Theory "borel"

Parents     real_borel   measure

Signature

Constant Type
AE :(real -> bool) -> bool
Borel :extreal algebra
almost_everywhere :α m_space -> (α -> bool) -> bool
ext_indicator_fn :(α -> bool) -> α -> extreal
ext_lborel :extreal m_space
fn_minus :(α -> extreal) -> α -> extreal
fn_plus :(α -> extreal) -> α -> extreal
lambda0 :real measure
lborel :real m_space
lebesgue :real m_space
nonneg :(α -> extreal) -> bool
set_liminf :(num -> α -> bool) -> α -> bool
set_limsup :(num -> α -> bool) -> α -> bool

Definitions

AE_def
⊢ $AE = (λP. almost_everywhere lebesgue P)
Borel
⊢ Borel =
  (𝕌(:extreal),
   {B' |
    ∃B S.
      (B' = IMAGE Normal B ∪ S) ∧ B ∈ subsets borel ∧
      S ∈ {∅; {−∞}; {+∞}; {−∞; +∞}}})
almost_everywhere_def
⊢ ∀m P.
    almost_everywhere m P ⇔ ∃N. null_set m N ∧ ∀x. x ∈ m_space m DIFF N ⇒ P x
ext_lborel_def
⊢ ext_lborel = (space Borel,subsets Borel,lambda ∘ real_set)
fn_minus_def
⊢ ∀f. f⁻ = (λx. if f x < 0 then -f x else 0)
fn_plus_def
⊢ ∀f. f⁺ = (λx. if 0 < f x then f x else 0)
indicator_fn_def
⊢ ∀s. 𝟙 s = (λx. if x ∈ s then 1 else 0)
lambda0_def
⊢ ∀a b. a ≤ b ⇒ (lambda0 (right_open_interval a b) = Normal (b − a))
lborel_def
⊢ (∀s. s ∈ subsets right_open_intervals ⇒ (lambda s = lambda0 s)) ∧
  ((m_space lborel,measurable_sets lborel) = borel) ∧ measure_space lborel
lebesgue_def
⊢ lebesgue =
  (𝕌(:real),{A | ∀n. indicator A integrable_on line n},
   (λA. sup {Normal (∫ (line n) (indicator A)) | n ∈ 𝕌(:num)}))
nonneg_def
⊢ ∀f. nonneg f ⇔ ∀x. 0 ≤ f x
set_liminf_def
⊢ ∀E. liminf E = BIGUNION (IMAGE (λm. BIGINTER {E n | m ≤ n}) 𝕌(:num))
set_limsup_def
⊢ ∀E. limsup E = BIGINTER (IMAGE (λm. BIGUNION {E n | m ≤ n}) 𝕌(:num))


Theorems

AE_ALT
⊢ ∀m P. (AE x::m. P x) ⇔ ∃N. null_set m N ∧ {x | x ∈ m_space m ∧ ¬P x} ⊆ N
AE_I
⊢ ∀N M P. null_set M N ⇒ {x | x ∈ m_space M ∧ ¬P x} ⊆ N ⇒ AE x::M. P x
AE_IMP_MEASURABLE_SETS
⊢ ∀m P.
    complete_measure_space m ∧ (AE x::m. P x) ⇒
    {x | x ∈ m_space m ∧ P x} ∈ measurable_sets m
AE_NOT_IN
⊢ ∀N M. null_set M N ⇒ AE x::M. x ∉ N
AE_THM
⊢ ∀m P. (AE x::m. P x) ⇔ almost_everywhere m P
AE_all_S
⊢ ∀M S' P.
    measure_space M ⇒
    (∀i. S' i ⇒ AE x::M. (λx. P i x) x) ⇒
    ∀i'. AE x::M. (λx. S' i' ⇒ P i' x) x
AE_all_countable
⊢ ∀t M P.
