- AE_ALT
-
⊢ ∀m P. (AE x::m. P x) ⇔ ∃N. null_set m N ∧ {x | x ∈ m_space m ∧ ¬P x} ⊆ N
- AE_I
-
⊢ ∀N M P. null_set M N ⇒ {x | x ∈ m_space M ∧ ¬P x} ⊆ N ⇒ AE x::M. P x
- AE_IMP_MEASURABLE_SETS
-
⊢ ∀m P.
complete_measure_space m ∧ (AE x::m. P x) ⇒
{x | x ∈ m_space m ∧ P x} ∈ measurable_sets m
- AE_NOT_IN
-
⊢ ∀N M. null_set M N ⇒ AE x::M. x ∉ N
- AE_THM
-
⊢ ∀m P. (AE x::m. P x) ⇔ almost_everywhere m P
- AE_all_S
-
⊢ ∀M S' P.
measure_space M ⇒
(∀i. S' i ⇒ AE x::M. (λx. P i x) x) ⇒
∀i'. AE x::M. (λx. S' i' ⇒ P i' x) x
- AE_all_countable
-
⊢ ∀t M P.
measure_space M ⇒
((∀i. COUNTABLE (t i) ⇒ AE x::M. (λx. P i x) x) ⇔
∀i. AE x::M. (λx. P i x) x)
- AE_default
-
⊢ ∀P. (AE x. P x) ⇔ AE x::lebesgue. P x
- AE_filter
-
⊢ ∀m P. (AE x::m. P x) ⇔ ∃N. N ∈ null_set m ∧ {x | x ∈ m_space m ∧ x ∉ P} ⊆ N
- AE_iff_measurable
-
⊢ ∀N M P.
measure_space M ∧ N ∈ measurable_sets M ⇒
({x | x ∈ m_space M ∧ ¬P x} = N) ⇒
((AE x::M. P x) ⇔ (measure M N = 0))
- AE_iff_null
-
⊢ ∀M P.
measure_space M ∧ {x | x ∈ m_space M ∧ ¬P x} ∈ measurable_sets M ⇒
((AE x::M. P x) ⇔ null_set M {x | x ∈ m_space M ∧ ¬P x})
- AE_iff_null_sets
-
⊢ ∀N M.
measure_space M ∧ N ∈ measurable_sets M ⇒
(null_set M N ⇔ AE x::M. {x | ¬N x} x)
- AE_impl
-
⊢ ∀P M Q. measure_space M ⇒ (P ⇒ AE x::M. Q x) ⇒ AE x::M. (λx. P ⇒ Q x) x
- AE_not_in
-
⊢ ∀N M. null_set M N ⇒ AE x::M. {x | ¬N x} x
- BOREL_MEASURABLE_INFINITY
-
⊢ {+∞} ∈ subsets Borel ∧ {−∞} ∈ subsets Borel
- BOREL_MEASURABLE_SETS
-
⊢ (∀c. {x | x < c} ∈ subsets Borel) ∧ (∀c. {x | c < x} ∈ subsets Borel) ∧
(∀c. {x | x ≤ c} ∈ subsets Borel) ∧ (∀c. {x | c ≤ x} ∈ subsets Borel) ∧
(∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel) ∧
(∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel) ∧
(∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel) ∧
(∀c d. {x | c < x ∧ x < d} ∈ subsets Borel) ∧ (∀c. {c} ∈ subsets Borel) ∧
∀c. {x | x ≠ c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS1
-
⊢ ∀c. {x | x < c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS10
-
⊢ ∀c. {x | x ≠ c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS2
-
⊢ ∀c. {x | c ≤ x} ∈ subsets Borel
- BOREL_MEASURABLE_SETS3
-
⊢ ∀c. {x | x ≤ c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS4
-
⊢ ∀c. {x | c < x} ∈ subsets Borel
- BOREL_MEASURABLE_SETS5
-
⊢ ∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS6
-
⊢ ∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS7
-
⊢ ∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS8
-
⊢ ∀c d. {x | c < x ∧ x < d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS9
-
⊢ ∀c. {c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_CC
-
⊢ ∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_CO
-
⊢ ∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_CR
-
⊢ ∀c. {x | c ≤ x} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_FINITE
-
⊢ ∀s. FINITE s ⇒ s ∈ subsets Borel
- BOREL_MEASURABLE_SETS_NOT_SING
-
⊢ ∀c. {x | x ≠ c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_OC
-
⊢ ∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_OO
-
⊢ ∀c d. {x | c < x ∧ x < d} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_OR
-
⊢ ∀c. {x | c < x} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_RC
-
⊢ ∀c. {x | x ≤ c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_RO
-
⊢ ∀c. {x | x < c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_SING
-
⊢ ∀c. {c} ∈ subsets Borel
- BOREL_MEASURABLE_SETS_SING'
-
⊢ ∀c. {x | x = c} ∈ subsets Borel
- Borel_def
-
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | x < Normal a}) 𝕌(:real))
- Borel_eq_ge
-
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | Normal a ≤ x}) 𝕌(:real))
- Borel_eq_gr
-
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | Normal a < x}) 𝕌(:real))
- Borel_eq_le
-
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | x ≤ Normal a}) 𝕌(:real))
- FN_ABS
-
⊢ ∀f x. (abs ∘ f) x = f⁺ x + f⁻ x
- FN_ABS'
-
⊢ ∀f. abs ∘ f = (λx. f⁺ x + f⁻ x)
- FN_DECOMP
-
⊢ ∀f x. f x = f⁺ x − f⁻ x
- FN_DECOMP'
-
⊢ ∀f. f = (λx. f⁺ x − f⁻ x)
- FN_MINUS_ABS_ZERO
-
⊢ ∀f. (abs ∘ f)⁻ = (λx. 0)
- FN_MINUS_ADD_LE
-
⊢ ∀f g x.
