∧ IMAGE g s ⊆ u ∧ ∀x. x ∈ t ⇒ (g x = f x)
- EXISTS_IN_INSERT
-
⊢ ∀P a s. (∃x. x ∈ a INSERT s ∧ P x) ⇔ P a ∨ ∃x. x ∈ s ∧ P x
- EXISTS_IN_GSPEC
-
⊢ (∀P f. (∃z. z ∈ {f x | P x} ∧ Q z) ⇔ ∃x. P x ∧ Q (f x)) ∧
(∀P f. (∃z. z ∈ {f x y | P x y} ∧ Q z) ⇔ ∃x y. P x y ∧ Q (f x y)) ∧
∀P f. (∃z. z ∈ {f w x y | P w x y} ∧ Q z) ⇔ ∃w x y. P w x y ∧ Q (f w x y)
- EXISTS_FINITE_SUBSET_IMAGE
-
⊢ ∀P f s.
(∃t. FINITE t ∧ t ⊆ IMAGE f s ∧ P t) ⇔
∃t. FINITE t ∧ t ⊆ s ∧ P (IMAGE f t)
- EXISTS_DIFF
-
⊢ (∃s. P (𝕌(:α) DIFF s)) ⇔ ∃s. P s
- EXISTS_COMPONENT_SUPERSET
-
⊢ ∀s t. t ⊆ s ∧ s ≠ ∅ ∧ connected t ⇒ ∃c. c ∈ components s ∧ t ⊆ c
- EXCHANGE_LEMMA
-
⊢ ∀s t.
FINITE t ∧ independent s ∧ s ⊆ span t ⇒
∃t'. t' HAS_SIZE CARD t ∧ s ⊆ t' ∧ t' ⊆ s ∪ t ∧ s ⊆ span t'
- EVENTUALLY_WITHIN_LE
-
⊢ ∀s a p.
eventually p (at a within s) ⇔
∃d. 0 < d ∧ ∀x. x ∈ s ∧ 0 < dist (x,a) ∧ dist (x,a) ≤ d ⇒ p x
- EVENTUALLY_WITHIN_INTERIOR
-
⊢ ∀p s x.
x ∈ interior s ⇒ (eventually p (at x within s) ⇔ eventually p (at x))
- EVENTUALLY_WITHIN
-
⊢ ∀s a p.
eventually p (at a within s) ⇔
∃d. 0 < d ∧ ∀x. x ∈ s ∧ 0 < dist (x,a) ∧ dist (x,a) < d ⇒ p x
- EVENTUALLY_TRUE
-
⊢ ∀net. eventually (λx. T) net ⇔ T
- EVENTUALLY_SEQUENTIALLY
-
⊢ ∀p. eventually p sequentially ⇔ ∃N. ∀n. N ≤ n ⇒ p n
- EVENTUALLY_MP
-
⊢ ∀net p q.
eventually (λx. p x ⇒ q x) net ∧ eventually p net ⇒ eventually q net
- EVENTUALLY_MONO
-
⊢ ∀net p q. (∀x. p x ⇒ q x) ∧ eventually p net ⇒ eventually q net
- EVENTUALLY_HAPPENS
-
⊢ ∀net p. eventually p net ⇒ trivial_limit net ∨ ∃x. p x
- EVENTUALLY_FORALL
-
⊢ ∀net p s.
FINITE s ∧ s ≠ ∅ ⇒
(eventually (λx. ∀a. a ∈ s ⇒ p a x) net ⇔
∀a. a ∈ s ⇒ eventually (p a) net)
- EVENTUALLY_FALSE
-
⊢ ∀net. eventually (λx. F) net ⇔ trivial_limit net
- EVENTUALLY_AT_POSINFINITY
-
⊢ ∀p. eventually p at_posinfinity ⇔ ∃b. ∀x. x ≥ b ⇒ p x
- EVENTUALLY_AT_NEGINFINITY
-
⊢ ∀p. eventually p at_neginfinity ⇔ ∃b. ∀x. x ≤ b ⇒ p x
- EVENTUALLY_AT_INFINITY_POS
-
⊢ ∀p. eventually p at_infinity ⇔ ∃b. 0 < b ∧ ∀x. abs x ≥ b ⇒ p x
- EVENTUALLY_AT_INFINITY
-
⊢ ∀p. eventually p at_infinity ⇔ ∃b. ∀x. abs x ≥ b ⇒ p x
- EVENTUALLY_AT
-
⊢ ∀a p.
eventually p (at a) ⇔
∃d. 0 < d ∧ ∀x. 0 < dist (x,a) ∧ dist (x,a) < d ⇒ p x
- EVENTUALLY_AND
-
⊢ ∀net p q.
eventually (λx. p x ∧ q x) net ⇔ eventually p net ∧ eventually q net
- EQ_INTERVAL
-
⊢ (∀a b c d.
(interval [(a,b)] = interval [(c,d)]) ⇔
(interval [(a,b)] = ∅) ∧ (interval [(c,d)] = ∅) ∨ (a = c) ∧ (b = d)) ∧
(∀a b c d.
(interval [(a,b)] = interval (c,d)) ⇔
(interval [(a,b)] = ∅) ∧ (interval (c,d) = ∅)) ∧
(∀a b c d.
(interval (a,b) = interval [(c,d)]) ⇔
(interval (a,b) = ∅) ∧ (interval [(c,d)] = ∅)) ∧
∀a b c d.
(interval (a,b) = interval (c,d)) ⇔
(interval (a,b) = ∅) ∧ (interval (c,d) = ∅) ∨ (a = c) ∧ (b = d)
- EQ_BALLS
-
⊢ (∀a a' r r'.
(ball (a,r) = ball (a',r')) ⇔ (a = a') ∧ (r = r') ∨ r ≤ 0 ∧ r' ≤ 0) ∧
(∀a a' r r'. (ball (a,r) = cball (a',r')) ⇔ r ≤ 0 ∧ r' < 0) ∧
(∀a a' r r'. (cball (a,r) = ball (a',r')) ⇔ r < 0 ∧ r' ≤ 0) ∧
∀a a' r r'.
(cball (a,r) = cball (a',r')) ⇔ (a = a') ∧ (r = r') ∨ r < 0 ∧ r' < 0
- ENDS_NOT_IN_SEGMENT
-
⊢ ∀a b. a ∉ segment (a,b) ∧ b ∉ segment (a,b)
- ENDS_IN_UNIT_INTERVAL
-
⊢ 0 ∈ interval [(0,1)] ∧ 1 ∈ interval [(0,1)] ∧ 0 ∉ interval (0,1) ∧
1 ∉ interval (0,1)
- ENDS_IN_SEGMENT
-
⊢ ∀a b. a ∈ segment [(a,b)] ∧ b ∈ segment [(a,b)]
- ENDS_IN_INTERVAL
-
⊢ (∀a b. a ∈ interval [(a,b)] ⇔ interval [(a,b)] ≠ ∅) ∧
(∀a b. b ∈ interval [(a,b)] ⇔ interval [(a,b)] ≠ ∅) ∧
(∀a b. a ∉ interval (a,b)) ∧ ∀a b. b ∉ interval (a,b)
- EMPTY_INTERIOR_FINITE
-
⊢ ∀s. FINITE s ⇒ (interior s = ∅)
- EMPTY_BIGUNION
-
⊢ ∀s. (BIGUNION s = ∅) ⇔ ∀t. t ∈ s ⇒ (t = ∅)
- EMPTY_AS_INTERVAL
-
⊢ ∅ = interval [(1,0)]
- DISTANCE_ATTAINS_SUP
-
⊢ ∀s a. compact s ∧ s ≠ ∅ ⇒ ∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ dist (a,y) ≤ dist (a,x)
- DISTANCE_ATTAINS_INF
-
⊢ ∀s a. closed s ∧ s ≠ ∅ ⇒ ∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ dist (a,x) ≤ dist (a,y)
- DIST_TRIANGLE_LT
-
⊢ ∀x y z e. dist (x,z) + dist (y,z) < e ⇒ dist (x,y) < e
- DIST_TRIANGLE_LE
-
⊢ ∀x y z e. dist (x,z) + dist (y,z) ≤ e ⇒ dist (x,y) ≤ e
- DIST_TRIANGLE_HALF_R
-
⊢ ∀x1 x2 y. dist (y,x1) < e / 2 ∧ dist (y,x2) < e / 2 ⇒ dist (x1,x2) < e
- DIST_TRIANGLE_HALF_L
-
⊢ ∀x1 x2 y. dist (x1,y) < e / 2 ∧ dist (x2,y) < e / 2 ⇒ dist (x1,x2) < e
- DIST_TRIANGLE_EQ
-
⊢ ∀x y z.
(dist (x,z) = dist (x,y) + dist (y,z)) ⇔
(abs (x − y) * (y − z) = abs (y − z) * (x − y))
- DIST_TRIANGLE_ALT
-
⊢ ∀x y z. dist (y,z) ≤ dist (x,y) + dist (x,z)
- DIST_TRIANGLE_ADD_HALF
-
⊢ ∀x x' y y'.
dist (x,x') < e / 2 ∧ dist (y,y') < e / 2 ⇒ dist (x + y,x' + y') < e
- DIST_TRIANGLE_ADD
-
⊢ ∀x x' y y'. dist (x + y,x' + y') ≤ dist (x,x') + dist (y,y')
- DIST_TRIANGLE
-
⊢ ∀x y z. dist (x,z) ≤ dist (x,y) + dist (y,z)
- DIST_SYM
-
⊢ ∀x y. dist (x,y) = dist (y,x)
- DIST_REFL
-
⊢ ∀x. dist (x,x) = 0
- DIST_POS_LT
-
⊢ ∀x y. x ≠ y ⇒ 0 < dist (x,y)
- DIST_POS_LE
-
⊢ ∀x y. 0 ≤ dist (x,y)
- DIST_NZ
-
⊢ ∀x y. x ≠ y ⇔ 0 < dist (x,y)
- DIST_MUL
-
⊢ ∀x y c. dist (c * x,c * y) = abs c * dist (x,y)
- DIST_MIDPOINT
-
⊢ ∀a b.
(dist (a,midpoint (a,b)) = dist (a,b) / 2) ∧
(dist (b,midpoint (a,b)) = dist (a,b) / 2) ∧
(dist (midpoint (a,b),a) = dist (a,b) / 2) ∧
(dist (midpoint (a,b),b) = dist (a,b) / 2)
- DIST_LE_0
-
⊢ ∀x y. dist (x,y) ≤ 0 ⇔ (x = y)
- DIST_IN_OPEN_SEGMENT
-
⊢ ∀a b x.
x ∈ segment (a,b) ⇒ dist (x,a) < dist (a,b) ∧ dist (x,b) < dist (a,b)
- DIST_IN_OPEN_CLOSED_SEGMENT
-
⊢ (∀a b x.
x ∈ segment [(a,b)] ⇒ dist (x,a) ≤ dist (a,b) ∧ dist (x,b) ≤ dist (a,b)) ∧
∀a b x.
x ∈ segment (a,b) ⇒ dist (x,a) < dist (a,b) ∧ dist (x,b) < dist (a,b)
- DIST_IN_CLOSED_SEGMENT
-
⊢ ∀a b x.
x ∈ segment [(a,b)] ⇒ dist (x,a) ≤ dist (a,b) ∧ dist (x,b) ≤ dist (a,b)
- DIST_EQ_0
-
⊢ ∀x y. (dist (x,y) = 0) ⇔ (x = y)
- DIST_EQ
-
⊢ ∀w x y z. (dist (w,x) = dist (y,z)) ⇔ (dist (w,x) pow 2 = dist (y,z) pow 2)
- DIST_CLOSEST_POINT_LIPSCHITZ
-
⊢ ∀s x y.
closed s ∧ s ≠ ∅ ⇒
abs (dist (x,closest_point s x) − dist (y,closest_point s y)) ≤
dist (x,y)
- DIST_0
-
⊢ ∀x. (dist (x,0) = abs x) ∧ (dist (0,x) = abs x)
- DISJOINT_INTERVAL
-
⊢ ∀a b c d.
((interval [(a,b)] ∩ interval [(c,d)] = ∅) ⇔
b < a ∨ d < c ∨ b < c ∨ d < a) ∧
((interval [(a,b)] ∩ interval (c,d) = ∅) ⇔ b < a ∨ d ≤ c ∨ b ≤ c ∨ d ≤ a) ∧
((interval (a,b) ∩ interval [(c,d)] = ∅) ⇔ b ≤ a ∨ d < c ∨ b ≤ c ∨ d ≤ a) ∧
((interval (a,b) ∩ interval (c,d) = ∅) ⇔ b ≤ a ∨ d ≤ c ∨ b ≤ c ∨ d ≤ a)
- DISCRETE_IMP_CLOSED
-
⊢ ∀s e. 0 < e ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ abs (y − x) < e ⇒ (y = x)) ⇒ closed s
- DISCRETE_BOUNDED_IMP_FINITE
-
⊢ ∀s e.
0 < e ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ abs (y − x) < e ⇒ (y = x)) ∧ bounded s ⇒
FINITE s
- DINI
-
⊢ ∀f g s.
compact s ∧ (∀n. f n continuous_on s) ∧ g continuous_on s ∧
(∀x. x ∈ s ⇒ ((λn. f n x) --> g x) sequentially) ∧
(∀n x. x ∈ s ⇒ f n x ≤ f (n + 1) x) ⇒
∀e.
0 < e ⇒
eventually (λn. ∀x. x ∈ s ⇒ abs (f n x − g x) < e) sequentially
- DIM_UNIV
-
⊢ dim 𝕌(:real) = 1
- DIM_UNIQUE
-
⊢ ∀v b. b ⊆ v ∧ v ⊆ span b ∧ independent b ∧ b HAS_SIZE n ⇒ (dim v = n)
- DIM_SUBSTANDARD
-
⊢ dim {x | x = 0} = 0
- DIM_SUBSET_UNIV
-
⊢ ∀s. dim s ≤ 1
- DIM_SUBSET
-
⊢ ∀s t. s ⊆ t ⇒ dim s ≤ dim t
- DIM_LE_CARD
-
⊢ ∀s. FINITE s ⇒ dim s ≤ CARD s
- DIFF_CLOSURE_SUBSET
-
⊢ ∀s t. closure s DIFF closure t ⊆ closure (s DIFF t)
- DIFF_BIGINTER
-
⊢ ∀u s. u DIFF BIGINTER s = BIGUNION {u DIFF t | t ∈ s}
- DIAMETER_SUMS
-
⊢ ∀s t.
bounded s ∧ bounded t ⇒
diameter {x + y | x ∈ s ∧ y ∈ t} ≤ diameter s + diameter t
- DIAMETER_SUBSET_CBALL_NONEMPTY
-
⊢ ∀s. bounded s ∧ s ≠ ∅ ⇒ ∃z. z ∈ s ∧ s ⊆ cball (z,diameter s)
- DIAMETER_SUBSET_CBALL
-
⊢ ∀s. bounded s ⇒ ∃z. s ⊆ cball (z,diameter s)
- DIAMETER_SUBSET
-
⊢ ∀s t. s ⊆ t ∧ bounded t ⇒ diameter s ≤ diameter t
- DIAMETER_SING
-
⊢ ∀a. diameter {a} = 0
- DIAMETER_POS_LE
-
⊢ ∀s. bounded s ⇒ 0 ≤ diameter s
- DIAMETER_LINEAR_IMAGE
-
⊢ ∀f s.
linear f ∧ (∀x. abs (f x) = abs x) ⇒ (diameter (IMAGE f s) = diameter s)
- DIAMETER_LE
-
⊢ ∀s d.
(s ≠ ∅ ∨ 0 ≤ d) ∧ (∀x y. x ∈ s ∧ y ∈ s ⇒ abs (x − y) ≤ d) ⇒
diameter s ≤ d
- DIAMETER_INTERVAL
-
⊢ (∀a b.
diameter (interval [(a,b)]) =
if interval [(a,b)] = ∅ then 0 else abs (b − a)) ∧
∀a b.
diameter (interval (a,b)) =
if interval (a,b) = ∅ then 0 else abs (b − a)
- DIAMETER_EQ_0
-
⊢ ∀s. bounded s ⇒ ((diameter s = 0) ⇔ (s = ∅) ∨ ∃a. s = {a})
- DIAMETER_EMPTY
-
⊢ diameter ∅ = 0
- DIAMETER_CLOSURE
-
⊢ ∀s. bounded s ⇒ (diameter (closure s) = diameter s)
- DIAMETER_CBALL
-
⊢ ∀a r. diameter (cball (a,r)) = if r < 0 then 0 else 2 * r
- DIAMETER_BOUNDED_BOUND
-
⊢ ∀s x y. bounded s ∧ x ∈ s ∧ y ∈ s ⇒ abs (x − y) ≤ diameter s
- DIAMETER_BOUNDED
-
⊢ ∀s.
bounded s ⇒
(∀x y. x ∈ s ∧ y ∈ s ⇒ abs (x − y) ≤ diameter s) ∧
∀d. 0 ≤ d ∧ d < diameter s ⇒ ∃x y. x ∈ s ∧ y ∈ s ∧ abs (x − y) > d
- DIAMETER_BALL
-
⊢ ∀a r. diameter (ball (a,r)) = if r < 0 then 0 else 2 * r
- DEPENDENT_MONO
-
⊢ ∀s t. dependent s ∧ s ⊆ t ⇒ dependent t
- DEPENDENT_EXPLICIT
-
⊢ ∀p.
dependent p ⇔
∃s u.
FINITE s ∧ s ⊆ p ∧ (∃v. v ∈ s ∧ u v ≠ 0) ∧ (sum s (λv. u v * v) = 0)
- DEPENDENT_CHOICE_FIXED
-
⊢ ∀P R a.