    measure_space M ⇒
    ((∀i. COUNTABLE (t i) ⇒ AE x::M. (λx. P i x) x) ⇔
     ∀i. AE x::M. (λx. P i x) x)
AE_default
⊢ ∀P. (AE x. P x) ⇔ AE x::lebesgue. P x
AE_filter
⊢ ∀m P. (AE x::m. P x) ⇔ ∃N. N ∈ null_set m ∧ {x | x ∈ m_space m ∧ x ∉ P} ⊆ N
AE_iff_measurable
⊢ ∀N M P.
    measure_space M ∧ N ∈ measurable_sets M ⇒
    ({x | x ∈ m_space M ∧ ¬P x} = N) ⇒
    ((AE x::M. P x) ⇔ (measure M N = 0))
AE_iff_null
⊢ ∀M P.
    measure_space M ∧ {x | x ∈ m_space M ∧ ¬P x} ∈ measurable_sets M ⇒
    ((AE x::M. P x) ⇔ null_set M {x | x ∈ m_space M ∧ ¬P x})
AE_iff_null_sets
⊢ ∀N M.
    measure_space M ∧ N ∈ measurable_sets M ⇒
    (null_set M N ⇔ AE x::M. {x | ¬N x} x)
AE_impl
⊢ ∀P M Q. measure_space M ⇒ (P ⇒ AE x::M. Q x) ⇒ AE x::M. (λx. P ⇒ Q x) x
AE_not_in
⊢ ∀N M. null_set M N ⇒ AE x::M. {x | ¬N x} x
BOREL_MEASURABLE_INFINITY
⊢ {+∞} ∈ subsets Borel ∧ {−∞} ∈ subsets Borel
BOREL_MEASURABLE_SETS
⊢ (∀c. {x | x < c} ∈ subsets Borel) ∧ (∀c. {x | c < x} ∈ subsets Borel) ∧
  (∀c. {x | x ≤ c} ∈ subsets Borel) ∧ (∀c. {x | c ≤ x} ∈ subsets Borel) ∧
  (∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel) ∧
  (∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel) ∧
  (∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel) ∧
  (∀c d. {x | c < x ∧ x < d} ∈ subsets Borel) ∧ (∀c. {c} ∈ subsets Borel) ∧
  ∀c. {x | x ≠ c} ∈ subsets Borel
BOREL_MEASURABLE_SETS1
⊢ ∀c. {x | x < c} ∈ subsets Borel
BOREL_MEASURABLE_SETS10
⊢ ∀c. {x | x ≠ c} ∈ subsets Borel
BOREL_MEASURABLE_SETS2
⊢ ∀c. {x | c ≤ x} ∈ subsets Borel
BOREL_MEASURABLE_SETS3
⊢ ∀c. {x | x ≤ c} ∈ subsets Borel
BOREL_MEASURABLE_SETS4
⊢ ∀c. {x | c < x} ∈ subsets Borel
BOREL_MEASURABLE_SETS5
⊢ ∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel
BOREL_MEASURABLE_SETS6
⊢ ∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel
BOREL_MEASURABLE_SETS7
⊢ ∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel
BOREL_MEASURABLE_SETS8
⊢ ∀c d. {x | c < x ∧ x < d} ∈ subsets Borel
BOREL_MEASURABLE_SETS9
⊢ ∀c. {c} ∈ subsets Borel
BOREL_MEASURABLE_SETS_CC
⊢ ∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel
BOREL_MEASURABLE_SETS_CO
⊢ ∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel
BOREL_MEASURABLE_SETS_CR
⊢ ∀c. {x | c ≤ x} ∈ subsets Borel
BOREL_MEASURABLE_SETS_FINITE
⊢ ∀s. FINITE s ⇒ s ∈ subsets Borel