f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞ ⇒
(λx. f x + g x)⁻ x ≤ f⁻ x + g⁻ x
- FN_MINUS_ALT
-
⊢ ∀f. f⁻ = (λx. -min (f x) 0)
- FN_MINUS_ALT'
-
⊢ ∀f. f⁻ = (λx. -min 0 (f x))
- FN_MINUS_CMUL
-
⊢ ∀f c.
(0 ≤ c ⇒ ((λx. Normal c * f x)⁻ = (λx. Normal c * f⁻ x))) ∧
(c ≤ 0 ⇒ ((λx. Normal c * f x)⁻ = (λx. -Normal c * f⁺ x)))
- FN_MINUS_CMUL_full
-
⊢ ∀f c.
(0 ≤ c ⇒ ((λx. c * f x)⁻ = (λx. c * f⁻ x))) ∧
(c ≤ 0 ⇒ ((λx. c * f x)⁻ = (λx. -c * f⁺ x)))
- FN_MINUS_FMUL
-
⊢ ∀f c. (∀x. 0 ≤ c x) ⇒ ((λx. c x * f x)⁻ = (λx. c x * f⁻ x))
- FN_MINUS_INFTY_IMP
-
⊢ ∀f x. (f⁻ x = +∞) ⇒ (f⁺ x = 0)
- FN_MINUS_LE_ABS
-
⊢ ∀f x. f⁻ x ≤ abs (f x)
- FN_MINUS_NOT_INFTY
-
⊢ ∀f. (∀x. f x ≠ −∞) ⇒ ∀x. f⁻ x ≠ +∞
- FN_MINUS_NOT_INFTY'
-
⊢ ∀f x. f x ≠ −∞ ⇒ f⁻ x ≠ +∞
- FN_MINUS_POS
-
⊢ ∀g x. 0 ≤ g⁻ x
- FN_MINUS_POS_ZERO
-
⊢ ∀g. (∀x. 0 ≤ g x) ⇒ (g⁻ = (λx. 0))
- FN_MINUS_REDUCE
-
⊢ ∀f x. 0 ≤ f x ⇒ (f⁻ x = 0)
- FN_MINUS_TO_PLUS
-
⊢ ∀f. (λx. -f x)⁻ = f⁺
- FN_MINUS_ZERO
-
⊢ (λx. 0)⁻ = (λx. 0)
- FN_PLUS_ABS_SELF
-
⊢ ∀f. (abs ∘ f)⁺ = abs ∘ f
- FN_PLUS_ADD_LE
-
⊢ ∀f g x. (λx. f x + g x)⁺ x ≤ f⁺ x + g⁺ x
- FN_PLUS_ALT
-
⊢ ∀f. f⁺ = (λx. max (f x) 0)
- FN_PLUS_ALT'
-
⊢ ∀f. f⁺ = (λx. max 0 (f x))
- FN_PLUS_CMUL
-
⊢ ∀f c.
(0 ≤ c ⇒ ((λx. Normal c * f x)⁺ = (λx. Normal c * f⁺ x))) ∧
(c ≤ 0 ⇒ ((λx. Normal c * f x)⁺ = (λx. -Normal c * f⁻ x)))
- FN_PLUS_CMUL_full
-
⊢ ∀f c.