P 0 a ∧ (∀n x. P n x ⇒ ∃y. P (SUC n) y ∧ R n x y) ⇒
∃f. (f 0 = a) ∧ (∀n. P n (f n)) ∧ ∀n. R n (f n) (f (SUC n))
- DEPENDENT_CHOICE
-
⊢ ∀P R.
(∃a. P 0 a) ∧ (∀n x. P n x ⇒ ∃y. P (SUC n) y ∧ R n x y) ⇒
∃f. (∀n. P n (f n)) ∧ ∀n. R n (f n) (f (SUC n))
- DENSE_OPEN_INTER
-
⊢ ∀s t u.
open_in (subtopology euclidean u) s ∧ t ⊆ u ∨
open_in (subtopology euclidean u) t ∧ s ⊆ u ⇒
(u ⊆ closure (s ∩ t) ⇔ u ⊆ closure s ∧ u ⊆ closure t)
- DENSE_LIMIT_POINTS
-
⊢ ∀x. ({x | x limit_point_of s} = 𝕌(:real)) ⇔ (closure s = 𝕌(:real))
- DENSE_IMP_PERFECT
-
⊢ ∀s. (closure s = 𝕌(:real)) ⇒ ∀x. x ∈ s ⇒ x limit_point_of s
- DECREASING_CLOSED_NEST_SING
-
⊢ ∀s.
(∀n. closed (s n)) ∧ (∀n. s n ≠ ∅) ∧ (∀m n. m ≤ n ⇒ s n ⊆ s m) ∧
(∀e. 0 < e ⇒ ∃n. ∀x y. x ∈ s n ∧ y ∈ s n ⇒ dist (x,y) < e) ⇒
∃a. BIGINTER {t | (∃n. t = s n)} = {a}
- DECREASING_CLOSED_NEST
-
⊢ ∀s.
(∀n. closed (s n)) ∧ (∀n. s n ≠ ∅) ∧ (∀m n. m ≤ n ⇒ s n ⊆ s m) ∧
(∀e. 0 < e ⇒ ∃n. ∀x y. x ∈ s n ∧ y ∈ s n ⇒ dist (x,y) < e) ⇒
∃a. ∀n. a ∈ s n
- COUNTABLE_OPEN_INTERVAL
-
⊢ ∀a b. COUNTABLE (interval (a,b)) ⇔ (interval (a,b) = ∅)
- CONVERGENT_IMP_CAUCHY
-
⊢ ∀s l. (s --> l) sequentially ⇒ cauchy s
- CONVERGENT_IMP_BOUNDED
-
⊢ ∀s l. (s --> l) sequentially ⇒ bounded (IMAGE s 𝕌(:num))
- CONVERGENT_EQ_CAUCHY
-
⊢ ∀s. (∃l. (s --> l) sequentially) ⇔ cauchy s
- CONVERGENT_BOUNDED_MONOTONE
-
⊢ ∀s b.
(∀n. abs (s n) ≤ b) ∧
((∀m n. m ≤ n ⇒ s m ≤ s n) ∨ ∀m n. m ≤ n ⇒ s n ≤ s m) ⇒
∃l. ∀e. 0 < e ⇒ ∃N. ∀n. N ≤ n ⇒ abs (s n − l) < e
- CONVERGENT_BOUNDED_INCREASING
-
⊢ ∀s b.
(∀m n. m ≤ n ⇒ s m ≤ s n) ∧ (∀n. abs (s n) ≤ b) ⇒
∃l. ∀e. 0 < e ⇒ ∃N. ∀n. N ≤ n ⇒ abs (s n − l) < e
- CONTRACTION_IMP_CONTINUOUS_ON
-
⊢ ∀f. (∀x y. x ∈ s ∧ y ∈ s ⇒ dist (f x,f y) ≤ dist (x,y)) ⇒ f continuous_on s
- CONTINUOUS_WITHIN_SUBSET
-
⊢ ∀f s t x.
f continuous (at x within s) ∧ t ⊆ s ⇒ f continuous (at x within t)
- CONTINUOUS_WITHIN_SEQUENTIALLY
-
⊢ ∀f s a.
f continuous (at a within s) ⇔
∀x.
(∀n. x n ∈ s) ∧ (x --> a) sequentially ⇒
(f ∘ x --> f a) sequentially
- CONTINUOUS_WITHIN_OPEN
-
⊢ ∀f x u.
f continuous (at x within u) ⇔
∀t.
open t ∧ f x ∈ t ⇒
∃s. open s ∧ x ∈ s ∧ ∀x'. x' ∈ s ∧ x' ∈ u ⇒ f x' ∈ t
- CONTINUOUS_WITHIN_ID
-
⊢ ∀a s. (λx. x) continuous (at a within s)
- CONTINUOUS_WITHIN_COMPOSE
-
⊢ ∀f g x s.
f continuous (at x within s) ∧ g continuous (at (f x) within IMAGE f s) ⇒
g ∘ f continuous (at x within s)
- CONTINUOUS_WITHIN_COMPARISON
-
⊢ ∀f g s a.
g continuous (at a within s) ∧
(∀x. x ∈ s ⇒ dist (f a,f x) ≤ dist (g a,g x)) ⇒
f continuous (at a within s)
- CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL
-
⊢ ∀a s. closed s ∧ a ∉ s ⇒ f continuous (at a within s)
- CONTINUOUS_WITHIN_BALL
-
⊢ ∀f s x.
f continuous (at x within s) ⇔
∀e. 0 < e ⇒ ∃d. 0 < d ∧ IMAGE f (ball (x,d) ∩ s) ⊆ ball (f x,e)
- CONTINUOUS_WITHIN_AVOID
-
⊢ ∀f x s a.
f continuous (at x within s) ∧ x ∈ s ∧ f x ≠ a ⇒
∃e. 0 < e ∧ ∀y. y ∈ s ∧ dist (x,y) < e ⇒ f y ≠ a
- CONTINUOUS_WITHIN
-
⊢ ∀f x. f continuous (at x within s) ⇔ (f --> f x) (at x within s)
- continuous_within
-
⊢ f continuous (at x within s) ⇔
∀e. 0 < e ⇒ ∃d. 0 < d ∧ ∀x'. x' ∈ s ∧ dist (x',x) < d ⇒ dist (f x',f x) < e
- CONTINUOUS_VMUL
-
⊢ ∀net c v. c continuous net ⇒ (λx. c x * v) continuous net
- CONTINUOUS_UNIFORM_LIMIT
-
⊢ ∀net f g s.
¬trivial_limit net ∧ eventually (λn. f n continuous_on s) net ∧
(∀e. 0 < e ⇒ eventually (λn. ∀x. x ∈ s ⇒ abs (f n x − g x) < e) net) ⇒
g continuous_on s
- CONTINUOUS_TRIVIAL_LIMIT
-
⊢ ∀f net. trivial_limit net ⇒ f continuous net
- CONTINUOUS_TRANSFORM_WITHIN_SET_IMP
-
⊢ ∀f a s t.
eventually (λx. x ∈ t ⇒ x ∈ s) (at a) ∧ f continuous (at a within s) ⇒
f continuous (at a within t)
- CONTINUOUS_TRANSFORM_WITHIN_OPEN_IN
-
⊢ ∀f g s t a.
open_in (subtopology euclidean t) s ∧ a ∈ s ∧
(∀x. x ∈ s ⇒ (f x = g x)) ∧ f continuous (at a within t) ⇒
g continuous (at a within t)
- CONTINUOUS_TRANSFORM_WITHIN_OPEN
-
⊢ ∀f g s a.
open s ∧ a ∈ s ∧ (∀x. x ∈ s ⇒ (f x = g x)) ∧ f continuous at a ⇒
g continuous at a
- CONTINUOUS_TRANSFORM_WITHIN
-
⊢ ∀f g s x d.
0 < d ∧ x ∈ s ∧ (∀x'. x' ∈ s ∧ dist (x',x) < d ⇒ (f x' = g x')) ∧
f continuous (at x within s) ⇒
g continuous (at x within s)
- CONTINUOUS_TRANSFORM_AT
-
⊢ ∀f g x d.
0 < d ∧ (∀x'. dist (x',x) < d ⇒ (f x' = g x')) ∧ f continuous at x ⇒
g continuous at x
- CONTINUOUS_SUM
-
⊢ ∀net f s.
FINITE s ∧ (∀a. a ∈ s ⇒ f a continuous net) ⇒
(λx. sum s (λa. f a x)) continuous net
- CONTINUOUS_SUB
-
⊢ ∀f g net.
f continuous net ∧ g continuous net ⇒ (λx. f x − g x) continuous net
- CONTINUOUS_RIGHT_INVERSE_IMP_QUOTIENT_MAP
-
⊢ ∀f g s t.
f continuous_on s ∧ IMAGE f s ⊆ t ∧ g continuous_on t ∧ IMAGE g t ⊆ s ∧
(∀y. y ∈ t ⇒ (f (g y) = y)) ⇒
∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)
- CONTINUOUS_PRODUCT
-
⊢ ∀net f t.
FINITE t ∧ (∀i. i ∈ t ⇒ (λx. f x i) continuous net) ⇒
(λx. product t (f x)) continuous net
- CONTINUOUS_POW
-
⊢ ∀net f n. (λx. f x) continuous net ⇒ (λx. f x pow n) continuous net
- CONTINUOUS_OPEN_PREIMAGE_UNIV
-
⊢ ∀f s. (∀x. f continuous at x) ∧ open s ⇒ open {x | f x ∈ s}
- CONTINUOUS_OPEN_PREIMAGE
-
⊢ ∀f s t. f continuous_on s ∧ open s ∧ open t ⇒ open {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_OPEN_IN_PREIMAGE_GEN
-
⊢ ∀f s t u.
f continuous_on s ∧ IMAGE f s ⊆ t ∧ open_in (subtopology euclidean t) u ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u}
- CONTINUOUS_OPEN_IN_PREIMAGE_EQ
-
⊢ ∀f s.
f continuous_on s ⇔
∀t. open t ⇒ open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_OPEN_IN_PREIMAGE
-
⊢ ∀f s t.
f continuous_on s ∧ open t ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_ON_VMUL
-
⊢ ∀s c v. c continuous_on s ⇒ (λx. c x * v) continuous_on s
- CONTINUOUS_ON_UNION_OPEN
-
⊢ ∀f s t.
open s ∧ open t ∧ f continuous_on s ∧ f continuous_on t ⇒
f continuous_on s ∪ t
- CONTINUOUS_ON_UNION_LOCAL_OPEN
-
⊢ ∀f s.
open_in (subtopology euclidean (s ∪ t)) s ∧
open_in (subtopology euclidean (s ∪ t)) t ∧ f continuous_on s ∧
f continuous_on t ⇒
f continuous_on s ∪ t
- CONTINUOUS_ON_UNION_LOCAL
-
⊢ ∀f s.
closed_in (subtopology euclidean (s ∪ t)) s ∧
closed_in (subtopology euclidean (s ∪ t)) t ∧ f continuous_on s ∧
f continuous_on t ⇒
f continuous_on s ∪ t
- CONTINUOUS_ON_UNION
-
⊢ ∀f s t.
closed s ∧ closed t ∧ f continuous_on s ∧ f continuous_on t ⇒
f continuous_on s ∪ t
- CONTINUOUS_ON_SUM
-
⊢ ∀t f s.
FINITE s ∧ (∀a. a ∈ s ⇒ f a continuous_on t) ⇒
(λx. sum s (λa. f a x)) continuous_on t
- CONTINUOUS_ON_SUBSET
-
⊢ ∀f s t. f continuous_on s ∧ t ⊆ s ⇒ f continuous_on t
- CONTINUOUS_ON_SUB
-
⊢ ∀f g s.
f continuous_on s ∧ g continuous_on s ⇒ (λx. f x − g x) continuous_on s
- CONTINUOUS_ON_SING
-
⊢ ∀f a. f continuous_on {a}
- CONTINUOUS_ON_SETDIST
-
⊢ ∀s t. (λy. setdist ({y},s)) continuous_on t
- CONTINUOUS_ON_SEQUENTIALLY
-
⊢ ∀f s.
f continuous_on s ⇔
∀x a.
a ∈ s ∧ (∀n. x n ∈ s) ∧ (x --> a) sequentially ⇒
(f ∘ x --> f a) sequentially
- CONTINUOUS_ON_RANGE
-
⊢ ∀f s.
f continuous_on s ⇔
∀x.
x ∈ s ⇒
∀e.
0 < e ⇒
∃d.
0 < d ∧
∀x'. x' ∈ s ∧ abs (x' − x) < d ⇒ abs (f x' − f x) < e
- CONTINUOUS_ON_PRODUCT
-
⊢ ∀f s t.
FINITE t ∧ (∀i. i ∈ t ⇒ (λx. f x i) continuous_on s) ⇒
(λx. product t (f x)) continuous_on s
- CONTINUOUS_ON_POW
-
⊢ ∀f s n. (λx. f x) continuous_on s ⇒ (λx. f x pow n) continuous_on s
- CONTINUOUS_ON_OPEN_GEN
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
(f continuous_on s ⇔
∀u.
open_in (subtopology euclidean t) u ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u})
- CONTINUOUS_ON_OPEN_AVOID
-
⊢ ∀f x s a.
f continuous_on s ∧ open s ∧ x ∈ s ∧ f x ≠ a ⇒
∃e. 0 < e ∧ ∀y. dist (x,y) < e ⇒ f y ≠ a
- CONTINUOUS_ON_OPEN
-
⊢ ∀f s.
f continuous_on s ⇔
∀t.
open_in (subtopology euclidean (IMAGE f s)) t ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_ON_NO_LIMPT
-
⊢ ∀f s. ¬(∃x. x limit_point_of s) ⇒ f continuous_on s
- CONTINUOUS_ON_NEG
-
⊢ ∀f s. f continuous_on s ⇒ (λx. -f x) continuous_on s
- CONTINUOUS_ON_MUL
-
⊢ ∀s c f.
c continuous_on s ∧ f continuous_on s ⇒ (λx. c x * f x) continuous_on s
- CONTINUOUS_ON_MIN
-
⊢ ∀f g s.
f continuous_on s ∧ g continuous_on s ⇒
(λx. min (f x) (g x)) continuous_on s
- CONTINUOUS_ON_MAX
-
⊢ ∀f g s.
f continuous_on s ∧ g continuous_on s ⇒
(λx. max (f x) (g x)) continuous_on s
- CONTINUOUS_ON_LIFT_DOT
-
⊢ ∀s. (λy. a * y) continuous_on s
- CONTINUOUS_ON_INVERSE_OPEN_MAP
-
⊢ ∀f g s t.
f continuous_on s ∧ (IMAGE f s = t) ∧ (∀x. x ∈ s ⇒ (g (f x) = x)) ∧
(∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)) ⇒
g continuous_on t
- CONTINUOUS_ON_INVERSE_CLOSED_MAP
-
⊢ ∀f g s t.
f continuous_on s ∧ (IMAGE f s = t) ∧ (∀x. x ∈ s ⇒ (g (f x) = x)) ∧
(∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)) ⇒
g continuous_on t
- CONTINUOUS_ON_INVERSE
-
⊢ ∀f g s.
f continuous_on s ∧ compact s ∧ (∀x. x ∈ s ⇒ (g (f x) = x)) ⇒
g continuous_on IMAGE f s
- CONTINUOUS_ON_INV
-
⊢ ∀f s.
f continuous_on s ∧ (∀x. x ∈ s ⇒ f x ≠ 0) ⇒ realinv ∘ f continuous_on s
- CONTINUOUS_ON_INTERIOR
-
⊢ ∀f s x. f continuous_on s ∧ x ∈ interior s ⇒ f continuous at x
- CONTINUOUS_ON_IMP_OPEN_IN
-
⊢ ∀f s t.
f continuous_on s ∧ open_in (subtopology euclidean (IMAGE f s)) t ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_ON_IMP_CLOSED_IN
-
⊢ ∀f s t.
f continuous_on s ∧ closed_in (subtopology euclidean (IMAGE f s)) t ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_ON_ID
-
⊢ ∀s. (λx. x) continuous_on s
- CONTINUOUS_ON_FINITE
-
⊢ ∀f s. FINITE s ⇒ f continuous_on s
- CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN
-
⊢ ∀f s. f continuous_on s ⇔ ∀x. x ∈ s ⇒ f continuous (at x within s)
- CONTINUOUS_ON_EQ_CONTINUOUS_AT
-
⊢ ∀f s. open s ⇒ (f continuous_on s ⇔ ∀x. x ∈ s ⇒ f continuous at x)
- CONTINUOUS_ON_EQ
-
⊢ ∀f g s. (∀x. x ∈ s ⇒ (f x = g x)) ∧ f continuous_on s ⇒ g continuous_on s
- CONTINUOUS_ON_EMPTY
-
⊢ ∀f. f continuous_on ∅
- CONTINUOUS_ON_DOT2
-
⊢ ∀f g s.
f continuous_on s ∧ g continuous_on s ⇒ (λx. f x * g x) continuous_on s
- CONTINUOUS_ON_DIST_CLOSEST_POINT
-
⊢ ∀s t. closed s ∧ s ≠ ∅ ⇒ (λx. dist (x,closest_point s x)) continuous_on t
- CONTINUOUS_ON_DIST
-
⊢ ∀a s. (λx. dist (a,x)) continuous_on s
- CONTINUOUS_ON_CONST
-
⊢ ∀s c. (λx. c) continuous_on s
- CONTINUOUS_ON_COMPOSE_QUOTIENT
-
⊢ ∀f g s t u.
IMAGE f s ⊆ t ∧ IMAGE g t ⊆ u ∧
(∀v.
v ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ v} ⇔
open_in (subtopology euclidean t) v)) ∧ g ∘ f continuous_on s ⇒
g continuous_on t
- CONTINUOUS_ON_COMPOSE
-
⊢ ∀f g s.
f continuous_on s ∧ g continuous_on IMAGE f s ⇒ g ∘ f continuous_on s
- CONTINUOUS_ON_COMPONENTS_GEN
-
⊢ ∀f s.