BOREL_MEASURABLE_SETS_NOT_SING
⊢ ∀c. {x | x ≠ c} ∈ subsets Borel
BOREL_MEASURABLE_SETS_OC
⊢ ∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel
BOREL_MEASURABLE_SETS_OO
⊢ ∀c d. {x | c < x ∧ x < d} ∈ subsets Borel
BOREL_MEASURABLE_SETS_OR
⊢ ∀c. {x | c < x} ∈ subsets Borel
BOREL_MEASURABLE_SETS_RC
⊢ ∀c. {x | x ≤ c} ∈ subsets Borel
BOREL_MEASURABLE_SETS_RO
⊢ ∀c. {x | x < c} ∈ subsets Borel
BOREL_MEASURABLE_SETS_SING
⊢ ∀c. {c} ∈ subsets Borel
BOREL_MEASURABLE_SETS_SING'
⊢ ∀c. {x | x = c} ∈ subsets Borel
Borel_def
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | x < Normal a}) 𝕌(:real))
Borel_eq_ge
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | Normal a ≤ x}) 𝕌(:real))
Borel_eq_gr
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | Normal a < x}) 𝕌(:real))
Borel_eq_le
⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | x ≤ Normal a}) 𝕌(:real))
FN_ABS
⊢ ∀f x. (abs ∘ f) x = f⁺ x + f⁻ x
FN_ABS'
⊢ ∀f. abs ∘ f = (λx. f⁺ x + f⁻ x)
FN_DECOMP
⊢ ∀f x. f x = f⁺ x − f⁻ x
FN_DECOMP'
⊢ ∀f. f = (λx. f⁺ x − f⁻ x)
FN_MINUS_ABS_ZERO
⊢ ∀f. (abs ∘ f)⁻ = (λx. 0)
FN_MINUS_ADD_LE
⊢ ∀f g x.
    f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞ ⇒
    (λx. f x + g x)⁻ x ≤ f⁻ x + g⁻ x
FN_MINUS_ALT
⊢ ∀f. f⁻ = (λx. -min (f x) 0)
FN_MINUS_ALT'
⊢ ∀f. f⁻ = (λx. -min 0 (f x))
FN_MINUS_CMUL
⊢ ∀f c.
    (0 ≤ c ⇒ ((λx. Normal c * f x)⁻ = (λx. Normal c * f⁻ x))) ∧
    (c ≤ 0 ⇒ ((λx. Normal c * f x)⁻ = (λx. -Normal c * f⁺ x)))
FN_MINUS_CMUL_full
⊢ ∀f c.
    (0 ≤ c ⇒ ((λx. c * f x)⁻ = (λx. c * f⁻ x))) ∧
    (c ≤ 0 ⇒ ((λx. c * f x)⁻ = (λx. -c * f⁺ x)))
FN_MINUS_FMUL
⊢ ∀f c. (∀x. 0 ≤ c x) ⇒ ((λx. c x * f x)⁻ = (λx. c x * f⁻ x))
FN_MINUS_INFTY_IMP
⊢ ∀f x. (f⁻ x = +∞) ⇒ (f⁺ x = 0)
FN_MINUS_LE_ABS
⊢ ∀f x. f⁻ x ≤ abs (f x)
FN_MINUS_NOT_INFTY
⊢ ∀f. (∀x. f x ≠ −∞) ⇒ ∀x. f⁻ x ≠ +∞
FN_MINUS_NOT_INFTY'
⊢ ∀f x. f x ≠ −∞ ⇒ f⁻ x ≠ +∞
FN_MINUS_POS
⊢ ∀g x. 0 ≤ g⁻ x
FN_MINUS_POS_ZERO
⊢ ∀g. (∀x. 0 ≤ g x) ⇒ (g⁻ = (λx. 0))
FN_MINUS_REDUCE
⊢ ∀f x. 0 ≤ f x ⇒ (f⁻ x = 0)
FN_MINUS_TO_PLUS
⊢ ∀f. (λx. -f x)⁻ = f⁺
FN_MINUS_ZERO
⊢ (λx. 0)⁻ = (λx. 0)
FN_PLUS_ABS_SELF
⊢ ∀f. (abs ∘ f)⁺ = abs ∘ f
FN_PLUS_ADD_LE
⊢ ∀f g x. (λx. f x + g x)⁺ x ≤ f⁺ x + g⁺ x
FN_PLUS_ALT
⊢ ∀f. f⁺ = (λx. max (f x) 0)
FN_PLUS_ALT'
⊢ ∀f. f⁺ = (λx. max 0 (f x))
FN_PLUS_CMUL
⊢ ∀f c.