(0 ≤ c ⇒ ((λx. c * f x)⁺ = (λx. c * f⁺ x))) ∧
(c ≤ 0 ⇒ ((λx. c * f x)⁺ = (λx. -c * f⁻ x)))
- FN_PLUS_FMUL
-
⊢ ∀f c. (∀x. 0 ≤ c x) ⇒ ((λx. c x * f x)⁺ = (λx. c x * f⁺ x))
- FN_PLUS_INFTY_IMP
-
⊢ ∀f x. (f⁺ x = +∞) ⇒ (f⁻ x = 0)
- FN_PLUS_LE_ABS
-
⊢ ∀f x. f⁺ x ≤ abs (f x)
- FN_PLUS_NEG_ZERO
-
⊢ ∀g. (∀x. g x ≤ 0) ⇒ (g⁺ = (λx. 0))
- FN_PLUS_NOT_INFTY
-
⊢ ∀f. (∀x. f x ≠ +∞) ⇒ ∀x. f⁺ x ≠ +∞
- FN_PLUS_NOT_INFTY'
-
⊢ ∀f x. f x ≠ +∞ ⇒ f⁺ x ≠ +∞
- FN_PLUS_POS
-
⊢ ∀g x. 0 ≤ g⁺ x
- FN_PLUS_POS_ID
-
⊢ ∀g. (∀x. 0 ≤ g x) ⇒ (g⁺ = g)
- FN_PLUS_REDUCE
-
⊢ ∀f x. 0 ≤ f x ⇒ (f⁺ x = f x)
- FN_PLUS_TO_MINUS
-
⊢ ∀f. (λx. -f x)⁺ = f⁻
- FN_PLUS_ZERO
-
⊢ (λx. 0)⁺ = (λx. 0)
- FORALL_IMP_AE
-
⊢ ∀m P. measure_space m ∧ (∀x. x ∈ m_space m ⇒ P x) ⇒ AE x::m. P x
- INDICATOR_FN_ABS
-
⊢ ∀s. abs ∘ 𝟙 s = 𝟙 s
- INDICATOR_FN_ABS_MUL
-
⊢ ∀f s. abs ∘ (λx. f x * 𝟙 s x) = (λx. (abs ∘ f) x * 𝟙 s x)
- INDICATOR_FN_CROSS
-
⊢ ∀s t x y. 𝟙 (s × t) (x,y) = 𝟙 s x * 𝟙 t y
- INDICATOR_FN_DIFF
-
⊢ ∀A B. 𝟙 (A DIFF B) = (λt. 𝟙 A t − 𝟙 (A ∩ B) t)
- INDICATOR_FN_DIFF_SPACE
-
⊢ ∀A B sp. A ⊆ sp ∧ B ⊆ sp ⇒ (𝟙 (A ∩ (sp DIFF B)) = (λt. 𝟙 A t − 𝟙 (A ∩ B) t))
- INDICATOR_FN_EMPTY
-
⊢ ∀x. 𝟙 ∅ x = 0
- INDICATOR_FN_FCP_CROSS
-
⊢ ∀s t x y.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
(𝟙 (fcp_cross s t) (FCP_CONCAT x y) = 𝟙 s x * 𝟙 t y)
- INDICATOR_FN_INTER
-
⊢ ∀A B. 𝟙 (A ∩ B) = (λt. 𝟙 A t * 𝟙 B t)
- INDICATOR_FN_INTER_MIN
-
⊢ ∀A B. 𝟙 (A ∩ B) = (λt. min (𝟙 A t) (𝟙 B t))
- INDICATOR_FN_LE_1
-
⊢ ∀s x. 𝟙 s x ≤ 1
- INDICATOR_FN_MONO
-
⊢ ∀s t x. s ⊆ t ⇒ 𝟙 s x ≤ 𝟙 t x
- INDICATOR_FN_MUL_INTER
-
⊢ ∀A B. (λt. 𝟙 A t * 𝟙 B t) = (λt. 𝟙 (A ∩ B) t)
- INDICATOR_FN_NOT_INFTY
-
⊢ ∀s x. 𝟙 s x ≠ −∞ ∧ 𝟙 s x ≠ +∞
- INDICATOR_FN_POS
-
⊢ ∀s x. 0 ≤ 𝟙 s x
- INDICATOR_FN_SING_0
-
⊢ ∀x y. x ≠ y ⇒ (𝟙 {x} y = 0)
- INDICATOR_FN_SING_1
-
⊢ ∀x y. (x = y) ⇒ (𝟙 {x} y = 1)
- INDICATOR_FN_UNION
-
⊢ ∀A B. 𝟙 (A ∪ B) = (λt. 𝟙 A t + 𝟙 B t − 𝟙 (A ∩ B) t)
- INDICATOR_FN_UNION_MAX
-
⊢ ∀A B. 𝟙 (A ∪ B) = (λt. max (𝟙 A t) (𝟙 B t))
- INDICATOR_FN_UNION_MIN
-
⊢ ∀A B. 𝟙 (A ∪ B) = (λt. min (𝟙 A t + 𝟙 B t) 1)
- IN_LIMINF
-
⊢ ∀A x. x ∈ liminf A ⇔ ∃m. ∀n. m ≤ n ⇒ x ∈ A n
- IN_LIMSUP
-
⊢ ∀A x. x ∈ limsup A ⇔ ∃N. INFINITE N ∧ ∀n. n ∈ N ⇒ x ∈ A n
- IN_MEASURABLE_BOREL
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c. {x | f x < Normal c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_2D_FUNCTION
-
⊢ ∀a X Y f.