(∀c.
c ∈ components s ⇒
open_in (subtopology euclidean s) c ∧ f continuous_on c) ⇒
f continuous_on s
- CONTINUOUS_ON_COMPONENTS_FINITE
-
⊢ ∀f s.
FINITE (components s) ∧ (∀c. c ∈ components s ⇒ f continuous_on c) ⇒
f continuous_on s
- CONTINUOUS_ON_COMPONENT_COMPOSE
-
⊢ ∀f s. f continuous_on s ⇒ (λx. f x) continuous_on s
- CONTINUOUS_ON_CMUL
-
⊢ ∀f c s. f continuous_on s ⇒ (λx. c * f x) continuous_on s
- CONTINUOUS_ON_CLOSURE_SEQUENTIALLY
-
⊢ ∀f s.
f continuous_on closure s ⇔
∀x a.
a ∈ closure s ∧ (∀n. x n ∈ s) ∧ (x --> a) sequentially ⇒
(f ∘ x --> f a) sequentially
- CONTINUOUS_ON_CLOSURE_COMPONENT_LE
-
⊢ ∀f s x b.
f continuous_on closure s ∧ (∀y. y ∈ s ⇒ f y ≤ b) ∧ x ∈ closure s ⇒
f x ≤ b
- CONTINUOUS_ON_CLOSURE_COMPONENT_GE
-
⊢ ∀f s x b.
f continuous_on closure s ∧ (∀y. y ∈ s ⇒ b ≤ f y) ∧ x ∈ closure s ⇒
b ≤ f x
- CONTINUOUS_ON_CLOSURE_ABS_LE
-
⊢ ∀f s x b.
f continuous_on closure s ∧ (∀y. y ∈ s ⇒ abs (f y) ≤ b) ∧ x ∈ closure s ⇒
abs (f x) ≤ b
- CONTINUOUS_ON_CLOSURE
-
⊢ ∀f s.
f continuous_on closure s ⇔
∀x e.
x ∈ closure s ∧ 0 < e ⇒
∃d. 0 < d ∧ ∀y. y ∈ s ∧ dist (y,x) < d ⇒ dist (f y,f x) < e
- CONTINUOUS_ON_CLOSED_GEN
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
(f continuous_on s ⇔
∀u.
closed_in (subtopology euclidean t) u ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u})
- CONTINUOUS_ON_CLOSED
-
⊢ ∀f s.
f continuous_on s ⇔
∀t.
closed_in (subtopology euclidean (IMAGE f s)) t ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_ON_CASES_OPEN
-
⊢ ∀P f g s t.
open s ∧ open t ∧ f continuous_on s ∧ g continuous_on t ∧
(∀x. x ∈ s ∧ ¬P x ∨ x ∈ t ∧ P x ⇒ (f x = g x)) ⇒
(λx. if P x then f x else g x) continuous_on s ∪ t
- CONTINUOUS_ON_CASES_LOCAL_OPEN
-
⊢ ∀P f g s t.
open_in (subtopology euclidean (s ∪ t)) s ∧
open_in (subtopology euclidean (s ∪ t)) t ∧ f continuous_on s ∧
g continuous_on t ∧ (∀x. x ∈ s ∧ ¬P x ∨ x ∈ t ∧ P x ⇒ (f x = g x)) ⇒
(λx. if P x then f x else g x) continuous_on s ∪ t
- CONTINUOUS_ON_CASES_LOCAL
-
⊢ ∀P f g s t.
closed_in (subtopology euclidean (s ∪ t)) s ∧
closed_in (subtopology euclidean (s ∪ t)) t ∧ f continuous_on s ∧
g continuous_on t ∧ (∀x. x ∈ s ∧ ¬P x ∨ x ∈ t ∧ P x ⇒ (f x = g x)) ⇒
(λx. if P x then f x else g x) continuous_on s ∪ t
- CONTINUOUS_ON_CASES_LE
-
⊢ ∀f g h s a.
f continuous_on {t | t ∈ s ∧ h t ≤ a} ∧
g continuous_on {t | t ∈ s ∧ a ≤ h t} ∧ h continuous_on s ∧
(∀t. t ∈ s ∧ (h t = a) ⇒ (f t = g t)) ⇒
(λt. if h t ≤ a then f t else g t) continuous_on s
- CONTINUOUS_ON_CASES_1
-
⊢ ∀f g s a.
f continuous_on {t | t ∈ s ∧ t ≤ a} ∧
g continuous_on {t | t ∈ s ∧ a ≤ t} ∧ (a ∈ s ⇒ (f a = g a)) ⇒
(λt. if t ≤ a then f t else g t) continuous_on s
- CONTINUOUS_ON_CASES
-
⊢ ∀P f g s t.
closed s ∧ closed t ∧ f continuous_on s ∧ g continuous_on t ∧
(∀x. x ∈ s ∧ ¬P x ∨ x ∈ t ∧ P x ⇒ (f x = g x)) ⇒
(λx. if P x then f x else g x) continuous_on s ∪ t
- CONTINUOUS_ON_AVOID
-
⊢ ∀f x s a.
f continuous_on s ∧ x ∈ s ∧ f x ≠ a ⇒
∃e. 0 < e ∧ ∀y. y ∈ s ∧ dist (x,y) < e ⇒ f y ≠ a
- CONTINUOUS_ON_ADD
-
⊢ ∀f g s.
f continuous_on s ∧ g continuous_on s ⇒ (λx. f x + g x) continuous_on s
- CONTINUOUS_ON_ABS_COMPOSE
-
⊢ ∀f s. f continuous_on s ⇒ (λx. abs (f x)) continuous_on s
- CONTINUOUS_ON_ABS
-
⊢ ∀f s. f continuous_on s ⇒ (λx. abs (f x)) continuous_on s
- CONTINUOUS_ON
-
⊢ ∀f s. f continuous_on s ⇔ ∀x. x ∈ s ⇒ (f --> f x) (at x within s)
- CONTINUOUS_NEG
-
⊢ ∀f net. f continuous net ⇒ (λx. -f x) continuous net
- CONTINUOUS_MUL
-
⊢ ∀net f c.
c continuous net ∧ f continuous net ⇒ (λx. c x * f x) continuous net
- CONTINUOUS_MIN
-
⊢ ∀f g net.
f continuous net ∧ g continuous net ⇒
(λx. min (f x) (g x)) continuous net
- CONTINUOUS_MAX
-
⊢ ∀f g net.
f continuous net ∧ g continuous net ⇒
(λx. max (f x) (g x)) continuous net
- CONTINUOUS_MAP_CLOSURES
-
⊢ ∀f. f continuous_on 𝕌(:real) ⇔ ∀s. IMAGE f (closure s) ⊆ closure (IMAGE f s)
- CONTINUOUS_LEVELSET_OPEN_IN_CASES
-
⊢ ∀f s a.
connected s ∧ f continuous_on s ∧
open_in (subtopology euclidean s) {x | x ∈ s ∧ (f x = a)} ⇒
(∀x. x ∈ s ⇒ f x ≠ a) ∨ ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_LEVELSET_OPEN_IN
-
⊢ ∀f s a.
connected s ∧ f continuous_on s ∧
open_in (subtopology euclidean s) {x | x ∈ s ∧ (f x = a)} ∧
(∃x. x ∈ s ∧ (f x = a)) ⇒
∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_LEVELSET_OPEN
-
⊢ ∀f s a.
connected s ∧ f continuous_on s ∧ open {x | x ∈ s ∧ (f x = a)} ∧
(∃x. x ∈ s ∧ (f x = a)) ⇒
∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_LEFT_INVERSE_IMP_QUOTIENT_MAP
-
⊢ ∀f g s.
f continuous_on s ∧ g continuous_on IMAGE f s ∧
(∀x. x ∈ s ⇒ (g (f x) = x)) ⇒
∀u.
u ⊆ IMAGE f s ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean (IMAGE f s)) u)
- CONTINUOUS_LE_ON_CLOSURE
-
⊢ ∀f s a.
f continuous_on closure s ∧ (∀x. x ∈ s ⇒ f x ≤ a) ⇒
∀x. x ∈ closure s ⇒ f x ≤ a
- CONTINUOUS_INV
-
⊢ ∀net f. f continuous net ∧ f (netlimit net) ≠ 0 ⇒ realinv ∘ f continuous net
- CONTINUOUS_IMP_QUOTIENT_MAP
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧ compact s ⇒
∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)
- CONTINUOUS_IMP_CLOSED_MAP
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧ compact s ⇒
∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)
- CONTINUOUS_GE_ON_CLOSURE
-
⊢ ∀f s a.
f continuous_on closure s ∧ (∀x. x ∈ s ⇒ a ≤ f x) ⇒
∀x. x ∈ closure s ⇒ a ≤ f x
- CONTINUOUS_FINITE_RANGE_CONSTANT_EQ
-
⊢ ∀s.
connected s ⇔
∀f. f continuous_on s ∧ FINITE (IMAGE f s) ⇒ ∃a. ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_FINITE_RANGE_CONSTANT
-
⊢ ∀f s.
connected s ∧ f continuous_on s ∧ FINITE (IMAGE f s) ⇒
∃a. ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_DOT2
-
⊢ ∀net f g.
f continuous net ∧ g continuous net ⇒ (λx. f x * g x) continuous net
- CONTINUOUS_DISCRETE_RANGE_CONSTANT_EQ
-
⊢ ∀s.
connected s ⇔
∀f.
f continuous_on s ∧
(∀x. x ∈ s ⇒ ∃e. 0 < e ∧ ∀y. y ∈ s ∧ f y ≠ f x ⇒ e ≤ abs (f y − f x)) ⇒
∃a. ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_DISCRETE_RANGE_CONSTANT
-
⊢ ∀f s.
connected s ∧ f continuous_on s ∧
(∀x. x ∈ s ⇒ ∃e. 0 < e ∧ ∀y. y ∈ s ∧ f y ≠ f x ⇒ e ≤ abs (f y − f x)) ⇒
∃a. ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_DISCONNECTED_RANGE_CONSTANT_EQ
-
⊢ ∀s.
connected s ⇔
∀f t.
f continuous_on s ∧ IMAGE f s ⊆ t ∧
(∀y. y ∈ t ⇒ (connected_component t y = {y})) ⇒
∃a. ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_DISCONNECTED_RANGE_CONSTANT
-
⊢ ∀f s.
connected s ∧ f continuous_on s ∧ IMAGE f s ⊆ t ∧
(∀y. y ∈ t ⇒ (connected_component t y = {y})) ⇒
∃a. ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_DISCONNECTED_DISCRETE_FINITE_RANGE_CONSTANT_EQ
-
⊢ (∀s.
connected s ⇔
∀f t.
f continuous_on s ∧ IMAGE f s ⊆ t ∧
(∀y. y ∈ t ⇒ (connected_component t y = {y})) ⇒
∃a. ∀x. x ∈ s ⇒ (f x = a)) ∧
(∀s.
connected s ⇔
∀f.
f continuous_on s ∧
(∀x.
x ∈ s ⇒
∃e. 0 < e ∧ ∀y. y ∈ s ∧ f y ≠ f x ⇒ e ≤ abs (f y − f x)) ⇒
∃a. ∀x. x ∈ s ⇒ (f x = a)) ∧
∀s.
connected s ⇔
∀f. f continuous_on s ∧ FINITE (IMAGE f s) ⇒ ∃a. ∀x. x ∈ s ⇒ (f x = a)
- CONTINUOUS_DIAMETER
-
⊢ ∀s e.
bounded s ∧ s ≠ ∅ ∧ 0 < e ⇒
∃d.
0 < d ∧
∀t.
bounded t ∧ t ≠ ∅ ∧ hausdist (s,t) < d ⇒
abs (diameter s − diameter t) < e
- CONTINUOUS_CONSTANT_ON_CLOSURE
-
⊢ ∀f s a.
f continuous_on closure s ∧ (∀x. x ∈ s ⇒ (f x = a)) ⇒
∀x. x ∈ closure s ⇒ (f x = a)
- CONTINUOUS_CONST
-
⊢ ∀net c. (λx. c) continuous net
- CONTINUOUS_COMPONENT_COMPOSE
-
⊢ ∀net f i. f continuous net ⇒ (λx. f x) continuous net
- CONTINUOUS_CMUL
-
⊢ ∀f c net. f continuous net ⇒ (λx. c * f x) continuous net
- CONTINUOUS_CLOSED_PREIMAGE_UNIV
-
⊢ ∀f s. (∀x. f continuous at x) ∧ closed s ⇒ closed {x | f x ∈ s}
- CONTINUOUS_CLOSED_PREIMAGE_CONSTANT
-
⊢ ∀f s. f continuous_on s ∧ closed s ⇒ closed {x | x ∈ s ∧ (f x = a)}
- CONTINUOUS_CLOSED_PREIMAGE
-
⊢ ∀f s t.
f continuous_on s ∧ closed s ∧ closed t ⇒ closed {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_CLOSED_IN_PREIMAGE_GEN
-
⊢ ∀f s t u.
f continuous_on s ∧ IMAGE f s ⊆ t ∧
closed_in (subtopology euclidean t) u ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u}
- CONTINUOUS_CLOSED_IN_PREIMAGE_EQ
-
⊢ ∀f s.
f continuous_on s ⇔
∀t. closed t ⇒ closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_CLOSED_IN_PREIMAGE_CONSTANT
-
⊢ ∀f s a.
f continuous_on s ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ (f x = a)}
- CONTINUOUS_CLOSED_IN_PREIMAGE
-
⊢ ∀f s t.
f continuous_on s ∧ closed t ⇒
closed_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t}
- CONTINUOUS_CLOSED_IMP_CAUCHY_CONTINUOUS
-
⊢ ∀f s.
f continuous_on s ∧ closed s ⇒
∀x. cauchy x ∧ (∀n. x n ∈ s) ⇒ cauchy (f ∘ x)
- CONTINUOUS_ATTAINS_SUP
-
⊢ ∀f s.
compact s ∧ s ≠ ∅ ∧ f continuous_on s ⇒
∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ f y ≤ f x
- CONTINUOUS_ATTAINS_INF
-
⊢ ∀f s.
compact s ∧ s ≠ ∅ ∧ f continuous_on s ⇒
∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ f x ≤ f y
- CONTINUOUS_AT_WITHIN_INV
-
⊢ ∀f s a.
f continuous (at a within s) ∧ f a ≠ 0 ⇒
realinv ∘ f continuous (at a within s)
- CONTINUOUS_AT_WITHIN
-
⊢ ∀f x s. f continuous at x ⇒ f continuous (at x within s)
- CONTINUOUS_AT_TRANSLATION
-
⊢ ∀a z f. f continuous at (a + z) ⇔ (λx. f (a + x)) continuous at z
- CONTINUOUS_AT_SETDIST
-
⊢ ∀s x. (λy. setdist ({y},s)) continuous at x
- CONTINUOUS_AT_SEQUENTIALLY
-
⊢ ∀f a.
f continuous at a ⇔
∀x. (x --> a) sequentially ⇒ (f ∘ x --> f a) sequentially
- CONTINUOUS_AT_RANGE
-
⊢ ∀f x.
f continuous at x ⇔
∀e. 0 < e ⇒ ∃d. 0 < d ∧ ∀x'. abs (x' − x) < d ⇒ abs (f x' − f x) < e
- CONTINUOUS_AT_OPEN
-
⊢ ∀f x.
f continuous at x ⇔
∀t. open t ∧ f x ∈ t ⇒ ∃s. open s ∧ x ∈ s ∧ ∀x'. x' ∈ s ⇒ f x' ∈ t
- CONTINUOUS_AT_LIFT_DOT
-
⊢ ∀a x. (λy. a * y) continuous at x
- CONTINUOUS_AT_INV
-
⊢ ∀f a. f continuous at a ∧ f a ≠ 0 ⇒ realinv ∘ f continuous at a
- CONTINUOUS_AT_IMP_CONTINUOUS_ON
-
⊢ ∀f s. (∀x. x ∈ s ⇒ f continuous at x) ⇒ f continuous_on s
- CONTINUOUS_AT_ID
-
⊢ ∀a. (λx. x) continuous at a
- CONTINUOUS_AT_DIST_CLOSEST_POINT
-
⊢ ∀s x. closed s ∧ s ≠ ∅ ⇒ (λx. dist (x,closest_point s x)) continuous at x
- CONTINUOUS_AT_DIST
-
⊢ ∀a x. (λx. dist (a,x)) continuous at x
- CONTINUOUS_AT_COMPOSE_EQ
-
⊢ ∀f g h.
g continuous at x ∧ h continuous at (g x) ∧ (∀y. g (h y) = y) ∧
(h (g x) = x) ⇒
(f continuous at (g x) ⇔ (λx. f (g x)) continuous at x)
- CONTINUOUS_AT_COMPOSE
-
⊢ ∀f g x. f continuous at x ∧ g continuous at (f x) ⇒ g ∘ f continuous at x
- CONTINUOUS_AT_BALL
-
⊢ ∀f x.
f continuous at x ⇔
∀e. 0 < e ⇒ ∃d. 0 < d ∧ IMAGE f (ball (x,d)) ⊆ ball (f x,e)
- CONTINUOUS_AT_AVOID
-
⊢ ∀f x a.
f continuous at x ∧ f x ≠ a ⇒ ∃e. 0 < e ∧ ∀y. dist (x,y) < e ⇒ f y ≠ a
- CONTINUOUS_AT_ABS
-
⊢ ∀x. abs continuous at x
- CONTINUOUS_AT
-
⊢ ∀f x. f continuous at x ⇔ (f --> f x) (at x)
- continuous_at
-
⊢ f continuous at x ⇔
∀e. 0 < e ⇒ ∃d. 0 < d ∧ ∀x'. dist (x',x) < d ⇒ dist (f x',f x) < e
- CONTINUOUS_AGREE_ON_CLOSURE
-
⊢ ∀g h.