    (0 ≤ c ⇒ ((λx. Normal c * f x)⁺ = (λx. Normal c * f⁺ x))) ∧
    (c ≤ 0 ⇒ ((λx. Normal c * f x)⁺ = (λx. -Normal c * f⁻ x)))
FN_PLUS_CMUL_full
⊢ ∀f c.
    (0 ≤ c ⇒ ((λx. c * f x)⁺ = (λx. c * f⁺ x))) ∧
    (c ≤ 0 ⇒ ((λx. c * f x)⁺ = (λx. -c * f⁻ x)))
FN_PLUS_FMUL
⊢ ∀f c. (∀x. 0 ≤ c x) ⇒ ((λx. c x * f x)⁺ = (λx. c x * f⁺ x))
FN_PLUS_INFTY_IMP
⊢ ∀f x. (f⁺ x = +∞) ⇒ (f⁻ x = 0)
FN_PLUS_LE_ABS
⊢ ∀f x. f⁺ x ≤ abs (f x)
FN_PLUS_NEG_ZERO
⊢ ∀g. (∀x. g x ≤ 0) ⇒ (g⁺ = (λx. 0))
FN_PLUS_NOT_INFTY
⊢ ∀f. (∀x. f x ≠ +∞) ⇒ ∀x. f⁺ x ≠ +∞
FN_PLUS_NOT_INFTY'
⊢ ∀f x. f x ≠ +∞ ⇒ f⁺ x ≠ +∞
FN_PLUS_POS
⊢ ∀g x. 0 ≤ g⁺ x
FN_PLUS_POS_ID
⊢ ∀g. (∀x. 0 ≤ g x) ⇒ (g⁺ = g)
FN_PLUS_REDUCE
⊢ ∀f x. 0 ≤ f x ⇒ (f⁺ x = f x)
FN_PLUS_TO_MINUS
⊢ ∀f. (λx. -f x)⁺ = f⁻
FN_PLUS_ZERO
⊢ (λx. 0)⁺ = (λx. 0)
FORALL_IMP_AE
⊢ ∀m P. measure_space m ∧ (∀x. x ∈ m_space m ⇒ P x) ⇒ AE x::m. P x
INDICATOR_FN_ABS
⊢ ∀s. abs ∘ 𝟙 s = 𝟙 s
INDICATOR_FN_ABS_MUL
⊢ ∀f s. abs ∘ (λx. f x * 𝟙 s x) = (λx. (abs ∘ f) x * 𝟙 s x)
INDICATOR_FN_CROSS
⊢ ∀s t x y. 𝟙 (s × t) (x,y) = 𝟙 s x * 𝟙 t y
INDICATOR_FN_DIFF
⊢ ∀A B. 𝟙 (A DIFF B) = (λt. 𝟙 A t − 𝟙 (A ∩ B) t)
INDICATOR_FN_DIFF_SPACE
⊢ ∀A B sp. A ⊆ sp ∧ B ⊆ sp ⇒ (𝟙 (A ∩ (sp DIFF B)) = (λt. 𝟙 A t − 𝟙 (A ∩ B) t))
INDICATOR_FN_EMPTY
⊢ ∀x. 𝟙 ∅ x = 0
INDICATOR_FN_FCP_CROSS
⊢ ∀s t x y.
    FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
    (𝟙 (fcp_cross s t) (FCP_CONCAT x y) = 𝟙 s x * 𝟙 t y)
INDICATOR_FN_INTER
⊢ ∀A B. 𝟙 (A ∩ B) = (λt. 𝟙 A t * 𝟙 B t)
INDICATOR_FN_INTER_MIN
⊢ ∀A B. 𝟙 (A ∩ B) = (λt. min (𝟙 A t) (𝟙 B t))
INDICATOR_FN_LE_1
⊢ ∀s x. 𝟙 s x ≤ 1
INDICATOR_FN_MONO
⊢ ∀s t x. s ⊆ t ⇒ 𝟙 s x ≤ 𝟙 t x
INDICATOR_FN_MUL_INTER
⊢ ∀A B. (λt. 𝟙 A t * 𝟙 B t) = (λt. 𝟙 (A ∩ B) t)
INDICATOR_FN_NOT_INFTY
⊢ ∀s x. 𝟙 s x ≠ −∞ ∧ 𝟙 s x ≠ +∞
INDICATOR_FN_POS
⊢ ∀s x. 0 ≤ 𝟙 s x
INDICATOR_FN_SING_0
⊢ ∀x y. x ≠ y ⇒ (𝟙 {x} y = 0)
INDICATOR_FN_SING_1
⊢ ∀x y. (x = y) ⇒ (𝟙 {x} y = 1)
INDICATOR_FN_UNION
⊢ ∀A B. 𝟙 (A ∪ B) = (λt. 𝟙 A t + 𝟙 B t − 𝟙 (A ∩ B) t)
INDICATOR_FN_UNION_MAX
⊢ ∀A B. 𝟙 (A ∪ B) = (λt. max (𝟙 A t) (𝟙 B t))
INDICATOR_FN_UNION_MIN
⊢ ∀A B. 𝟙 (A ∪ B) = (λt. min (𝟙 A t + 𝟙 B t) 1)
IN_LIMINF
⊢ ∀A x. x ∈ liminf A ⇔ ∃m. ∀n. m ≤ n ⇒ x ∈ A n
IN_LIMSUP
⊢ ∀A x. x ∈ limsup A ⇔ ∃N. INFINITE N ∧ ∀n. n ∈ N ⇒ x ∈ A n
IN_MEASURABLE_BOREL
⊢ ∀f a.
    f ∈ Borel_measurable a ⇔
    sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
    ∀c. {x | f x < Normal c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_2D_FUNCTION
⊢ ∀a X Y f.
    sigma_algebra a ∧ X ∈ Borel_measurable a ∧ Y ∈ Borel_measurable a ∧
    f ∈ Borel_measurable (Borel × Borel) ⇒
    (λx. f (X x,Y x)) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_2D_VECTOR
⊢ ∀a X Y.
    sigma_algebra a ∧ X ∈ Borel_measurable a ∧ Y ∈ Borel_measurable a ⇒
    (λx. (X x,Y x)) ∈ measurable a (Borel × Borel)
IN_MEASURABLE_BOREL_ABS
⊢ ∀a f g.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (g x = abs (f x))) ⇒
    g ∈ Borel_measurable a
IN_MEASURABLE_BOREL_ABS'
⊢ ∀a f.
    sigma_algebra a ∧ f ∈ Borel_measurable a ⇒ abs ∘ f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_ADD
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞) ∧
    (∀x. x ∈ space a ⇒ (h x = f x + g x)) ⇒
    h ∈ Borel_measurable a
IN_MEASURABLE_BOREL_ADD'
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (h x = f x + g x)) ⇒
    h ∈ Borel_measurable a
IN_MEASURABLE_BOREL_AE_EQ
⊢ ∀m f g.