sigma_algebra a ∧ X ∈ Borel_measurable a ∧ Y ∈ Borel_measurable a ∧
f ∈ Borel_measurable (Borel × Borel) ⇒
(λx. f (X x,Y x)) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_2D_VECTOR
-
⊢ ∀a X Y.
sigma_algebra a ∧ X ∈ Borel_measurable a ∧ Y ∈ Borel_measurable a ⇒
(λx. (X x,Y x)) ∈ measurable a (Borel × Borel)
- IN_MEASURABLE_BOREL_ABS
-
⊢ ∀a f g.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (g x = abs (f x))) ⇒
g ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_ABS'
-
⊢ ∀a f.
sigma_algebra a ∧ f ∈ Borel_measurable a ⇒ abs ∘ f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_ADD
-
⊢ ∀a f g h.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞) ∧
(∀x. x ∈ space a ⇒ (h x = f x + g x)) ⇒
h ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_ADD'
-
⊢ ∀a f g h.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (h x = f x + g x)) ⇒
h ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_AE_EQ
-
⊢ ∀m f g.
complete_measure_space m ∧ (AE x::m. f x = g x) ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
g ∈ Borel_measurable (m_space m,measurable_sets m)
- IN_MEASURABLE_BOREL_ALL
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
(∀c. {x | f x < c} ∩ space a ∈ subsets a) ∧
(∀c. {x | c ≤ f x} ∩ space a ∈ subsets a) ∧
(∀c. {x | f x ≤ c} ∩ space a ∈ subsets a) ∧
(∀c. {x | c < f x} ∩ space a ∈ subsets a) ∧
(∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
(∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
(∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
(∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
(∀c. {x | f x = c} ∩ space a ∈ subsets a) ∧
∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALL_MEASURE
-
⊢ ∀f m.
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∀c. {x | f x < c} ∩ m_space m ∈ measurable_sets m) ∧
(∀c. {x | c ≤ f x} ∩ m_space m ∈ measurable_sets m) ∧
(∀c. {x | f x ≤ c} ∩ m_space m ∈ measurable_sets m) ∧
(∀c. {x | c < f x} ∩ m_space m ∈ measurable_sets m) ∧
(∀c d. {x | c ≤ f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
(∀c d. {x | c < f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
(∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
(∀c d. {x | c < f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
(∀c. {x | f x = c} ∩ m_space m ∈ measurable_sets m) ∧
∀c. {x | f x ≠ c} ∩ m_space m ∈ measurable_sets m
- IN_MEASURABLE_BOREL_ALT1
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c. {x | Normal c ≤ f x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT1_IMP
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c ≤ f x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT2
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c. {x | f x ≤ Normal c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT2_IMP
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≤ c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT3
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c. {x | Normal c < f x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT3_IMP
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c < f x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT4
-
⊢ ∀f a.
(∀x. f x ≠ −∞) ⇒
(f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c d. {x | Normal c ≤ f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
- IN_MEASURABLE_BOREL_ALT4_IMP
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT5
-
⊢ ∀f a.
(∀x. f x ≠ −∞) ⇒
(f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c d. {x | Normal c < f x ∧ f x ≤ Normal d} ∩ space a ∈ subsets a)
- IN_MEASURABLE_BOREL_ALT5_IMP
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT6
-
⊢ ∀f a.
(∀x. f x ≠ −∞) ⇒
(f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c d. {x | Normal c ≤ f x ∧ f x ≤ Normal d} ∩ space a ∈ subsets a)
- IN_MEASURABLE_BOREL_ALT6_IMP
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT7
-
⊢ ∀f a.