g continuous_on closure s ∧ h continuous_on closure s ∧
(∀x. x ∈ s ⇒ (g x = h x)) ⇒
∀x. x ∈ closure s ⇒ (g x = h x)
- CONTINUOUS_ADD
-
⊢ ∀f g net.
f continuous net ∧ g continuous net ⇒ (λx. f x + g x) continuous net
- CONTINUOUS_ABS_COMPOSE
-
⊢ ∀net f. f continuous net ⇒ (λx. abs (f x)) continuous net
- CONTINUOUS_ABS
-
⊢ ∀f net. f continuous net ⇒ (λx. abs (f x)) continuous net
- CONNECTED_UNIV
-
⊢ connected 𝕌(:real)
- CONNECTED_UNION_STRONG
-
⊢ ∀s t. connected s ∧ connected t ∧ closure s ∩ t ≠ ∅ ⇒ connected (s ∪ t)
- CONNECTED_UNION
-
⊢ ∀s t. connected s ∧ connected t ∧ s ∩ t ≠ ∅ ⇒ connected (s ∪ t)
- CONNECTED_TRANSLATION_EQ
-
⊢ ∀a s. connected (IMAGE (λx. a + x) s) ⇔ connected s
- CONNECTED_TRANSLATION
-
⊢ ∀a s. connected s ⇒ connected (IMAGE (λx. a + x) s)
- CONNECTED_SUBSET_CLOPEN
-
⊢ ∀u s c.
closed_in (subtopology euclidean u) s ∧
open_in (subtopology euclidean u) s ∧ connected c ∧ c ⊆ u ∧ c ∩ s ≠ ∅ ⇒
c ⊆ s
- CONNECTED_SING
-
⊢ ∀a. connected {a}
- CONNECTED_SEGMENT
-
⊢ (∀a b. connected (segment [(a,b)])) ∧ ∀a b. connected (segment (a,b))
- CONNECTED_SCALING
-
⊢ ∀s c. connected s ⇒ connected (IMAGE (λx. c * x) s)
- CONNECTED_REAL_LEMMA
-
⊢ ∀f a b e1 e2.
a ≤ b ∧ f a ∈ e1 ∧ f b ∈ e2 ∧
(∀e x.
a ≤ x ∧ x ≤ b ∧ 0 < e ⇒
∃d. 0 < d ∧ ∀y. abs (y − x) < d ⇒ dist (f y,f x) < e) ∧
(∀y. y ∈ e1 ⇒ ∃e. 0 < e ∧ ∀y'. dist (y',y) < e ⇒ y' ∈ e1) ∧
(∀y. y ∈ e2 ⇒ ∃e. 0 < e ∧ ∀y'. dist (y',y) < e ⇒ y' ∈ e2) ∧
¬(∃x. a ≤ x ∧ x ≤ b ∧ f x ∈ e1 ∧ f x ∈ e2) ⇒
∃x. a ≤ x ∧ x ≤ b ∧ f x ∉ e1 ∧ f x ∉ e2
- CONNECTED_OPEN_SET
-
⊢ ∀s.
open s ⇒
(connected s ⇔
¬∃e1 e2.
open e1 ∧ open e2 ∧ e1 ≠ ∅ ∧ e2 ≠ ∅ ∧ (e1 ∪ e2 = s) ∧ (e1 ∩ e2 = ∅))
- CONNECTED_OPEN_MONOTONE_PREIMAGE
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀c.
open_in (subtopology euclidean s) c ⇒
open_in (subtopology euclidean t) (IMAGE f c)) ∧
(∀y. y ∈ t ⇒ connected {x | x ∈ s ∧ (f x = y)}) ⇒
∀c. connected c ∧ c ⊆ t ⇒ connected {x | x ∈ s ∧ f x ∈ c}
- CONNECTED_OPEN_IN_EQ
-
⊢ ∀s.
connected s ⇔
¬∃e1 e2.
open_in (subtopology euclidean s) e1 ∧
open_in (subtopology euclidean s) e2 ∧ (e1 ∪ e2 = s) ∧
(e1 ∩ e2 = ∅) ∧ e1 ≠ ∅ ∧ e2 ≠ ∅
- CONNECTED_OPEN_IN
-
⊢ ∀s.
connected s ⇔
¬∃e1 e2.
open_in (subtopology euclidean s) e1 ∧
open_in (subtopology euclidean s) e2 ∧ s ⊆ e1 ∪ e2 ∧ (e1 ∩ e2 = ∅) ∧
e1 ≠ ∅ ∧ e2 ≠ ∅
- CONNECTED_NEST_GEN
-
⊢ ∀s.
(∀n. closed (s n) ∧ connected (s n)) ∧ (∃n. compact (s n)) ∧
(∀m n. m ≤ n ⇒ s n ⊆ s m) ⇒
connected (BIGINTER {s n | n ∈ 𝕌(:num)})
- CONNECTED_NEST
-
⊢ ∀s.
(∀n. compact (s n) ∧ connected (s n)) ∧ (∀m n. m ≤ n ⇒ s n ⊆ s m) ⇒
connected (BIGINTER {s n | n ∈ 𝕌(:num)})
- CONNECTED_NEGATIONS
-
⊢ ∀s. connected s ⇒ connected (IMAGE (λx. -x) s)
- CONNECTED_MONOTONE_QUOTIENT_PREIMAGE_GEN
-
⊢ ∀f s t c.
(IMAGE f s = t) ∧
(∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)) ∧
(∀y. y ∈ t ⇒ connected {x | x ∈ s ∧ (f x = y)}) ∧
(open_in (subtopology euclidean t) c ∨
closed_in (subtopology euclidean t) c) ∧ connected c ⇒
connected {x | x ∈ s ∧ f x ∈ c}
- CONNECTED_MONOTONE_QUOTIENT_PREIMAGE
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀u.
u ⊆ t ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ u} ⇔
open_in (subtopology euclidean t) u)) ∧
(∀y. y ∈ t ⇒ connected {x | x ∈ s ∧ (f x = y)}) ∧ connected t ⇒
connected s
- CONNECTED_LINEAR_IMAGE
-
⊢ ∀f s. connected s ∧ linear f ⇒ connected (IMAGE f s)
- CONNECTED_IVT_HYPERPLANE
-
⊢ ∀s x y a b.
connected s ∧ x ∈ s ∧ y ∈ s ∧ a * x ≤ b ∧ b ≤ a * y ⇒
∃z. z ∈ s ∧ (a * z = b)
- CONNECTED_IVT_COMPONENT
-
⊢ ∀s x y a. connected s ∧ x ∈ s ∧ y ∈ s ∧ x ≤ a ∧ a ≤ y ⇒ ∃z. z ∈ s ∧ (z = a)
- CONNECTED_INTERMEDIATE_CLOSURE
-
⊢ ∀s t. connected s ∧ s ⊆ t ∧ t ⊆ closure s ⇒ connected t
- CONNECTED_INTER_FRONTIER
-
⊢ ∀s t. connected s ∧ s ∩ t ≠ ∅ ∧ s DIFF t ≠ ∅ ⇒ s ∩ frontier t ≠ ∅
- CONNECTED_INDUCTION_SIMPLE
-
⊢ ∀P s.
connected s ∧
(∀a.
a ∈ s ⇒
∃t.
open_in (subtopology euclidean s) t ∧ a ∈ t ∧
∀x y. x ∈ t ∧ y ∈ t ∧ P x ⇒ P y) ⇒
∀a b. a ∈ s ∧ b ∈ s ∧ P a ⇒ P b
- CONNECTED_INDUCTION
-
⊢ ∀P Q s.
connected s ∧
(∀t a. open_in (subtopology euclidean s) t ∧ a ∈ t ⇒ ∃z. z ∈ t ∧ P z) ∧
(∀a.
a ∈ s ⇒
∃t.
open_in (subtopology euclidean s) t ∧ a ∈ t ∧
∀x y. x ∈ t ∧ y ∈ t ∧ P x ∧ P y ∧ Q x ⇒ Q y) ⇒
∀a b. a ∈ s ∧ b ∈ s ∧ P a ∧ P b ∧ Q a ⇒ Q b
- CONNECTED_IMP_PERFECT_CLOSED
-
⊢ ∀s x. connected s ∧ closed s ∧ ¬(∃a. s = {a}) ⇒ (x limit_point_of s ⇔ x ∈ s)
- CONNECTED_IMP_PERFECT
-
⊢ ∀s x. connected s ∧ ¬(∃a. s = {a}) ∧ x ∈ s ⇒ x limit_point_of s
- CONNECTED_IFF_CONNECTED_COMPONENT
-
⊢ ∀s. connected s ⇔ ∀x y. x ∈ s ∧ y ∈ s ⇒ connected_component s x y
- CONNECTED_IFF_CONNECTABLE_POINTS
-
⊢ ∀s.
connected s ⇔
∀a b. a ∈ s ∧ b ∈ s ⇒ ∃t. connected t ∧ t ⊆ s ∧ a ∈ t ∧ b ∈ t
- CONNECTED_FROM_OPEN_UNION_AND_INTER
-
⊢ ∀s t.
open s ∧ open t ∧ connected (s ∪ t) ∧ connected (s ∩ t) ⇒
connected s ∧ connected t
- CONNECTED_FROM_CLOSED_UNION_AND_INTER
-
⊢ ∀s t.
closed s ∧ closed t ∧ connected (s ∪ t) ∧ connected (s ∩ t) ⇒
connected s ∧ connected t
- CONNECTED_EQUIVALENCE_RELATION_GEN
-
⊢ ∀P R s.
connected s ∧ (∀x y. R x y ⇒ R y x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧
(∀t a. open_in (subtopology euclidean s) t ∧ a ∈ t ⇒ ∃z. z ∈ t ∧ P z) ∧
(∀a.
a ∈ s ⇒
∃t.
open_in (subtopology euclidean s) t ∧ a ∈ t ∧
∀x y. x ∈ t ∧ y ∈ t ∧ P x ∧ P y ⇒ R x y) ⇒
∀a b. a ∈ s ∧ b ∈ s ∧ P a ∧ P b ⇒ R a b
- CONNECTED_EQUIVALENCE_RELATION
-
⊢ ∀R s.
connected s ∧ (∀x y. R x y ⇒ R y x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧
(∀a.
a ∈ s ⇒
∃t. open_in (subtopology euclidean s) t ∧ a ∈ t ∧ ∀x. x ∈ t ⇒ R a x) ⇒
∀a b. a ∈ s ∧ b ∈ s ⇒ R a b
- CONNECTED_EQ_CONNECTED_COMPONENTS_EQ
-
⊢ ∀s. connected s ⇔ ∀c c'. c ∈ components s ∧ c' ∈ components s ⇒ (c = c')
- CONNECTED_EQ_CONNECTED_COMPONENT_EQ
-
⊢ ∀s.
connected s ⇔
∀x y.
x ∈ s ∧ y ∈ s ⇒ (connected_component s x = connected_component s y)
- CONNECTED_EQ_COMPONENTS_SUBSET_SING_EXISTS
-
⊢ ∀s. connected s ⇔ ∃a. components s ⊆ {a}
- CONNECTED_EQ_COMPONENTS_SUBSET_SING
-
⊢ ∀s. connected s ⇔ components s ⊆ {s}
- CONNECTED_EMPTY
-
⊢ connected ∅
- CONNECTED_DISJOINT_BIGUNION_OPEN_UNIQUE
-
⊢ ∀f f'.
pairwise DISJOINT f ∧ pairwise DISJOINT f' ∧
(∀s. s ∈ f ⇒ open s ∧ connected s ∧ s ≠ ∅) ∧
(∀s. s ∈ f' ⇒ open s ∧ connected s ∧ s ≠ ∅) ∧ (BIGUNION f = BIGUNION f') ⇒
(f = f')
- CONNECTED_DIFF_OPEN_FROM_CLOSED
-
⊢ ∀s t u.
s ⊆ t ∧ t ⊆ u ∧ open s ∧ closed t ∧ connected u ∧ connected (t DIFF s) ⇒
connected (u DIFF s)
- CONNECTED_CONTINUOUS_IMAGE
-
⊢ ∀f s. f continuous_on s ∧ connected s ⇒ connected (IMAGE f s)
- CONNECTED_CONNECTED_COMPONENT_SET
-
⊢ ∀s. connected s ⇔ ∀x. x ∈ s ⇒ (connected_component s x = s)
- CONNECTED_CONNECTED_COMPONENT
-
⊢ ∀s x. connected (connected_component s x)
- CONNECTED_COMPONENT_UNIV
-
⊢ ∀x. connected_component 𝕌(:real) x = 𝕌(:real)
- CONNECTED_COMPONENT_UNIQUE
-
⊢ ∀s c x.
x ∈ c ∧ c ⊆ s ∧ connected c ∧
(∀c'. x ∈ c' ∧ c' ⊆ s ∧ connected c' ⇒ c' ⊆ c) ⇒
(connected_component s x = c)
- CONNECTED_COMPONENT_TRANS
-
⊢ ∀s x y.
connected_component s x y ∧ connected_component s y z ⇒
connected_component s x z
- CONNECTED_COMPONENT_SYM_EQ
-
⊢ ∀s x y. connected_component s x y ⇔ connected_component s y x
- CONNECTED_COMPONENT_SYM
-
⊢ ∀s x y. connected_component s x y ⇒ connected_component s y x
- CONNECTED_COMPONENT_SUBSET
-
⊢ ∀s x. connected_component s x ⊆ s
- CONNECTED_COMPONENT_SET
-
⊢ ∀s x.
connected_component s x = {y | ∃t. connected t ∧ t ⊆ s ∧ x ∈ t ∧ y ∈ t}
- CONNECTED_COMPONENT_REFL_EQ
-
⊢ ∀s x. connected_component s x x ⇔ x ∈ s
- CONNECTED_COMPONENT_REFL
-
⊢ ∀s x. x ∈ s ⇒ connected_component s x x
- CONNECTED_COMPONENT_OVERLAP
-
⊢ ∀s a b.
connected_component s a ∩ connected_component s b ≠ ∅ ⇔
a ∈ s ∧ b ∈ s ∧ (connected_component s a = connected_component s b)
- CONNECTED_COMPONENT_OF_SUBSET
-
⊢ ∀s t x. s ⊆ t ∧ connected_component s x y ⇒ connected_component t x y
- CONNECTED_COMPONENT_NONOVERLAP
-
⊢ ∀s a b.
(connected_component s a ∩ connected_component s b = ∅) ⇔
a ∉ s ∨ b ∉ s ∨ connected_component s a ≠ connected_component s b
- CONNECTED_COMPONENT_MONO
-
⊢ ∀s t x. s ⊆ t ⇒ connected_component s x ⊆ connected_component t x
- CONNECTED_COMPONENT_MAXIMAL
-
⊢ ∀s t x. x ∈ t ∧ connected t ∧ t ⊆ s ⇒ t ⊆ connected_component s x
- CONNECTED_COMPONENT_INTERMEDIATE_SUBSET
-
⊢ ∀t u a.
connected_component u a ⊆ t ∧ t ⊆ u ⇒
(connected_component t a = connected_component u a)
- CONNECTED_COMPONENT_IN
-
⊢ ∀s x y. connected_component s x y ⇒ x ∈ s ∧ y ∈ s
- CONNECTED_COMPONENT_IDEMP
-
⊢ ∀s x.
connected_component (connected_component s x) x =
connected_component s x
- CONNECTED_COMPONENT_EQUIVALENCE_RELATION
-
⊢ ∀R s.
(∀x y. R x y ⇒ R y x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧
(∀a.
a ∈ s ⇒
∃t. open_in (subtopology euclidean s) t ∧ a ∈ t ∧ ∀x. x ∈ t ⇒ R a x) ⇒
∀a b. connected_component s a b ⇒ R a b
- CONNECTED_COMPONENT_EQ_UNIV
-
⊢ ∀s x. (connected_component s x = 𝕌(:real)) ⇔ (s = 𝕌(:real))
- CONNECTED_COMPONENT_EQ_SELF
-
⊢ ∀s x. connected s ∧ x ∈ s ⇒ (connected_component s x = s)
- CONNECTED_COMPONENT_EQ_EQ
-
⊢ ∀s x y.
(connected_component s x = connected_component s y) ⇔
x ∉ s ∧ y ∉ s ∨ x ∈ s ∧ y ∈ s ∧ connected_component s x y
- CONNECTED_COMPONENT_EQ_EMPTY
-
⊢ ∀s x. (connected_component s x = ∅) ⇔ x ∉ s
- CONNECTED_COMPONENT_EQ
-
⊢ ∀s x y.
y ∈ connected_component s x ⇒
(connected_component s y = connected_component s x)
- CONNECTED_COMPONENT_EMPTY
-
⊢ ∀x. connected_component ∅ x = ∅
- CONNECTED_COMPONENT_DISJOINT
-
⊢ ∀s a b.