(∀x. f x ≠ −∞) ⇒
(f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c d. {x | Normal c < f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
- IN_MEASURABLE_BOREL_ALT7_IMP
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT8
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x = c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_ALT9
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_BOREL_ABS
-
⊢ abs ∈ Borel_measurable Borel
- IN_MEASURABLE_BOREL_BOREL_I
-
⊢ (λx. x) ∈ Borel_measurable Borel
- IN_MEASURABLE_BOREL_CC
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_CMUL
-
⊢ ∀a f g z.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (g x = Normal z * f x)) ⇒
g ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_CMUL_INDICATOR
-
⊢ ∀a z s.
sigma_algebra a ∧ s ∈ subsets a ⇒
(λx. Normal z * 𝟙 s x) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_CMUL_INDICATOR'
-
⊢ ∀a c s.
sigma_algebra a ∧ s ∈ subsets a ⇒ (λx. c * 𝟙 s x) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_CO
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_CONST
-
⊢ ∀a k f.
sigma_algebra a ∧ (∀x. x ∈ space a ⇒ (f x = k)) ⇒ f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_CONST'
-
⊢ ∀a k. sigma_algebra a ⇒ (λx. k) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_CR
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c ≤ f x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_EQ
-
⊢ ∀m f g.
(∀x. x ∈ m_space m ⇒ (f x = g x)) ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
f ∈ Borel_measurable (m_space m,measurable_sets m)
- IN_MEASURABLE_BOREL_EQ'
-
⊢ ∀a f g.
(∀x. x ∈ space a ⇒ (f x = g x)) ∧ g ∈ Borel_measurable a ⇒
f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_FN_MINUS
-
⊢ ∀a f. f ∈ Borel_measurable a ⇒ f⁻ ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_FN_PLUS
-
⊢ ∀a f. f ∈ Borel_measurable a ⇒ f⁺ ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_IMP
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x < c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_IMP_BOREL
-
⊢ ∀f m.
f ∈ borel_measurable (m_space m,measurable_sets m) ⇒
Normal ∘ f ∈ Borel_measurable (m_space m,measurable_sets m)
- IN_MEASURABLE_BOREL_IMP_BOREL'
-
⊢ ∀a f.
sigma_algebra a ∧ f ∈ borel_measurable a ⇒ Normal ∘ f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_INDICATOR
-
⊢ ∀a A f.
sigma_algebra a ∧ A ∈ subsets a ∧ (∀x. x ∈ space a ⇒ (f x = 𝟙 A x)) ⇒
f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_LE
-
⊢ ∀a f g.
f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
{x | f x ≤ g x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_LT
-
⊢ ∀f g a.
f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
{x | f x < g x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_MAX
-
⊢ ∀a f g.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
(λx. max (f x) (g x)) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MAXIMAL
-
⊢ ∀N. FINITE N ⇒
∀g f a.
sigma_algebra a ∧ (∀n. g n ∈ Borel_measurable a) ∧
(∀x. f x = sup (IMAGE (λn. g n x) N)) ⇒
f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MIN
-
⊢ ∀a f g.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
(λx. min (f x) (g x)) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MINIMAL
-
⊢ ∀N. FINITE N ⇒
∀g f a.
sigma_algebra a ∧ (∀n. g n ∈ Borel_measurable a) ∧
(∀x. f x = inf (IMAGE (λn. g n x) N)) ⇒
f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MINUS
-
⊢ ∀a f g.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (g x = -f x)) ⇒
g ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MONO_SUP
-
⊢ ∀fn f a.
sigma_algebra a ∧ (∀n. fn n ∈ Borel_measurable a) ∧
(∀n x. x ∈ space a ⇒ fn n x ≤ fn (SUC n) x) ∧
(∀x. x ∈ space a ⇒ (f x = sup (IMAGE (λn. fn n x) 𝕌(:num)))) ⇒
f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MUL
-
⊢ ∀a f g h.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (h x = f x * g x)) ∧
(∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ f x ≠ +∞ ∧ g x ≠ −∞ ∧ g x ≠ +∞) ⇒
h ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MUL_INDICATOR
-
⊢ ∀a f s.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ s ∈ subsets a ⇒
(λx. f x * 𝟙 s x) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ
-
⊢ ∀a f.
sigma_algebra a ⇒
(f ∈ Borel_measurable a ⇔ (λx. f x * 𝟙 (space a) x) ∈ Borel_measurable a)
- IN_MEASURABLE_BOREL_NEGINF
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x = −∞} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_NOT_NEGINF
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x ≠ −∞} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_NOT_POSINF
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x ≠ +∞} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_NOT_SING
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_OC
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_OO
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇒
∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_OR
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c < f x} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_PLUS_MINUS
-
⊢ ∀a f.
f ∈ Borel_measurable a ⇔ f⁺ ∈ Borel_measurable a ∧ f⁻ ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_POSINF
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x = +∞} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_POW
-
⊢ ∀n a f.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ f x ≠ +∞) ⇒
(λx. f x pow n) ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_RC
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≤ c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_RO
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x < c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_SING
-
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x = c} ∩ space a ∈ subsets a
- IN_MEASURABLE_BOREL_SQR
-
⊢ ∀a f g.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (g x = (f x)²)) ⇒
g ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_SUB
-
⊢ ∀a f g h.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ g x ≠ +∞ ∨ f x ≠ +∞ ∧ g x ≠ −∞) ∧
(∀x. x ∈ space a ⇒ (h x = f x − g x)) ⇒
h ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_SUB'
-
⊢ ∀a f g h.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (h x = f x − g x)) ⇒
h ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_SUM
-
⊢ ∀a f g s.