DISJOINT (connected_component s a) (connected_component s b) ⇔
a ∉ connected_component s b
- CONNECTED_COMPONENT_BIGUNION
-
⊢ ∀s x. connected_component s x = BIGUNION {t | connected t ∧ x ∈ t ∧ t ⊆ s}
- CONNECTED_CLOSURE
-
⊢ ∀s. connected s ⇒ connected (closure s)
- CONNECTED_CLOSED_SET
-
⊢ ∀s.
closed s ⇒
(connected s ⇔
¬∃e1 e2.
closed e1 ∧ closed e2 ∧ e1 ≠ ∅ ∧ e2 ≠ ∅ ∧ (e1 ∪ e2 = s) ∧
(e1 ∩ e2 = ∅))
- CONNECTED_CLOSED_MONOTONE_PREIMAGE
-
⊢ ∀f s t.
f continuous_on s ∧ (IMAGE f s = t) ∧
(∀c.
closed_in (subtopology euclidean s) c ⇒
closed_in (subtopology euclidean t) (IMAGE f c)) ∧
(∀y. y ∈ t ⇒ connected {x | x ∈ s ∧ (f x = y)}) ⇒
∀c. connected c ∧ c ⊆ t ⇒ connected {x | x ∈ s ∧ f x ∈ c}
- CONNECTED_CLOSED_IN_EQ
-
⊢ ∀s.
connected s ⇔
¬∃e1 e2.
closed_in (subtopology euclidean s) e1 ∧
closed_in (subtopology euclidean s) e2 ∧ (e1 ∪ e2 = s) ∧
(e1 ∩ e2 = ∅) ∧ e1 ≠ ∅ ∧ e2 ≠ ∅
- CONNECTED_CLOSED_IN
-
⊢ ∀s.
connected s ⇔
¬∃e1 e2.
closed_in (subtopology euclidean s) e1 ∧
closed_in (subtopology euclidean s) e2 ∧ s ⊆ e1 ∪ e2 ∧
(e1 ∩ e2 = ∅) ∧ e1 ≠ ∅ ∧ e2 ≠ ∅
- CONNECTED_CLOSED
-
⊢ ∀s.
connected s ⇔
¬∃e1 e2.
closed e1 ∧ closed e2 ∧ s ⊆ e1 ∪ e2 ∧ (e1 ∩ e2 ∩ s = ∅) ∧
e1 ∩ s ≠ ∅ ∧ e2 ∩ s ≠ ∅
- CONNECTED_CLOPEN
-
⊢ ∀s.
connected s ⇔
∀t.
open_in (subtopology euclidean s) t ∧
closed_in (subtopology euclidean s) t ⇒
(t = ∅) ∨ (t = s)
- CONNECTED_CHAIN_GEN
-
⊢ ∀f.
(∀s. s ∈ f ⇒ closed s ∧ connected s) ∧ (∃s. s ∈ f ∧ compact s) ∧
(∀s t. s ∈ f ∧ t ∈ f ⇒ s ⊆ t ∨ t ⊆ s) ⇒
connected (BIGINTER f)
- CONNECTED_CHAIN
-
⊢ ∀f.
(∀s. s ∈ f ⇒ compact s ∧ connected s) ∧
(∀s t. s ∈ f ∧ t ∈ f ⇒ s ⊆ t ∨ t ⊆ s) ⇒
connected (BIGINTER f)
- CONNECTED_BIGUNION
-
⊢ ∀P. (∀s. s ∈ P ⇒ connected s) ∧ BIGINTER P ≠ ∅ ⇒ connected (BIGUNION P)
- CONDENSATION_POINT_OF_SUBSET
-
⊢ ∀x s t. x condensation_point_of s ∧ s ⊆ t ⇒ x condensation_point_of t
- CONDENSATION_POINT_INFINITE_CBALL
-
⊢ ∀s x. x condensation_point_of s ⇔ ∀e. 0 < e ⇒ ¬COUNTABLE (s ∩ cball (x,e))
- CONDENSATION_POINT_INFINITE_BALL_CBALL
-
⊢ (∀s x. x condensation_point_of s ⇔ ∀e. 0 < e ⇒ ¬COUNTABLE (s ∩ ball (x,e))) ∧
∀s x. x condensation_point_of s ⇔ ∀e. 0 < e ⇒ ¬COUNTABLE (s ∩ cball (x,e))
- CONDENSATION_POINT_INFINITE_BALL
-
⊢ ∀s x. x condensation_point_of s ⇔ ∀e. 0 < e ⇒ ¬COUNTABLE (s ∩ ball (x,e))
- CONDENSATION_POINT_IMP_LIMPT
-
⊢ ∀x s. x condensation_point_of s ⇒ x limit_point_of s
- COMPONENTS_UNIV
-
⊢ components 𝕌(:real) = {𝕌(:real)}
- COMPONENTS_UNIQUE_EQ
-
⊢ ∀s k.
(components s = k) ⇔
(BIGUNION k = s) ∧
∀c.
c ∈ k ⇒
connected c ∧ c ≠ ∅ ∧ ∀c'. connected c' ∧ c ⊆ c' ∧ c' ⊆ s ⇒ (c' = c)
- COMPONENTS_UNIQUE
-
⊢ ∀s k.
(BIGUNION k = s) ∧
(∀c.
c ∈ k ⇒
connected c ∧ c ≠ ∅ ∧
∀c'. connected c' ∧ c ⊆ c' ∧ c' ⊆ s ⇒ (c' = c)) ⇒
(components s = k)
- COMPONENTS_NONOVERLAP
-
⊢ ∀s c c'. c ∈ components s ∧ c' ∈ components s ⇒ ((c ∩ c' = ∅) ⇔ c ≠ c')
- COMPONENTS_MAXIMAL
-
⊢ ∀s t c. c ∈ components s ∧ connected t ∧ t ⊆ s ∧ c ∩ t ≠ ∅ ⇒ t ⊆ c
- COMPONENTS_INTERMEDIATE_SUBSET
-
⊢ ∀s t u. s ∈ components u ∧ s ⊆ t ∧ t ⊆ u ⇒ s ∈ components t
- COMPONENTS_EQ_SING_N_EXISTS
-
⊢ (∀s. (components s = {s}) ⇔ connected s ∧ s ≠ ∅) ∧
∀s. (∃a. components s = {a}) ⇔ connected s ∧ s ≠ ∅
- COMPONENTS_EQ_SING_EXISTS
-
⊢ ∀s. (∃a. components s = {a}) ⇔ connected s ∧ s ≠ ∅
- COMPONENTS_EQ_SING
-
⊢ ∀s. (components s = {s}) ⇔ connected s ∧ s ≠ ∅
- COMPONENTS_EQ_EMPTY
-
⊢ ∀s. (components s = ∅) ⇔ (s = ∅)
- COMPONENTS_EQ
-
⊢ ∀s c c'. c ∈ components s ∧ c' ∈ components s ⇒ ((c = c') ⇔ c ∩ c' ≠ ∅)
- COMPONENTS_EMPTY
-
⊢ components ∅ = ∅
- COMPLETE_UNIV
-
⊢ complete 𝕌(:real)
- COMPLETE_ISOMETRIC_IMAGE
-
⊢ ∀f s e.
0 < e ∧ subspace s ∧ linear f ∧ (∀x. x ∈ s ⇒ abs (f x) ≥ e * abs x) ∧
complete s ⇒
complete (IMAGE f s)
- COMPLETE_INJECTIVE_LINEAR_IMAGE_EQ
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(complete (IMAGE f s) ⇔ complete s)
- COMPLETE_INJECTIVE_LINEAR_IMAGE
-
⊢ ∀f.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
∀s. complete s ⇒ complete (IMAGE f s)
- COMPLETE_EQ_CLOSED
-
⊢ ∀s. complete s ⇔ closed s
- COMPLEMENT_CONNECTED_COMPONENT_BIGUNION
-
⊢ ∀s x.
s DIFF connected_component s x =
BIGUNION
({connected_component s y | y | y ∈ s} DELETE connected_component s x)
- COMPACT_UNION
-
⊢ ∀s t. compact s ∧ compact t ⇒ compact (s ∪ t)
- COMPACT_UNIFORMLY_EQUICONTINUOUS
-
⊢ ∀fs s.
(∀x e.
x ∈ s ∧ 0 < e ⇒
∃d.
0 < d ∧
∀f x'. f ∈ fs ∧ x' ∈ s ∧ dist (x',x) < d ⇒ dist (f x',f x) < e) ∧
compact s ⇒
∀e.
0 < e ⇒
∃d.
0 < d ∧
∀f x x'.
f ∈ fs ∧ x ∈ s ∧ x' ∈ s ∧ dist (x',x) < d ⇒
dist (f x',f x) < e
- COMPACT_UNIFORMLY_CONTINUOUS
-
⊢ ∀f s. f continuous_on s ∧ compact s ⇒ f uniformly_continuous_on s
- COMPACT_TRANSLATION_EQ
-
⊢ ∀a s. compact (IMAGE (λx. a + x) s) ⇔ compact s
- COMPACT_TRANSLATION
-
⊢ ∀s a. compact s ⇒ compact (IMAGE (λx. a + x) s)
- COMPACT_SPHERE
-
⊢ ∀a r. compact (sphere (a,r))
- COMPACT_SING
-
⊢ ∀a. compact {a}
- COMPACT_SEQUENCE_WITH_LIMIT
-
⊢ ∀f l. (f --> l) sequentially ⇒ compact (l INSERT IMAGE f 𝕌(:num))
- COMPACT_SCALING
-
⊢ ∀s c. compact s ⇒ compact (IMAGE (λx. c * x) s)
- COMPACT_REAL_LEMMA
-
⊢ ∀s b.
(∀n. abs (s n) ≤ b) ⇒
∃l r.
(∀m n. m < n ⇒ r m < r n) ∧
∀e. 0 < e ⇒ ∃N. ∀n. N ≤ n ⇒ abs (s (r n) − l) < e
- COMPACT_NEST
-
⊢ ∀s.
(∀n. compact (s n) ∧ s n ≠ ∅) ∧ (∀m n. m ≤ n ⇒ s n ⊆ s m) ⇒
BIGINTER {s n | n ∈ 𝕌(:num)} ≠ ∅
- COMPACT_NEGATIONS
-
⊢ ∀s. compact s ⇒ compact (IMAGE (λx. -x) s)
- COMPACT_LINEAR_IMAGE
-
⊢ ∀f s. compact s ∧ linear f ⇒ compact (IMAGE f s)
- COMPACT_LEMMA
-
⊢ ∀s.
bounded s ∧ (∀n. x n ∈ s) ⇒
∃l r.
(∀m n. m < n ⇒ r m < r n) ∧
∀e. 0 < e ⇒ ∃N. ∀n i. N ≤ n ⇒ abs (x (r n) − l) < e
- COMPACT_INTERVAL_EQ
-
⊢ (∀a b. compact (interval [(a,b)])) ∧
∀a b. compact (interval (a,b)) ⇔ (interval (a,b) = ∅)
- COMPACT_INTERVAL
-
⊢ ∀a b. compact (interval [(a,b)])
- COMPACT_INTER_CLOSED
-
⊢ ∀s t. compact s ∧ closed t ⇒ compact (s ∩ t)
- COMPACT_INTER
-
⊢ ∀s t. compact s ∧ compact t ⇒ compact (s ∩ t)
- COMPACT_INSERT
-
⊢ ∀a s. compact s ⇒ compact (a INSERT s)
- COMPACT_IMP_TOTALLY_BOUNDED
-
⊢ ∀s.
compact s ⇒
∀e.
0 < e ⇒
∃k. FINITE k ∧ k ⊆ s ∧ s ⊆ BIGUNION (IMAGE (λx. ball (x,e)) k)
- COMPACT_IMP_HEINE_BOREL
-
⊢ ∀s.
compact s ⇒
∀f.
(∀t. t ∈ f ⇒ open t) ∧ s ⊆ BIGUNION f ⇒
∃f'. f' ⊆ f ∧ FINITE f' ∧ s ⊆ BIGUNION f'
- COMPACT_IMP_FIP
-
⊢ ∀s f.
compact s ∧ (∀t. t ∈ f ⇒ closed t) ∧
(∀f'. FINITE f' ∧ f' ⊆ f ⇒ s ∩ BIGINTER f' ≠ ∅) ⇒
s ∩ BIGINTER f ≠ ∅
- COMPACT_IMP_COMPLETE
-
⊢ ∀s. compact s ⇒ complete s
- COMPACT_IMP_CLOSED
-
⊢ ∀s. compact s ⇒ closed s
- COMPACT_IMP_BOUNDED
-
⊢ ∀s. compact s ⇒ bounded s
- COMPACT_FRONTIER_BOUNDED
-
⊢ ∀s. bounded s ⇒ compact (frontier s)
- COMPACT_FRONTIER
-
⊢ ∀s. compact s ⇒ compact (frontier s)
- COMPACT_FIP
-
⊢ ∀f.
(∀t. t ∈ f ⇒ compact t) ∧ (∀f'. FINITE f' ∧ f' ⊆ f ⇒ BIGINTER f' ≠ ∅) ⇒
BIGINTER f ≠ ∅
- COMPACT_EQ_HEINE_BOREL_SUBTOPOLOGY
-
⊢ ∀s.
compact s ⇔
∀f.
(∀t. t ∈ f ⇒ open_in (subtopology euclidean s) t) ∧ s ⊆ BIGUNION f ⇒
∃f'. f' ⊆ f ∧ FINITE f' ∧ s ⊆ BIGUNION f'
- COMPACT_EQ_HEINE_BOREL
-
⊢ ∀s.
compact s ⇔
∀f.
(∀t. t ∈ f ⇒ open t) ∧ s ⊆ BIGUNION f ⇒
∃f'. f' ⊆ f ∧ FINITE f' ∧ s ⊆ BIGUNION f'
- COMPACT_EQ_BOUNDED_CLOSED
-
⊢ ∀s. compact s ⇔ bounded s ∧ closed s
- COMPACT_EQ_BOLZANO_WEIERSTRASS
-
⊢ ∀s. compact s ⇔ ∀t. INFINITE t ∧ t ⊆ s ⇒ ∃x. x ∈ s ∧ x limit_point_of t
- COMPACT_EMPTY
-
⊢ compact ∅
- COMPACT_DIFF
-
⊢ ∀s t. compact s ∧ open t ⇒ compact (s DIFF t)
- COMPACT_CONTINUOUS_IMAGE_EQ
-
⊢ ∀f s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
(f continuous_on s ⇔ ∀t. compact t ∧ t ⊆ s ⇒ compact (IMAGE f t))
- COMPACT_CONTINUOUS_IMAGE
-
⊢ ∀f s. f continuous_on s ∧ compact s ⇒ compact (IMAGE f s)
- COMPACT_COMPONENTS
-
⊢ ∀s c. compact s ∧ c ∈ components s ⇒ compact c
- COMPACT_CLOSURE
-
⊢ ∀s. compact (closure s) ⇔ bounded s
- COMPACT_CLOSED_SUMS
-
⊢ ∀s t. compact s ∧ closed t ⇒ closed {x + y | x ∈ s ∧ y ∈ t}
- COMPACT_CLOSED_DIFFERENCES
-
⊢ ∀s t. compact s ∧ closed t ⇒ closed {x − y | x ∈ s ∧ y ∈ t}
- COMPACT_CHAIN
-
⊢ ∀f.
(∀s. s ∈ f ⇒ compact s ∧ s ≠ ∅) ∧ (∀s t. s ∈ f ∧ t ∈ f ⇒ s ⊆ t ∨ t ⊆ s) ⇒
BIGINTER f ≠ ∅
- COMPACT_CBALL
-
⊢ ∀x e. compact (cball (x,e))
- COMPACT_BIGUNION
-
⊢ ∀s. FINITE s ∧ (∀t. t ∈ s ⇒ compact t) ⇒ compact (BIGUNION s)
- COMPACT_BIGINTER
-
⊢ ∀f. (∀s. s ∈ f ⇒ compact s) ∧ f ≠ ∅ ⇒ compact (BIGINTER f)
- COMPACT_ATTAINS_SUP
-
⊢ ∀s. compact s ∧ s ≠ ∅ ⇒ ∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ y ≤ x
- COMPACT_ATTAINS_INF
-
⊢ ∀s. compact s ∧ s ≠ ∅ ⇒ ∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ x ≤ y
- COMPACT_AFFINITY
-
⊢ ∀s a c. compact s ⇒ compact (IMAGE (λx. a + c * x) s)
- COLLINEAR_TRIPLES
-
⊢ ∀s a b.
a ≠ b ⇒
(collinear (a INSERT b INSERT s) ⇔ ∀x. x ∈ s ⇒ collinear {a; b; x})
- COLLINEAR_SUBSET
-
⊢ ∀s t. collinear t ∧ s ⊆ t ⇒ collinear s
- COLLINEAR_SMALL
-
⊢ ∀s. FINITE s ∧ CARD s ≤ 2 ⇒ collinear s
- COLLINEAR_SING
-
⊢ ∀x. collinear {x}
- COLLINEAR_MIDPOINT
-
⊢ ∀a b. collinear {a; midpoint (a,b); b}
- COLLINEAR_LEMMA_ALT
-
⊢ ∀x y. collinear {0; x; y} ⇔ (x = 0) ∨ ∃c. y = c * x
- COLLINEAR_LEMMA
-
⊢ ∀x y. collinear {0; x; y} ⇔ (x = 0) ∨ (y = 0) ∨ ∃c. y = c * x
- COLLINEAR_EMPTY
-
⊢ collinear ∅
- COLLINEAR_DIST_IN_OPEN_SEGMENT
-
⊢ ∀a b x.
collinear {x; a; b} ∧ dist (x,a) < dist (a,b) ∧ dist (x,b) < dist (a,b) ⇒
x ∈ segment (a,b)
- COLLINEAR_DIST_IN_CLOSED_SEGMENT
-
⊢ ∀a b x.
collinear {x; a; b} ∧ dist (x,a) ≤ dist (a,b) ∧ dist (x,b) ≤ dist (a,b) ⇒
x ∈ segment [(a,b)]
- COLLINEAR_DIST_BETWEEN
-
⊢ ∀a b x.
collinear {x; a; b} ∧ dist (x,a) ≤ dist (a,b) ∧ dist (x,b) ≤ dist (a,b) ⇒
between x (a,b)
- COLLINEAR_BETWEEN_CASES
-
⊢ ∀a b c.
collinear {a; b; c} ⇔
between a (b,c) ∨ between b (c,a) ∨ between c (a,b)
- COLLINEAR_4_3
-
⊢ ∀a b c d.
a ≠ b ⇒
(collinear {a; b; c; d} ⇔ collinear {a; b; c} ∧ collinear {a; b; d})
- COLLINEAR_3_TRANS
-
⊢ ∀a b c d.