FINITE s ∧ sigma_algebra a ∧ (∀i. i ∈ s ⇒ f i ∈ Borel_measurable a) ∧
(∀i x. i ∈ s ∧ x ∈ space a ⇒ f i x ≠ −∞) ∧
(∀x. x ∈ space a ⇒ (g x = ∑ (λi. f i x) s)) ⇒
g ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_SUMINF
-
⊢ ∀fn f a.
sigma_algebra a ∧ (∀n. fn n ∈ Borel_measurable a) ∧
(∀i x. x ∈ space a ⇒ 0 ≤ fn i x) ∧
(∀x. x ∈ space a ⇒ (f x = suminf (λn. fn n x))) ⇒
f ∈ Borel_measurable a
- IN_MEASURABLE_BOREL_TIMES
-
⊢ ∀m f g h.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ (h x = f x * g x)) ⇒
h ∈ Borel_measurable (m_space m,measurable_sets m)
- IN_MEASURABLE_BOREL_TIMES'
-
⊢ ∀a f g h.
sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
(∀x. x ∈ space a ⇒ (h x = f x * g x)) ⇒
h ∈ Borel_measurable a
- MEASURABLE_BOREL
-
⊢ ∀f a.
f ∈ Borel_measurable a ⇔
sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
∀c. PREIMAGE f {x | x < Normal c} ∩ space a ∈ subsets a
- MEASURE_SPACE_LBOREL
-
⊢ measure_space ext_lborel
- SIGMA_ALGEBRA_BOREL
-
⊢ sigma_algebra Borel
- SIGMA_ALGEBRA_BOREL_2D
-
⊢ sigma_algebra (Borel × Borel)
- SIGMA_FINITE_LBOREL
-
⊢ sigma_finite ext_lborel
- SPACE_BOREL
-
⊢ space Borel = 𝕌(:extreal)
- SPACE_BOREL_2D
-
⊢ space (Borel × Borel) = 𝕌(:extreal # extreal)
- absolutely_integrable_on_indicator
-
⊢ ∀A X. indicator A absolutely_integrable_on X ⇔ indicator A integrable_on X
- borel_eq_real_set
-
⊢ borel = (𝕌(:real),IMAGE real_set (subsets Borel))
- borel_imp_lebesgue_measurable
-
⊢ ∀f. f ∈ borel_measurable (space borel,subsets borel) ⇒
f ∈ borel_measurable (m_space lebesgue,measurable_sets lebesgue)
- borel_imp_lebesgue_sets
-
⊢ ∀s. s ∈ subsets borel ⇒ s ∈ measurable_sets lebesgue
- countably_additive_lebesgue
-
⊢ countably_additive lebesgue
- fn_minus
-
⊢ ∀f x. f⁻ x = -min 0 (f x)
- fn_minus_mul_indicator
-
⊢ ∀f s. (λx. f x * 𝟙 s x)⁻ = (λx. f⁻ x * 𝟙 s x)
- fn_plus
-
⊢ ∀f x. f⁺ x = max 0 (f x)
- fn_plus_mul_indicator
-
⊢ ∀f s. (λx. f x * 𝟙 s x)⁺ = (λx. f⁺ x * 𝟙 s x)
- has_integral_indicator_UNIV
-
⊢ ∀s A x.
(indicator (s ∩ A) has_integral x) 𝕌(:real) ⇔
(indicator s has_integral x) A
- has_integral_interval_cube
-
⊢ ∀a b n.
(indicator (interval [(a,b)]) has_integral
content (interval [(a,b)] ∩ line n)) (line n)
- in_borel_measurable_continuous_on
-
⊢ ∀f. f continuous_on 𝕌(:real) ⇒ f ∈ borel_measurable borel
- in_borel_measurable_from_Borel
-
⊢ ∀a f. f ∈ Borel_measurable a ⇒ real ∘ f ∈ borel_measurable a
- in_borel_measurable_imp
-
⊢ ∀m f.
measure_space m ∧
(∀s. open s ⇒ PREIMAGE f s ∩ m_space m ∈ measurable_sets m) ⇒
f ∈ borel_measurable (m_space m,measurable_sets m)
- in_measurable_sigma_pow
-
⊢ ∀m sp N f.