collinear {a; b; c} ∧ collinear {b; c; d} ∧ b ≠ c ⇒ collinear {a; b; d}
- COLLINEAR_3_EXPAND
-
⊢ ∀a b c. collinear {a; b; c} ⇔ (a = c) ∨ ∃u. b = u * a + (1 − u) * c
- COLLINEAR_3
-
⊢ ∀x y z. collinear {x; y; z} ⇔ collinear {0; x − y; z − y}
- COLLINEAR_2
-
⊢ ∀x y. collinear {x; y}
- COLLINEAR_1
-
⊢ ∀s. collinear s
- COBOUNDED_INTER_UNBOUNDED
-
⊢ ∀s t. bounded (𝕌(:real) DIFF s) ∧ ¬bounded t ⇒ s ∩ t ≠ ∅
- COBOUNDED_IMP_UNBOUNDED
-
⊢ ∀s. bounded (𝕌(:real) DIFF s) ⇒ ¬bounded s
- CLOSURE_UNIV
-
⊢ closure 𝕌(:real) = 𝕌(:real)
- CLOSURE_UNIQUE
-
⊢ ∀s t.
s ⊆ t ∧ closed t ∧ (∀t'. s ⊆ t' ∧ closed t' ⇒ t ⊆ t') ⇒ (closure s = t)
- CLOSURE_UNION_FRONTIER
-
⊢ ∀s. closure s = s ∪ frontier s
- CLOSURE_UNION
-
⊢ ∀s t. closure (s ∪ t) = closure s ∪ closure t
- CLOSURE_SUMS
-
⊢ ∀s t.
bounded s ∨ bounded t ⇒
(closure {x + y | x ∈ s ∧ y ∈ t} =
{x + y | x ∈ closure s ∧ y ∈ closure t})
- CLOSURE_SUBSET_EQ
-
⊢ ∀s. closure s ⊆ s ⇔ closed s
- CLOSURE_SUBSET
-
⊢ ∀s. s ⊆ closure s
- CLOSURE_SING
-
⊢ ∀x. closure {x} = {x}
- CLOSURE_SEQUENTIAL
-
⊢ ∀s l. l ∈ closure s ⇔ ∃x. (∀n. x n ∈ s) ∧ (x --> l) sequentially
- CLOSURE_OPEN_INTERVAL
-
⊢ ∀a b. interval (a,b) ≠ ∅ ⇒ (closure (interval (a,b)) = interval [(a,b)])
- CLOSURE_OPEN_INTER_SUPERSET
-
⊢ ∀s t. open s ∧ s ⊆ closure t ⇒ (closure (s ∩ t) = closure s)
- CLOSURE_OPEN_INTER_CLOSURE
-
⊢ ∀s t. open s ⇒ (closure (s ∩ closure t) = closure (s ∩ t))
- CLOSURE_OPEN_IN_INTER_CLOSURE
-
⊢ ∀s t u.
open_in (subtopology euclidean u) s ∧ t ⊆ u ⇒
(closure (s ∩ closure t) = closure (s ∩ t))
- CLOSURE_NONEMPTY_OPEN_INTER
-
⊢ ∀s x. x ∈ closure s ⇔ ∀t. x ∈ t ∧ open t ⇒ s ∩ t ≠ ∅
- CLOSURE_NEGATIONS
-
⊢ ∀s. closure (IMAGE (λx. -x) s) = IMAGE (λx. -x) (closure s)
- CLOSURE_MINIMAL_EQ
-
⊢ ∀s t. closed t ⇒ (closure s ⊆ t ⇔ s ⊆ t)
- CLOSURE_MINIMAL
-
⊢ ∀s t. s ⊆ t ∧ closed t ⇒ closure s ⊆ t
- CLOSURE_LINEAR_IMAGE_SUBSET
-
⊢ ∀f s. linear f ⇒ IMAGE f (closure s) ⊆ closure (IMAGE f s)
- CLOSURE_INTERVAL
-
⊢ (∀a b. closure (interval [(a,b)]) = interval [(a,b)]) ∧
∀a b.
closure (interval (a,b)) =
if interval (a,b) = ∅ then ∅ else interval [(a,b)]
- CLOSURE_INTERIOR_UNION_CLOSED
-
⊢ ∀s t.
closed s ∧ closed t ⇒
(closure (interior (s ∪ t)) =
closure (interior s) ∪ closure (interior t))
- CLOSURE_INTERIOR_IDEMP
-
⊢ ∀s. closure (interior (closure (interior s))) = closure (interior s)
- CLOSURE_INTERIOR
-
⊢ ∀s. closure s = 𝕌(:real) DIFF interior (𝕌(:real) DIFF s)
- CLOSURE_INTER_SUBSET
-
⊢ ∀s t. closure (s ∩ t) ⊆ closure s ∩ closure t
- CLOSURE_INJECTIVE_LINEAR_IMAGE
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(closure (IMAGE f s) = IMAGE f (closure s))
- CLOSURE_IMAGE_CLOSURE
-
⊢ ∀f s.
f continuous_on closure s ⇒
(closure (IMAGE f (closure s)) = closure (IMAGE f s))
- CLOSURE_IMAGE_BOUNDED
-
⊢ ∀f s.
f continuous_on closure s ∧ bounded s ⇒
(closure (IMAGE f s) = IMAGE f (closure s))
- CLOSURE_HYPERPLANE
-
⊢ ∀a b. closure {x | a * x = b} = {x | a * x = b}
- CLOSURE_HULL
-
⊢ ∀s. closure s = closed hull s
- CLOSURE_HALFSPACE_LT
-
⊢ ∀a b. a ≠ 0 ⇒ (closure {x | a * x < b} = {x | a * x ≤ b})
- CLOSURE_HALFSPACE_GT
-
⊢ ∀a b. a ≠ 0 ⇒ (closure {x | a * x > b} = {x | a * x ≥ b})
- CLOSURE_HALFSPACE_COMPONENT_LT
-
⊢ ∀a. closure {x | x < a} = {x | x ≤ a}
- CLOSURE_HALFSPACE_COMPONENT_GT
-
⊢ ∀a. closure {x | x > a} = {x | x ≥ a}
- CLOSURE_EQ_EMPTY
-
⊢ ∀s. (closure s = ∅) ⇔ (s = ∅)
- CLOSURE_EQ
-
⊢ ∀s. (closure s = s) ⇔ closed s
- CLOSURE_EMPTY
-
⊢ closure ∅ = ∅
- CLOSURE_COMPLEMENT
-
⊢ ∀s. closure (𝕌(:real) DIFF s) = 𝕌(:real) DIFF interior s
- CLOSURE_CLOSURE
-
⊢ ∀s. closure (closure s) = closure s
- CLOSURE_CLOSED
-
⊢ ∀s. closed s ⇒ (closure s = s)
- CLOSURE_BOUNDED_LINEAR_IMAGE
-
⊢ ∀f s. linear f ∧ bounded s ⇒ (closure (IMAGE f s) = IMAGE f (closure s))
- CLOSURE_BIGUNION
-
⊢ ∀f. FINITE f ⇒ (closure (BIGUNION f) = BIGUNION {closure s | s ∈ f})
- CLOSURE_BIGINTER_SUBSET
-
⊢ ∀f. closure (BIGINTER f) ⊆ BIGINTER (IMAGE closure f)
- CLOSURE_BALL
-
⊢ ∀x e. 0 < e ⇒ (closure (ball (x,e)) = cball (x,e))
- CLOSURE_APPROACHABLE
-
⊢ ∀x s. x ∈ closure s ⇔ ∀e. 0 < e ⇒ ∃y. y ∈ s ∧ dist (y,x) < e
- CLOSEST_POINT_SELF
-
⊢ ∀s x. x ∈ s ⇒ (closest_point s x = x)
- CLOSEST_POINT_REFL
-
⊢ ∀s x. closed s ∧ s ≠ ∅ ⇒ ((closest_point s x = x) ⇔ x ∈ s)
- CLOSEST_POINT_LE
-
⊢ ∀s a x. closed s ∧ x ∈ s ⇒ dist (a,closest_point s a) ≤ dist (a,x)
- CLOSEST_POINT_IN_SET
-
⊢ ∀s a. closed s ∧ s ≠ ∅ ⇒ closest_point s a ∈ s
- CLOSEST_POINT_IN_INTERIOR
-
⊢ ∀s x. closed s ∧ s ≠ ∅ ⇒ (closest_point s x ∈ interior s ⇔ x ∈ interior s)
- CLOSEST_POINT_IN_FRONTIER
-
⊢ ∀s x. closed s ∧ s ≠ ∅ ∧ x ∉ interior s ⇒ closest_point s x ∈ frontier s
- CLOSEST_POINT_EXISTS
-
⊢ ∀s a.
closed s ∧ s ≠ ∅ ⇒
closest_point s a ∈ s ∧
∀y. y ∈ s ⇒ dist (a,closest_point s a) ≤ dist (a,y)
- CLOSED_UNIV
-
⊢ closed 𝕌(:real)
- CLOSED_UNION_COMPACT_SUBSETS
-
⊢ ∀s.
closed s ⇒
∃f.
(∀n. compact (f n)) ∧ (∀n. f n ⊆ s) ∧ (∀n. f n ⊆ f (n + 1)) ∧
(BIGUNION {f n | n ∈ 𝕌(:num)} = s) ∧
∀k. compact k ∧ k ⊆ s ⇒ ∃N. ∀n. n ≥ N ⇒ k ⊆ f n
- CLOSED_UNION
-
⊢ ∀s t. closed s ∧ closed t ⇒ closed (s ∪ t)
- CLOSED_SUBSTANDARD
-
⊢ closed {x | x = 0}
- CLOSED_SUBSET_EQ
-
⊢ ∀u s. closed s ⇒ (closed_in (subtopology euclidean u) s ⇔ s ⊆ u)
- CLOSED_SUBSET
-
⊢ ∀s t. s ⊆ t ∧ closed s ⇒ closed_in (subtopology euclidean t) s
- CLOSED_STANDARD_HYPERPLANE
-
⊢ ∀a. closed {x | x = a}
- CLOSED_SPHERE
-
⊢ ∀a r. closed (sphere (a,r))
- CLOSED_SING
-
⊢ ∀a. closed {a}
- CLOSED_SEQUENTIAL_LIMITS
-
⊢ ∀s. closed s ⇔ ∀x l. (∀n. x n ∈ s) ∧ (x --> l) sequentially ⇒ l ∈ s
- CLOSED_SEGMENT_LINEAR_IMAGE
-
⊢ ∀f a b. linear f ⇒ (segment [(f a,f b)] = IMAGE f (segment [(a,b)]))
- CLOSED_SCALING
-
⊢ ∀s c. closed s ⇒ closed (IMAGE (λx. c * x) s)
- CLOSED_POSITIVE_ORTHANT
-
⊢ closed {x | 0 ≤ x}
- CLOSED_OPEN_INTERVAL
-
⊢ ∀a b. a ≤ b ⇒ (interval [(a,b)] = interval (a,b) ∪ {a; b})
- CLOSED_NEGATIONS
-
⊢ ∀s. closed s ⇒ closed (IMAGE (λx. -x) s)
- CLOSED_MAP_RESTRICT
-
⊢ ∀f s t t'.
(∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)) ∧ t' ⊆ t ⇒
∀u.
closed_in (subtopology euclidean {x | x ∈ s ∧ f x ∈ t'}) u ⇒
closed_in (subtopology euclidean t') (IMAGE f u)
- CLOSED_MAP_OPEN_SUPERSET_PREIMAGE_POINT
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean t) (IMAGE f k)) ⇔
∀u y.
open_in (subtopology euclidean s) u ∧ y ∈ t ∧
{x | x ∈ s ∧ (f x = y)} ⊆ u ⇒
∃v.
open_in (subtopology euclidean t) v ∧ y ∈ v ∧
{x | x ∈ s ∧ f x ∈ v} ⊆ u)
- CLOSED_MAP_OPEN_SUPERSET_PREIMAGE_EQ
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean t) (IMAGE f k)) ⇔
∀u w.
open_in (subtopology euclidean s) u ∧ w ⊆ t ∧
{x | x ∈ s ∧ f x ∈ w} ⊆ u ⇒
∃v.
open_in (subtopology euclidean t) v ∧ w ⊆ v ∧
{x | x ∈ s ∧ f x ∈ v} ⊆ u)
- CLOSED_MAP_OPEN_SUPERSET_PREIMAGE
-
⊢ ∀f s t u w.
(∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean t) (IMAGE f k)) ∧
open_in (subtopology euclidean s) u ∧ w ⊆ t ∧ {x | x ∈ s ∧ f x ∈ w} ⊆ u ⇒
∃v.
open_in (subtopology euclidean t) v ∧ w ⊆ v ∧
{x | x ∈ s ∧ f x ∈ v} ⊆ u
- CLOSED_MAP_IMP_QUOTIENT_MAP
-
⊢ ∀f s.
f continuous_on s ∧
(∀t.
closed_in (subtopology euclidean s) t ⇒
closed_in (subtopology euclidean (IMAGE f s)) (IMAGE f t)) ⇒
∀t.
t ⊆ IMAGE f s ⇒
(open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ t} ⇔
open_in (subtopology euclidean (IMAGE f s)) t)
- CLOSED_MAP_IMP_OPEN_MAP
-
⊢ ∀f s t.
(IMAGE f s = t) ∧
(∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)) ∧
(∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean s) {x | x ∈ s ∧ f x ∈ IMAGE f u}) ⇒
∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t) (IMAGE f u)
- CLOSED_MAP_IFF_UPPER_HEMICONTINUOUS_PREIMAGE
-
⊢ ∀f s t.
IMAGE f s ⊆ t ⇒
((∀u.
closed_in (subtopology euclidean s) u ⇒
closed_in (subtopology euclidean t) (IMAGE f u)) ⇔
∀u.
open_in (subtopology euclidean s) u ⇒
open_in (subtopology euclidean t)
{y | y ∈ t ∧ {x | x ∈ s ∧ (f x = y)} ⊆ u})
- CLOSED_MAP_FROM_COMPOSITION_SURJECTIVE
-
⊢ ∀f g s t u.
f continuous_on s ∧ (IMAGE f s = t) ∧ IMAGE g t ⊆ u ∧
(∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean u) (IMAGE (g ∘ f) k)) ⇒
∀k.
closed_in (subtopology euclidean t) k ⇒
closed_in (subtopology euclidean u) (IMAGE g k)
- CLOSED_MAP_FROM_COMPOSITION_INJECTIVE
-
⊢ ∀f g s t u.
IMAGE f s ⊆ t ∧ IMAGE g t ⊆ u ∧ g continuous_on t ∧
(∀x y. x ∈ t ∧ y ∈ t ∧ (g x = g y) ⇒ (x = y)) ∧
(∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean u) (IMAGE (g ∘ f) k)) ⇒
∀k.
closed_in (subtopology euclidean s) k ⇒
closed_in (subtopology euclidean t) (IMAGE f k)
- CLOSED_MAP_CLOSURES
-
⊢ ∀f.
(∀s. closed s ⇒ closed (IMAGE f s)) ⇔
∀s. closure (IMAGE f s) ⊆ IMAGE f (closure s)
- CLOSED_LIMPTS
-
⊢ ∀s. closed {x | x limit_point_of s}
- CLOSED_LIMPT
-
⊢ ∀s. closed s ⇔ ∀x. x limit_point_of s ⇒ x ∈ s
- CLOSED_INTERVAL_RIGHT
-
⊢ ∀a. closed {x | a ≤ x}
- CLOSED_INTERVAL_LEFT
-
⊢ ∀b. closed {x | x ≤ b}
- CLOSED_INTERVAL_IMAGE_UNIT_INTERVAL
-
⊢ ∀a b.
interval [(a,b)] ≠ ∅ ⇒
(interval [(a,b)] =
IMAGE (λx. a + x) (IMAGE (λx. @f. f = (b − a) * x) (interval [(0,1)])))
- CLOSED_INTERVAL_EQ
-
⊢ (∀a b. closed (interval [(a,b)])) ∧
∀a b. closed (interval (a,b)) ⇔ (interval (a,b) = ∅)
- CLOSED_INTERVAL
-
⊢ ∀a b. closed (interval [(a,b)])
- CLOSED_INTER_COMPACT
-
⊢ ∀s t. closed s ∧ compact t ⇒ compact (s ∩ t)
- CLOSED_INTER
-
⊢ ∀s t. closed s ∧ closed t ⇒ closed (s ∩ t)
- CLOSED_INSERT
-
⊢ ∀a s. closed s ⇒ closed (a INSERT s)
- CLOSED_INJECTIVE_LINEAR_IMAGE_EQ
-
⊢ ∀f s.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
(closed (IMAGE f s) ⇔ closed s)
- CLOSED_INJECTIVE_LINEAR_IMAGE
-
⊢ ∀f.
linear f ∧ (∀x y. (f x = f y) ⇒ (x = y)) ⇒
∀s. closed s ⇒ closed (IMAGE f s)
- CLOSED_INJECTIVE_IMAGE_SUBSPACE
-
⊢ ∀f s.
subspace s ∧ linear f ∧ (∀x. x ∈ s ∧ (f x = 0) ⇒ (x = 0)) ∧ closed s ⇒
closed (IMAGE f s)
- CLOSED_IN_TRANS_EQ
-
⊢ ∀s t.