measure_space m ∧ N ⊆ POW sp ∧ f ∈ (m_space m → sp) ∧
(∀y. y ∈ N ⇒ PREIMAGE f y ∩ m_space m ∈ measurable_sets m) ⇒
f ∈ measurable (m_space m,measurable_sets m) (sigma sp N)
- in_sets_lebesgue
-
⊢ ∀A. (∀n. indicator A integrable_on line n) ⇒ A ∈ measurable_sets lebesgue
- in_sets_lebesgue_imp
-
⊢ ∀A n. A ∈ measurable_sets lebesgue ⇒ indicator A integrable_on line n
- indicator_fn_general_cross
-
⊢ ∀cons car cdr s t x y.
pair_operation cons car cdr ⇒
(𝟙 (general_cross cons s t) (cons x y) = 𝟙 s x * 𝟙 t y)
- indicator_fn_normal
-
⊢ ∀s x. ∃r. (𝟙 s x = Normal r) ∧ 0 ≤ r ∧ r ≤ 1
- indicator_fn_split
-
⊢ ∀r s b.
FINITE r ∧ (BIGUNION (IMAGE b r) = s) ∧
(∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ⇒
∀a. a ⊆ s ⇒ (𝟙 a = (λx. ∑ (λi. 𝟙 (a ∩ b i) x) r))
- indicator_fn_suminf
-
⊢ ∀a x.
(∀m n. m ≠ n ⇒ DISJOINT (a m) (a n)) ⇒
(suminf (λi. 𝟙 (a i) x) = 𝟙 (BIGUNION (IMAGE a 𝕌(:num))) x)
- integrable_indicator_UNIV
-
⊢ ∀s A. indicator (s ∩ A) integrable_on 𝕌(:real) ⇔ indicator s integrable_on A
- integral_indicator_UNIV
-
⊢ ∀s A. ∫ 𝕌(:real) (indicator (s ∩ A)) = ∫ A (indicator s)
- integral_one
-
⊢ ∀A. ∫ A (λx. 1) = ∫ 𝕌(:real) (indicator A)
- lambda0_empty
-
⊢ lambda0 ∅ = 0
- lambda0_not_infty
-
⊢ ∀a b.
lambda0 (right_open_interval a b) ≠ +∞ ∧
lambda0 (right_open_interval a b) ≠ −∞
- lambda_closed_interval
-
⊢ ∀a b. a ≤ b ⇒ (lambda (interval [(a,b)]) = Normal (b − a))
- lambda_closed_interval_content
-
⊢ ∀a b. lambda (interval [(a,b)]) = Normal (content (interval [(a,b)]))
- lambda_empty
-
⊢ lambda ∅ = 0
- lambda_eq
-
⊢ ∀m. (∀a b.
measure m (interval [(a,b)]) = Normal (content (interval [(a,b)]))) ∧
measure_space m ∧ (m_space m = space borel) ∧
(measurable_sets m = subsets borel) ⇒
∀s. s ∈ subsets borel ⇒ (lambda s = measure m s)
- lambda_eq_lebesgue
-
⊢ ∀s. s ∈ subsets borel ⇒ (lambda s = measure lebesgue s)
- lambda_not_infty
-
⊢ ∀a b.
lambda (right_open_interval a b) ≠ +∞ ∧
lambda (right_open_interval a b) ≠ −∞
- lambda_open_interval
-
⊢ ∀a b. a ≤ b ⇒ (lambda (interval (a,b)) = Normal (b − a))
- lambda_prop
-
⊢ ∀a b. a ≤ b ⇒ (lambda (right_open_interval a b) = Normal (b − a))
- lambda_sing
-
⊢ ∀c. lambda {c} = 0
- lborel0_additive
-
⊢ additive lborel0
- lborel0_finite_additive
-
⊢ finite_additive lborel0
- lborel0_positive
-
⊢ positive lborel0
- lborel0_premeasure
-
⊢ premeasure lborel0
- lborel0_subadditive
-
⊢ subadditive lborel0
- lborel_subset_lebesgue
-
⊢ measurable_sets lborel ⊆ measurable_sets lebesgue
- lebesgue_closed_interval
-
⊢ ∀a b. a ≤ b ⇒ (measure lebesgue (interval [(a,b)]) = Normal (b − a))
- lebesgue_closed_interval_content
-
⊢ ∀a b.
measure lebesgue (interval [(a,b)]) = Normal (content (interval [(a,b)]))
- lebesgue_empty
-
⊢ measure lebesgue ∅ = 0
- lebesgue_eq_lambda
-
⊢ ∀s. s ∈ subsets borel ⇒ (measure lebesgue s = lambda s)
- lebesgue_measure_iff_LIMSEQ
-
⊢ ∀A m.