(∀u.
closed_in (subtopology euclidean t) u ⇒
closed_in (subtopology euclidean s) t) ⇔
closed_in (subtopology euclidean s) t
- CLOSED_IN_TRANS
-
⊢ ∀s t u.
closed_in (subtopology euclidean t) s ∧
closed_in (subtopology euclidean u) t ⇒
closed_in (subtopology euclidean u) s
- CLOSED_IN_SUBTOPOLOGY_UNION
-
⊢ ∀top s t u.
closed_in (subtopology top t) s ∧ closed_in (subtopology top u) s ⇒
closed_in (subtopology top (t ∪ u)) s
- CLOSED_IN_SUBTOPOLOGY_REFL
-
⊢ ∀top u. closed_in (subtopology top u) u ⇔ u ⊆ topspace top
- CLOSED_IN_SUBTOPOLOGY_EMPTY
-
⊢ ∀top s. closed_in (subtopology top ∅) s ⇔ (s = ∅)
- CLOSED_IN_SUBTOPOLOGY
-
⊢ ∀top u s.
closed_in (subtopology top u) s ⇔ ∃t. closed_in top t ∧ (s = t ∩ u)
- CLOSED_IN_SUBSET_TRANS
-
⊢ ∀s t u.
closed_in (subtopology euclidean u) s ∧ s ⊆ t ∧ t ⊆ u ⇒
closed_in (subtopology euclidean t) s
- CLOSED_IN_SING
-
⊢ ∀u x. closed_in (subtopology euclidean u) {x} ⇔ x ∈ u
- CLOSED_IN_REFL
-
⊢ ∀s. closed_in (subtopology euclidean s) s
- CLOSED_IN_LIMPT
-
⊢ ∀s t.
closed_in (subtopology euclidean t) s ⇔
s ⊆ t ∧ ∀x. x limit_point_of s ∧ x ∈ t ⇒ x ∈ s
- CLOSED_IN_INTER_CLOSURE
-
⊢ ∀s t. closed_in (subtopology euclidean s) t ⇔ (s ∩ closure t = t)
- CLOSED_IN_INTER_CLOSED
-
⊢ ∀s t u.
closed_in (subtopology euclidean u) s ∧ closed t ⇒
closed_in (subtopology euclidean u) (s ∩ t)
- CLOSED_IN_IMP_SUBSET
-
⊢ ∀top s t. closed_in (subtopology top s) t ⇒ t ⊆ s
- CLOSED_IN_CONNECTED_COMPONENT
-
⊢ ∀s x. closed_in (subtopology euclidean s) (connected_component s x)
- CLOSED_IN_COMPONENT
-
⊢ ∀s c. c ∈ components s ⇒ closed_in (subtopology euclidean s) c
- CLOSED_IN_COMPACT_EQ
-
⊢ ∀s t.
compact s ⇒ (closed_in (subtopology euclidean s) t ⇔ compact t ∧ t ⊆ s)
- CLOSED_IN_COMPACT
-
⊢ ∀s t. compact s ∧ closed_in (subtopology euclidean s) t ⇒ compact t
- CLOSED_IN_CLOSED_TRANS
-
⊢ ∀s t. closed_in (subtopology euclidean t) s ∧ closed t ⇒ closed s
- CLOSED_IN_CLOSED_INTER
-
⊢ ∀u s. closed s ⇒ closed_in (subtopology euclidean u) (u ∩ s)
- CLOSED_IN_CLOSED_EQ
-
⊢ ∀s t. closed s ⇒ (closed_in (subtopology euclidean s) t ⇔ closed t ∧ t ⊆ s)
- CLOSED_IN_CLOSED
-
⊢ ∀s u. closed_in (subtopology euclidean u) s ⇔ ∃t. closed t ∧ (s = u ∩ t)
- CLOSED_IN
-
⊢ ∀s. closed s ⇔ closed_in euclidean s
- CLOSED_IMP_LOCALLY_COMPACT
-
⊢ ∀s. closed s ⇒ locally compact s
- CLOSED_IMP_FIP_COMPACT
-
⊢ ∀s f.
closed s ∧ (∀t. t ∈ f ⇒ compact t) ∧
(∀f'. FINITE f' ∧ f' ⊆ f ⇒ s ∩ BIGINTER f' ≠ ∅) ⇒
s ∩ BIGINTER f ≠ ∅
- CLOSED_IMP_FIP
-
⊢ ∀s f.
closed s ∧ (∀t. t ∈ f ⇒ closed t) ∧ (∃t. t ∈ f ∧ bounded t) ∧
(∀f'. FINITE f' ∧ f' ⊆ f ⇒ s ∩ BIGINTER f' ≠ ∅) ⇒
s ∩ BIGINTER f ≠ ∅
- CLOSED_HYPERPLANE
-
⊢ ∀a b. closed {x | a * x = b}
- CLOSED_HALFSPACE_LE
-
⊢ ∀a b. closed {x | a * x ≤ b}
- CLOSED_HALFSPACE_GE
-
⊢ ∀a b. closed {x | a * x ≥ b}
- CLOSED_HALFSPACE_COMPONENT_LE
-
⊢ ∀a. closed {x | x ≤ a}
- CLOSED_HALFSPACE_COMPONENT_GE
-
⊢ ∀a. closed {x | x ≥ a}
- CLOSED_FORALL_IN
-
⊢ ∀P Q. (∀a. P a ⇒ closed {x | Q a x}) ⇒ closed {x | (∀a. P a ⇒ Q a x)}
- CLOSED_FORALL
-
⊢ ∀Q. (∀a. closed {x | Q a x}) ⇒ closed {x | (∀a. Q a x)}
- CLOSED_FIP
-
⊢ ∀f.
(∀t. t ∈ f ⇒ closed t) ∧ (∃t. t ∈ f ∧ bounded t) ∧
(∀f'. FINITE f' ∧ f' ⊆ f ⇒ BIGINTER f' ≠ ∅) ⇒
BIGINTER f ≠ ∅
- CLOSED_EMPTY
-
⊢ closed ∅
- CLOSED_DIFF_OPEN_INTERVAL
-
⊢ ∀a b.
interval [(a,b)] DIFF interval (a,b) =
if interval [(a,b)] = ∅ then ∅ else {a; b}
- CLOSED_DIFF
-
⊢ ∀s t. closed s ∧ open t ⇒ closed (s DIFF t)
- CLOSED_CONTAINS_SEQUENTIAL_LIMIT
-
⊢ ∀s x l. closed s ∧ (∀n. x n ∈ s) ∧ (x --> l) sequentially ⇒ l ∈ s
- CLOSED_CONNECTED_COMPONENT
-
⊢ ∀s x. closed s ⇒ closed (connected_component s x)
- CLOSED_COMPONENTS
-
⊢ ∀s c. closed s ∧ c ∈ components s ⇒ closed c
- CLOSED_COMPACT_SUMS
-
⊢ ∀s t. closed s ∧ compact t ⇒ closed {x + y | x ∈ s ∧ y ∈ t}
- CLOSED_COMPACT_DIFFERENCES
-
⊢ ∀s t. closed s ∧ compact t ⇒ closed {x − y | x ∈ s ∧ y ∈ t}
- CLOSED_CLOSURE
-
⊢ ∀s. closed (closure s)
- CLOSED_CBALL
-
⊢ ∀x e. closed (cball (x,e))
- CLOSED_BIGUNION
-
⊢ ∀s. FINITE s ∧ (∀t. t ∈ s ⇒ closed t) ⇒ closed (BIGUNION s)
- CLOSED_BIGINTER_COMPACT
-
⊢ ∀s. closed s ⇔ ∀e. compact (cball (0,e) ∩ s)
- CLOSED_BIGINTER
-
⊢ ∀f. (∀s. s ∈ f ⇒ closed s) ⇒ closed (BIGINTER f)
- CLOSED_AS_GDELTA
-
⊢ ∀s. closed s ⇒ gdelta s
- CLOSED_APPROACHABLE
-
⊢ ∀x s. closed s ⇒ ((∀e. 0 < e ⇒ ∃y. y ∈ s ∧ dist (y,x) < e) ⇔ x ∈ s)
- CLOSED
-
⊢ ∀s.
closed s ⇔
∀x. (∀e. 0 < e ⇒ ∃x'. x' ∈ s ∧ x' ≠ x ∧ abs (x' − x) < e) ⇒ x ∈ s
- CLOPEN_IN_COMPONENTS
-
⊢ ∀u s.
closed_in (subtopology euclidean u) s ∧
open_in (subtopology euclidean u) s ∧ connected s ∧ s ≠ ∅ ⇒
s ∈ components u
- CLOPEN_BIGUNION_COMPONENTS
-
⊢ ∀u s.
closed_in (subtopology euclidean u) s ∧
open_in (subtopology euclidean u) s ⇒
∃k. k ⊆ components u ∧ (s = BIGUNION k)
- CLOPEN
-
⊢ ∀s. closed s ∧ open s ⇔ (s = ∅) ∨ (s = 𝕌(:real))
- CENTRE_IN_CBALL
-
⊢ ∀x e. x ∈ cball (x,e) ⇔ 0 ≤ e
- CENTRE_IN_BALL
-
⊢ ∀x e. x ∈ ball (x,e) ⇔ 0 < e
- CBALL_TRIVIAL
-
⊢ ∀x. cball (x,0) = {x}
- CBALL_TRANSLATION
-
⊢ ∀a x r. cball (a + x,r) = IMAGE (λy. a + y) (cball (x,r))
- CBALL_SING
-
⊢ ∀x e. (e = 0) ⇒ (cball (x,e) = {x})
- CBALL_SCALING
-
⊢ ∀c. 0 < c ⇒ ∀x r. cball (c * x,c * r) = IMAGE (λx. c * x) (cball (x,r))
- CBALL_MIN_INTER
-
⊢ ∀x d e. cball (x,min d e) = cball (x,d) ∩ cball (x,e)
- CBALL_MAX_UNION
-
⊢ ∀a r s. cball (a,max r s) = cball (a,r) ∪ cball (a,s)
- CBALL_LINEAR_IMAGE
-
⊢ ∀f x r.
linear f ∧ (∀y. ∃x. f x = y) ∧ (∀x. abs (f x) = abs x) ⇒
(cball (f x,r) = IMAGE f (cball (x,r)))
- CBALL_INTERVAL_0
-
⊢ ∀e. cball (0,e) = interval [(-e,e)]
- CBALL_INTERVAL
-
⊢ ∀x e. cball (x,e) = interval [(x − e,x + e)]
- CBALL_EQ_SING
-
⊢ ∀x e. (cball (x,e) = {x}) ⇔ (e = 0)
- CBALL_EQ_EMPTY
-
⊢ ∀x e. (cball (x,e) = ∅) ⇔ e < 0
- CBALL_EMPTY
-
⊢ ∀x e. e < 0 ⇒ (cball (x,e) = ∅)
- CBALL_DIFF_SPHERE
-
⊢ ∀a r. cball (a,r) DIFF sphere (a,r) = ball (a,r)
- CBALL_DIFF_BALL
-
⊢ ∀a r. cball (a,r) DIFF ball (a,r) = sphere (a,r)
- CAUCHY_ISOMETRIC
-
⊢ ∀f s e x.
0 < e ∧ subspace s ∧ linear f ∧ (∀x. x ∈ s ⇒ abs (f x) ≥ e * abs x) ∧
(∀n. x n ∈ s) ∧ cauchy (f ∘ x) ⇒
cauchy x
- CAUCHY_IMP_BOUNDED
-
⊢ ∀s. cauchy s ⇒ bounded {y | (∃n. y = s n)}
- CAUCHY_CONTINUOUS_UNIQUENESS_LEMMA
-
⊢ ∀f s.
(∀x. cauchy x ∧ (∀n. x n ∈ s) ⇒ cauchy (f ∘ x)) ⇒
∀a x.
(∀n. x n ∈ s) ∧ (x --> a) sequentially ⇒
∃l.
(f ∘ x --> l) sequentially ∧
∀y.
(∀n. y n ∈ s) ∧ (y --> a) sequentially ⇒
(f ∘ y --> l) sequentially
- CAUCHY_CONTINUOUS_IMP_CONTINUOUS
-
⊢ ∀f s. (∀x. cauchy x ∧ (∀n. x n ∈ s) ⇒ cauchy (f ∘ x)) ⇒ f continuous_on s
- CAUCHY_CONTINUOUS_EXTENDS_TO_CLOSURE
-
⊢ ∀f s.
(∀x. cauchy x ∧ (∀n. x n ∈ s) ⇒ cauchy (f ∘ x)) ⇒
∃g. g continuous_on closure s ∧ ∀x. x ∈ s ⇒ (g x = f x)
- CAUCHY
-
⊢ ∀s. cauchy s ⇔ ∀e. 0 < e ⇒ ∃N. ∀n. n ≥ N ⇒ dist (s n,s N) < e
- CARD_STDBASIS
-
⊢ CARD {1} = 1
- CARD_GE_DIM_INDEPENDENT
-
⊢ ∀v b. b ⊆ v ∧ independent b ∧ dim v ≤ CARD b ⇒ v ⊆ span b
- CARD_FRONTIER_INTERVAL
-
⊢ ∀s. is_interval s ⇒ FINITE (frontier s) ∧ CARD (frontier s) ≤ 2
- CARD_EQ_REAL_IMP_UNCOUNTABLE
-
⊢ ∀s. s ≈ 𝕌(:real) ⇒ ¬COUNTABLE s
- CARD_EQ_REAL
-
⊢ 𝕌(:real) ≈ 𝕌(:num -> bool)
- CARD_EQ_OPEN
-
⊢ ∀s. open s ∧ s ≠ ∅ ⇒ s ≈ 𝕌(:real)
- CARD_EQ_INTERVAL
-
⊢ (∀a b. interval (a,b) ≠ ∅ ⇒ interval [(a,b)] ≈ 𝕌(:real)) ∧
∀a b. interval (a,b) ≠ ∅ ⇒ interval (a,b) ≈ 𝕌(:real)
- CARD_EQ_EUCLIDEAN
-
⊢ 𝕌(:real) ≈ 𝕌(:real)
- CARD_EQ_CBALL
-
⊢ ∀a r. 0 < r ⇒ cball (a,r) ≈ 𝕌(:real)
- CARD_EQ_BALL
-
⊢ ∀a r. 0 < r ⇒ ball (a,r) ≈ 𝕌(:real)
- BOUNDS_LINEAR_0
-
⊢ ∀A B. (∀n. A * n ≤ B) ⇔ (A = 0)
- BOUNDS_LINEAR
-
⊢ ∀A B C. (∀n. A * n ≤ B * n + C) ⇔ A ≤ B
- BOUNDED_UNION
-
⊢ ∀s t. bounded (s ∪ t) ⇔ bounded s ∧ bounded t
- BOUNDED_UNIFORMLY_CONTINUOUS_IMAGE
-
⊢ ∀f s. f uniformly_continuous_on s ∧ bounded s ⇒ bounded (IMAGE f s)
- BOUNDED_TRANSLATION_EQ
-
⊢ ∀a s. bounded (IMAGE (λx. a + x) s) ⇔ bounded s
- BOUNDED_TRANSLATION
-
⊢ ∀a s. bounded s ⇒ bounded (IMAGE (λx. a + x) s)
- BOUNDED_SUMS_IMAGES
-
⊢ ∀f t s.
FINITE s ∧ (∀a. a ∈ s ⇒ bounded {f x a | x ∈ t}) ⇒
bounded {sum s (f x) | x ∈ t}
- BOUNDED_SUMS_IMAGE
-
⊢ ∀f g t.
bounded {f x | x ∈ t} ∧ bounded {g x | x ∈ t} ⇒
bounded {f x + g x | x ∈ t}
- BOUNDED_SUMS
-
⊢ ∀s t. bounded s ∧ bounded t ⇒ bounded {x + y | x ∈ s ∧ y ∈ t}
- BOUNDED_SUBSET_OPEN_INTERVAL_SYMMETRIC
-
⊢ ∀s. bounded s ⇒ ∃a. s ⊆ interval (-a,a)
- BOUNDED_SUBSET_OPEN_INTERVAL
-
⊢ ∀s. bounded s ⇒ ∃a b. s ⊆ interval (a,b)
- BOUNDED_SUBSET_CLOSED_INTERVAL_SYMMETRIC
-
⊢ ∀s. bounded s ⇒ ∃a. s ⊆ interval [(-a,a)]
- BOUNDED_SUBSET_CLOSED_INTERVAL
-
⊢ ∀s. bounded s ⇒ ∃a b. s ⊆ interval [(a,b)]
- BOUNDED_SUBSET_CBALL
-
⊢ ∀s x. bounded s ⇒ ∃r. 0 < r ∧ s ⊆ cball (x,r)
- BOUNDED_SUBSET_BALL
-
⊢ ∀s x. bounded s ⇒ ∃r. 0 < r ∧ s ⊆ ball (x,r)
- BOUNDED_SUBSET
-
⊢ ∀s t. bounded t ∧ s ⊆ t ⇒ bounded s
- BOUNDED_SPHERE
-
⊢ ∀a r. bounded (sphere (a,r))
- BOUNDED_SING
-
⊢ ∀a. bounded {a}
- BOUNDED_SCALING
-
⊢ ∀c s. bounded s ⇒ bounded (IMAGE (λx. c * x) s)
- BOUNDED_POS_LT
-
⊢ ∀s. bounded s ⇔ ∃b. 0 < b ∧ ∀x. x ∈ s ⇒ abs x < b
- BOUNDED_POS
-
⊢ ∀s. bounded s ⇔ ∃b. 0 < b ∧ ∀x. x ∈ s ⇒ abs x ≤ b
- BOUNDED_PARTIAL_SUMS
-
⊢ ∀f k.
bounded {sum (k .. n) f | n ∈ 𝕌(:num)} ⇒
bounded {sum (m .. n) f | m ∈ 𝕌(:num) ∧ n ∈ 𝕌(:num)}
- BOUNDED_NEGATIONS
-
⊢ ∀s. bounded s ⇒ bounded (IMAGE (λx. -x) s)
- BOUNDED_LINEAR_IMAGE
-
⊢ ∀f s. bounded s ∧ linear f ⇒ bounded (IMAGE f s)
- BOUNDED_INTERVAL
-
⊢ (∀a b. bounded (interval [(a,b)])) ∧ ∀a b. bounded (interval (a,b))
- BOUNDED_INTERIOR
-
⊢ ∀s. bounded s ⇒ bounded (interior s)
- BOUNDED_INTER
-
⊢ ∀s t. bounded s ∨ bounded t ⇒ bounded (s ∩ t)
- BOUNDED_INSERT
-
⊢ ∀x s. bounded (x INSERT s) ⇔ bounded s
- BOUNDED_INCREASING_CONVERGENT
-
⊢ ∀s.
bounded {s n | n ∈ 𝕌(:num)} ∧ (∀n. s n ≤ s (SUC n)) ⇒
∃l. (s --> l) sequentially
- BOUNDED_HAS_SUP
-
⊢ ∀s.
bounded s ∧ s ≠ ∅ ⇒
(∀x. x ∈ s ⇒ x ≤ sup s) ∧ ∀b. (∀x. x ∈ s ⇒ x ≤ b) ⇒ sup s ≤ b
- BOUNDED_HAS_INF
-
⊢ ∀s.
bounded s ∧ s ≠ ∅ ⇒
(∀x. x ∈ s ⇒ inf s ≤ x) ∧ ∀b. (∀x. x ∈ s ⇒ b ≤ x) ⇒ b ≤ inf s
- BOUNDED_FRONTIER
-
⊢ ∀s. bounded s ⇒ bounded (frontier s)
- BOUNDED_EQ_BOLZANO_WEIERSTRASS
-
⊢ ∀s. bounded s ⇔ ∀t. t ⊆ s ∧ INFINITE t ⇒ ∃x. x limit_point_of t
- BOUNDED_EMPTY
-
⊢ bounded ∅
- BOUNDED_DIFFS
-
⊢ ∀s t. bounded s ∧ bounded t ⇒ bounded {x − y | x ∈ s ∧ y ∈ t}
- BOUNDED_DIFF
-
⊢ ∀s t. bounded s ⇒ bounded (s DIFF t)
- BOUNDED_DECREASING_CONVERGENT
-
⊢ ∀s.
bounded {s n | n ∈ 𝕌(:num)} ∧ (∀n. s (SUC n) ≤ s n) ⇒
∃l. (s --> l) sequentially
- BOUNDED_COMPONENTWISE
-
⊢ ∀s. bounded s ⇔ bounded (IMAGE (λx. x) s)
- BOUNDED_CLOSURE_EQ
-
⊢ ∀s. bounded (closure s) ⇔ bounded s
- BOUNDED_CLOSURE
-
⊢ ∀s. bounded s ⇒ bounded (closure s)
- BOUNDED_CLOSED_NEST
-
⊢ ∀s.
(∀n. closed (s n)) ∧ (∀n. s n ≠ ∅) ∧ (∀m n. m ≤ n ⇒ s n ⊆ s m) ∧
bounded (s 0) ⇒
∃a. ∀n. a ∈ s n
- BOUNDED_CLOSED_INTERVAL
-
⊢ ∀a b. bounded (interval [(a,b)])
- BOUNDED_CLOSED_IMP_COMPACT
-
⊢ ∀s. bounded s ∧ closed s ⇒ compact s
- BOUNDED_CLOSED_CHAIN
-
⊢ ∀f b.
(∀s. s ∈ f ⇒ closed s ∧ s ≠ ∅) ∧ (∀s t. s ∈ f ∧ t ∈ f ⇒ s ⊆ t ∨ t ⊆ s) ∧
b ∈ f ∧ bounded b ⇒
BIGINTER f ≠ ∅
- BOUNDED_CBALL
-
⊢ ∀x e. bounded (cball (x,e))
- BOUNDED_BIGUNION
-
⊢ ∀f. FINITE f ∧ (∀s. s ∈ f ⇒ bounded s) ⇒ bounded (BIGUNION f)
- BOUNDED_BIGINTER
-
⊢ ∀f. (∃s. s ∈ f ∧ bounded s) ⇒ bounded (BIGINTER f)
- BOUNDED_BALL
-
⊢ ∀x e. bounded (ball (x,e))
- BOLZANO_WEIERSTRASS_IMP_CLOSED
-
⊢ ∀s. (∀t. INFINITE t ∧ t ⊆ s ⇒ ∃x. x ∈ s ∧ x limit_point_of t) ⇒ closed s
- BOLZANO_WEIERSTRASS_IMP_BOUNDED
-
⊢ ∀s. (∀t. INFINITE t ∧ t ⊆ s ⇒ ∃x. x limit_point_of t) ⇒ bounded s
- BOLZANO_WEIERSTRASS_CONTRAPOS
-
⊢ ∀s t. compact s ∧ t ⊆ s ∧ (∀x. x ∈ s ⇒ ¬(x limit_point_of t)) ⇒ FINITE t
- BOLZANO_WEIERSTRASS
-
⊢ ∀s. bounded s ∧ INFINITE s ⇒ ∃x. x limit_point_of s
- BILINEAR_UNIFORMLY_CONTINUOUS_ON_COMPOSE
-
⊢ ∀f g h s.
f uniformly_continuous_on s ∧ g uniformly_continuous_on s ∧ bilinear h ∧
bounded (IMAGE f s) ∧ bounded (IMAGE g s) ⇒
(λx. h (f x) (g x)) uniformly_continuous_on s
- BILINEAR_SWAP
-
⊢ ∀op. bilinear (λx y. op y x) ⇔ bilinear op
- BILINEAR_SUM_PARTIAL_SUC
-
⊢ ∀f g h m n.
bilinear h ⇒
(sum (m .. n) (λk. h (f k) (g (k + 1) − g k)) =
if m ≤ n then
h (f (n + 1)) (g (n + 1)) − h (f m) (g m) −
sum (m .. n) (λk. h (f (k + 1) − f k) (g (k + 1)))
else 0)
- BILINEAR_SUM_PARTIAL_PRE
-
⊢ ∀f g h m n.
bilinear h ⇒
(sum (m .. n) (λk. h (f k) (g k − g (k − 1))) =
if m ≤ n then
h (f (n + 1)) (g n) − h (f m) (g (m − 1)) −
sum (m .. n) (λk. h (f (k + 1) − f k) (g k))
else 0)
- BILINEAR_SUM
-
⊢ ∀h.
bilinear h ∧ FINITE s ∧ FINITE t ⇒
(h (sum s f) (sum t g) = sum (s × t) (λ(i,j). h (f i) (g j)))
- BILINEAR_RZERO
-
⊢ ∀h x. bilinear h ⇒ (h x 0 = 0)
- BILINEAR_RSUB
-
⊢ ∀h x y z. bilinear h ⇒ (h x (y − z) = h x y − h x z)
- BILINEAR_RNEG
-
⊢ ∀h x y. bilinear h ⇒ (h x (-y) = -h x y)
- BILINEAR_RMUL
-
⊢ ∀h c x y. bilinear h ⇒ (h x (c * y) = c * h x y)
- BILINEAR_RADD
-
⊢ ∀h x y z. bilinear h ⇒ (h x (y + z) = h x y + h x z)
- BILINEAR_LZERO
-
⊢ ∀h x. bilinear h ⇒ (h 0 x = 0)
- BILINEAR_LSUB
-
⊢ ∀h x y z. bilinear h ⇒ (h (x − y) z = h x z − h y z)
- BILINEAR_LNEG
-
⊢ ∀h x y. bilinear h ⇒ (h (-x) y = -h x y)
- BILINEAR_LMUL
-
⊢ ∀h c x y. bilinear h ⇒ (h (c * x) y = c * h x y)
- BILINEAR_LADD
-
⊢ ∀h x y z. bilinear h ⇒ (h (x + y) z = h x z + h y z)
- BILINEAR_DOT
-
⊢ bilinear (λx y. x * y)
- BILINEAR_CONTINUOUS_ON_COMPOSE
-
⊢ ∀f g h s.
f continuous_on s ∧ g continuous_on s ∧ bilinear h ⇒
(λx. h (f x) (g x)) continuous_on s
- BILINEAR_CONTINUOUS_COMPOSE
-
⊢ ∀net f g h.
f continuous net ∧ g continuous net ∧ bilinear h ⇒
(λx. h (f x) (g x)) continuous net
- BILINEAR_BOUNDED_POS
-
⊢ ∀h. bilinear h ⇒ ∃B. 0 < B ∧ ∀x y. abs (h x y) ≤ B * abs x * abs y
- BILINEAR_BOUNDED
-
⊢ ∀h. bilinear h ⇒ ∃B. ∀x y. abs (h x y) ≤ B * abs x * abs y
- BIGUNION_MONO_IMAGE
-
⊢ (∀x. x ∈ s ⇒ f x ⊆ g x) ⇒ BIGUNION (IMAGE f s) ⊆ BIGUNION (IMAGE g s)
- BIGUNION_MONO
-
⊢ (∀x. x ∈ s ⇒ ∃y. y ∈ t ∧ x ⊆ y) ⇒ BIGUNION s ⊆ BIGUNION t
- BIGUNION_IMAGE
-
⊢ ∀f s. BIGUNION (IMAGE f s) = {y | ∃x. x ∈ s ∧ y ∈ f x}
- BIGUNION_GSPEC
-
⊢ (∀P f. BIGUNION {f x | P x} = {a | ∃x. P x ∧ a ∈ f x}) ∧
(∀P f. BIGUNION {f x y | P x y} = {a | ∃x y. P x y ∧ a ∈ f x y}) ∧
∀P f. BIGUNION {f x y z | P x y z} = {a | ∃x y z. P x y z ∧ a ∈ f x y z}
- BIGUNION_DIFF
-
⊢ ∀s t. BIGUNION s DIFF t = BIGUNION {x DIFF t | x ∈ s}
- BIGUNION_CONNECTED_COMPONENT
-
⊢ ∀s. BIGUNION {connected_component s x | x | x ∈ s} = s
- BIGUNION_COMPONENTS
-
⊢ ∀u. u = BIGUNION (components u)
- BIGUNION_BIGINTER
-
⊢ ∀s. BIGUNION s = 𝕌(:α) DIFF BIGINTER {𝕌(:α) DIFF t | t ∈ s}
- BIGINTER_IMAGE
-
⊢ ∀f s. BIGINTER (IMAGE f s) = {y | ∀x. x ∈ s ⇒ y ∈ f x}
- BIGINTER_GSPEC
-
⊢ (∀P f. BIGINTER {f x | P x} = {a | ∀x. P x ⇒ a ∈ f x}) ∧
(∀P f. BIGINTER {f x y | P x y} = {a | ∀x y. P x y ⇒ a ∈ f x y}) ∧
∀P f. BIGINTER {f x y z | P x y z} = {a | ∀x y z. P x y z ⇒ a ∈ f x y z}
- BIGINTER_BIGUNION
-
⊢ ∀s. BIGINTER s = 𝕌(:α) DIFF BIGUNION {𝕌(:α) DIFF t | t ∈ s}
- BETWEEN_TRANS_2
-
⊢ ∀a b c d. between a (b,c) ∧ between d (a,b) ⇒ between a (c,d)
- BETWEEN_TRANS
-
⊢ ∀a b c d. between a (b,c) ∧ between d (a,c) ⇒ between d (b,c)
- BETWEEN_SYM
-
⊢ ∀a b x. between x (a,b) ⇔ between x (b,a)
- BETWEEN_REFL_EQ
-
⊢ ∀a x. between x (a,a) ⇔ (x = a)
- BETWEEN_REFL
-
⊢ ∀a b. between a (a,b) ∧ between b (a,b) ∧ between a (a,a)
- BETWEEN_MIDPOINT
-
⊢ ∀a b. between (midpoint (a,b)) (a,b) ∧ between (midpoint (a,b)) (b,a)
- BETWEEN_IN_SEGMENT
-
⊢ ∀x a b. between x (a,b) ⇔ x ∈ segment [(a,b)]
- BETWEEN_IMP_COLLINEAR
-
⊢ ∀a b x. between x (a,b) ⇒ collinear {a; x; b}
- BETWEEN_ANTISYM
-
⊢ ∀a b c. between a (b,c) ∧ between b (a,c) ⇒ (a = b)
- BETWEEN_ABS
-
⊢ ∀a b x. between x (a,b) ⇔ (abs (x − a) * (b − x) = abs (b − x) * (x − a))
- BASIS_HAS_SIZE_DIM
-
⊢ ∀v b. independent b ∧ (span b = v) ⇒ b HAS_SIZE dim v
- BASIS_EXISTS
-
⊢ ∀v. ∃b. b ⊆ v ∧ independent b ∧ v ⊆ span b ∧ b HAS_SIZE dim v
- BASIS_CARD_EQ_DIM
-
⊢ ∀v b. b ⊆ v ∧ v ⊆ span b ∧ independent b ⇒ FINITE b ∧ (CARD b = dim v)
- BANACH_FIX
-
⊢ ∀f s c.
complete s ∧ s ≠ ∅ ∧ 0 ≤ c ∧ c < 1 ∧ IMAGE f s ⊆ s ∧
(∀x y. x ∈ s ∧ y ∈ s ⇒ dist (f x,f y) ≤ c * dist (x,y)) ⇒
∃!x. x ∈ s ∧ (f x = x)
- BALL_UNION_SPHERE
-
⊢ ∀a r. ball (a,r) ∪ sphere (a,r) = cball (a,r)
- BALL_TRIVIAL
-
⊢ ∀x. ball (x,0) = ∅
- BALL_TRANSLATION
-
⊢ ∀a x r. ball (a + x,r) = IMAGE (λy. a + y) (ball (x,r))
- BALL_SUBSET_CBALL
-
⊢ ∀x e. ball (x,e) ⊆ cball (x,e)
- BALL_SCALING
-
⊢ ∀c. 0 < c ⇒ ∀x r. ball (c * x,c * r) = IMAGE (λx. c * x) (ball (x,r))
- BALL_MIN_INTER
-
⊢ ∀a r s. ball (a,min r s) = ball (a,r) ∩ ball (a,s)
- BALL_MAX_UNION
-
⊢ ∀a r s. ball (a,max r s) = ball (a,r) ∪ ball (a,s)
- BALL_LINEAR_IMAGE
-
⊢ ∀f x r.
linear f ∧ (∀y. ∃x. f x = y) ∧ (∀x. abs (f x) = abs x) ⇒
(ball (f x,r) = IMAGE f (ball (x,r)))
- BALL_INTERVAL_0
-
⊢ ∀e. ball (0,e) = interval (-e,e)
- BALL_INTERVAL
-
⊢ ∀x e. ball (x,e) = interval (x − e,x + e)
- BALL_EQ_EMPTY
-
⊢ ∀x e. (ball (x,e) = ∅) ⇔ e ≤ 0
- BALL_EMPTY
-
⊢ ∀x e. e ≤ 0 ⇒ (ball (x,e) = ∅)
- BALL
-
⊢ ∀x r.
(cball (x,r) = interval [(x − r,x + r)]) ∧
(ball (x,r) = interval (x − r,x + r))
- BAIRE_ALT
-
⊢ ∀g s.
locally compact s ∧ s ≠ ∅ ∧ COUNTABLE g ∧ (BIGUNION g = s) ⇒
∃t u. t ∈ g ∧ open_in (subtopology euclidean s) u ∧ u ⊆ closure t
- BAIRE
-
⊢ ∀g s.
locally compact s ∧ COUNTABLE g ∧
(∀t. t ∈ g ⇒ open_in (subtopology euclidean s) t ∧ s ⊆ closure t) ⇒
s ⊆ closure (BIGINTER g)
- AT_POSINFINITY
-
⊢ ∀x y. netord at_posinfinity x y ⇔ x ≥ y
- AT_NEGINFINITY
-
⊢ ∀x y. netord at_neginfinity x y ⇔ x ≤ y
- AT_INFINITY
-
⊢ ∀x y. netord at_infinity x y ⇔ abs x ≥ abs y
- AT
-
⊢ ∀a x y. netord (at a) x y ⇔ 0 < dist (x,a) ∧ dist (x,a) ≤ dist (y,a)
- APPROACHABLE_LT_LE
-
⊢ ∀P f. (∃d. 0 < d ∧ ∀x. f x < d ⇒ P x) ⇔ ∃d. 0 < d ∧ ∀x. f x ≤ d ⇒ P x
- ALWAYS_EVENTUALLY
-
⊢ (∀x. p x) ⇒ eventually p net
- AFFINITY_INVERSES
-
⊢ ∀m c.
m ≠ 0 ⇒
((λx. m * x + c) ∘ (λx. m⁻¹ * x + -(m⁻¹ * c)) = (λx. x)) ∧
((λx. m⁻¹ * x + -(m⁻¹ * c)) ∘ (λx. m * x + c) = (λx. x))
- ADD_SUBR2
-
⊢ ∀m n. m − (m + n) = 0
- ADD_SUBR
-
⊢ ∀m n. n − (m + n) = 0
- ADD_SUB2
-
⊢ ∀m n. m + n − m = n
- ABS_TRIANGLE_LE
-
⊢ ∀x y. abs x + abs y ≤ e ⇒ abs (x + y) ≤ e
- ABS_TRIANGLE_EQ
-
⊢ ∀x y. (abs (x + y) = abs x + abs y) ⇔ (abs x * y = abs y * x)
- ABS_SUM_TRIVIAL_LEMMA
-
⊢ ∀e.
0 < e ⇒
(P ⇒ abs (sum (s ∩ (m .. n)) f) < e ⇔
P ⇒ n < m ∨ abs (sum (s ∩ (m .. n)) f) < e)
- ABS_LE_0
-
⊢ ∀x. abs x ≤ 0 ⇔ (x = 0)
- ABS_CAUCHY_SCHWARZ_EQUAL
-
⊢ ∀x y. (abs (x * y) = abs x * abs y) ⇔ collinear {0; x; y}
- ABS_CAUCHY_SCHWARZ_EQ
-
⊢ ∀x y. (x * y = abs x * abs y) ⇔ (abs x * y = abs y * x)
- ABS_CAUCHY_SCHWARZ_ABS_EQ
-
⊢ ∀x y.
(abs (x * y) = abs x * abs y) ⇔
(abs x * y = abs y * x) ∨ (abs x * y = -abs y * x)