A ∈ measurable_sets lebesgue ∧ 0 ≤ m ⇒
((measure lebesgue A = Normal m) ⇔
((λn. ∫ (line n) (indicator A)) ⟶ m) sequentially)
- lebesgue_of_negligible
-
⊢ ∀s. negligible s ⇒ (measure lebesgue s = 0)
- lebesgue_open_interval
-
⊢ ∀a b. a ≤ b ⇒ (measure lebesgue (interval (a,b)) = Normal (b − a))
- lebesgue_sing
-
⊢ ∀c. measure lebesgue {c} = 0
- liminf_limsup
-
⊢ ∀E. COMPL (liminf E) = limsup (COMPL ∘ E)
- liminf_limsup_sp
-
⊢ ∀sp E. (∀n. E n ⊆ sp) ⇒ (sp DIFF liminf E = limsup (λn. sp DIFF E n))
- limseq_indicator_BIGUNION
-
⊢ ∀A x.
((λk. indicator (BIGUNION {A i | i < k}) x) ⟶
indicator (BIGUNION {A i | i ∈ 𝕌(:num)}) x) sequentially
- limsup_suminf_indicator
-
⊢ ∀A. limsup A = {x | suminf (λn. 𝟙 (A n) x) = +∞}
- limsup_suminf_indicator_space
-
⊢ ∀a A.
sigma_algebra a ∧ (∀n. A n ∈ subsets a) ⇒
(limsup A = {x | x ∈ space a ∧ (suminf (λn. 𝟙 (A n) x) = +∞)})
- m_space_lborel
-
⊢ m_space lborel = space borel
- measure_lebesgue
-
⊢ measure lebesgue =
(λA. sup {Normal (∫ (line n) (indicator A)) | n ∈ 𝕌(:num)})
- measure_liminf
-
⊢ ∀p A.
measure_space p ∧ (∀n. A n ∈ measurable_sets p) ⇒
(measure p (liminf A) =
sup (IMAGE (λm. measure p (BIGINTER {A n | m ≤ n})) 𝕌(:num)))
- measure_limsup
-
⊢ ∀p A.
measure_space p ∧ measure p (BIGUNION (IMAGE A 𝕌(:num))) < +∞ ∧
(∀n. A n ∈ measurable_sets p) ⇒
(measure p (limsup A) =
inf (IMAGE (λm. measure p (BIGUNION {A n | m ≤ n})) 𝕌(:num)))
- measure_limsup_finite
-
⊢ ∀p A.
measure_space p ∧ measure p (m_space p) < +∞ ∧
(∀n. A n ∈ measurable_sets p) ⇒
(measure p (limsup A) =
inf (IMAGE (λm. measure p (BIGUNION {A n | m ≤ n})) 𝕌(:num)))
- measure_space_lborel
-
⊢ measure_space lborel
- measure_space_lebesgue
-
⊢ measure_space lebesgue
- negligible_in_lebesgue
-
⊢ ∀s. negligible s ⇒ s ∈ measurable_sets lebesgue
- nonneg_abs
-
⊢ ∀f. nonneg (abs ∘ f)
- nonneg_fn_abs
-
⊢ ∀f. nonneg f ⇒ (abs ∘ f = f)
- nonneg_fn_minus
-
⊢ ∀f. nonneg f ⇒ (f⁻ = (λx. 0))
- nonneg_fn_plus
-
⊢ ∀f. nonneg f ⇒ (f⁺ = f)
- positive_lebesgue
-
⊢ positive lebesgue
- seq_le_imp_lim_le
-
⊢ ∀x y f. (∀n. f n ≤ x) ∧ (f ⟶ y) sequentially ⇒ y ≤ x
- seq_mono_le
-
⊢ ∀f x n. (∀n. f n ≤ f (n + 1)) ∧ (f ⟶ x) sequentially ⇒ f n ≤ x
- set_limsup_alt
-
⊢ ∀E. limsup E = BIGINTER (IMAGE (λn. BIGUNION (IMAGE E (from n))) 𝕌(:num))
- sets_lborel
-
⊢ measurable_sets lborel = subsets borel
- sets_lebesgue
-
⊢ measurable_sets lebesgue = {A | ∀n. indicator A integrable_on line n}
- sigma_algebra_lebesgue
-
⊢ sigma_algebra (𝕌(:real),{A | ∀n. indicator A integrable_on line n})
- sigma_finite_lborel
-
⊢ sigma_finite lborel
- space_lborel
-
⊢ m_space lborel = 𝕌(:real)
- space_lebesgue
-
⊢ m_space lebesgue = 𝕌(:real)
- sup_sequence
-
⊢ ∀f l.
mono_increasing f ⇒
((f ⟶ l) sequentially ⇔
(sup (IMAGE (λn. Normal (f n)) 𝕌(:num)) = Normal l))