    complete_measure_space m ∧ (AE x::m. f x = g x) ∧
    f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
    g ∈ Borel_measurable (m_space m,measurable_sets m)
IN_MEASURABLE_BOREL_ALL
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    (∀c. {x | f x < c} ∩ space a ∈ subsets a) ∧
    (∀c. {x | c ≤ f x} ∩ space a ∈ subsets a) ∧
    (∀c. {x | f x ≤ c} ∩ space a ∈ subsets a) ∧
    (∀c. {x | c < f x} ∩ space a ∈ subsets a) ∧
    (∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
    (∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
    (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
    (∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
    (∀c. {x | f x = c} ∩ space a ∈ subsets a) ∧
    ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALL_MEASURE
⊢ ∀f m.
    f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
    (∀c. {x | f x < c} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c. {x | c ≤ f x} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c. {x | f x ≤ c} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c. {x | c < f x} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c d. {x | c ≤ f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c d. {x | c < f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c d. {x | c < f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
    (∀c. {x | f x = c} ∩ m_space m ∈ measurable_sets m) ∧
    ∀c. {x | f x ≠ c} ∩ m_space m ∈ measurable_sets m
IN_MEASURABLE_BOREL_ALT1
⊢ ∀f a.
    f ∈ Borel_measurable a ⇔
    sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
    ∀c. {x | Normal c ≤ f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT1_IMP
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c ≤ f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT2
⊢ ∀f a.
    f ∈ Borel_measurable a ⇔
    sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
    ∀c. {x | f x ≤ Normal c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT2_IMP
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≤ c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT3
⊢ ∀f a.
    f ∈ Borel_measurable a ⇔
    sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
    ∀c. {x | Normal c < f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT3_IMP
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c < f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT4
⊢ ∀f a.
    (∀x. f x ≠ −∞) ⇒
    (f ∈ Borel_measurable a ⇔
     sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
     ∀c d. {x | Normal c ≤ f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
IN_MEASURABLE_BOREL_ALT4_IMP
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT5
⊢ ∀f a.
    (∀x. f x ≠ −∞) ⇒
    (f ∈ Borel_measurable a ⇔
     sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
     ∀c d. {x | Normal c < f x ∧ f x ≤ Normal d} ∩ space a ∈ subsets a)
IN_MEASURABLE_BOREL_ALT5_IMP
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT6
⊢ ∀f a.
    (∀x. f x ≠ −∞) ⇒
    (f ∈ Borel_measurable a ⇔
     sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
     ∀c d. {x | Normal c ≤ f x ∧ f x ≤ Normal d} ∩ space a ∈ subsets a)
IN_MEASURABLE_BOREL_ALT6_IMP
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT7
⊢ ∀f a.
    (∀x. f x ≠ −∞) ⇒
    (f ∈ Borel_measurable a ⇔
     sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
     ∀c d. {x | Normal c < f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
IN_MEASURABLE_BOREL_ALT7_IMP
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT8
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x = c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT9
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_BOREL_ABS
⊢ abs ∈ Borel_measurable Borel
IN_MEASURABLE_BOREL_BOREL_I
⊢ (λx. x) ∈ Borel_measurable Borel
IN_MEASURABLE_BOREL_CC
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_CMUL
⊢ ∀a f g z.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (g x = Normal z * f x)) ⇒
    g ∈ Borel_measurable a
IN_MEASURABLE_BOREL_CMUL_INDICATOR
⊢ ∀a z s.
    sigma_algebra a ∧ s ∈ subsets a ⇒
    (λx. Normal z * 𝟙 s x) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_CMUL_INDICATOR'
⊢ ∀a c s.
    sigma_algebra a ∧ s ∈ subsets a ⇒ (λx. c * 𝟙 s x) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_CO
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_CONST
⊢ ∀a k f.
    sigma_algebra a ∧ (∀x. x ∈ space a ⇒ (f x = k)) ⇒ f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_CONST'
⊢ ∀a k. sigma_algebra a ⇒ (λx. k) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_CR
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c ≤ f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_EQ
⊢ ∀m f g.
    (∀x. x ∈ m_space m ⇒ (f x = g x)) ∧
    g ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
    f ∈ Borel_measurable (m_space m,measurable_sets m)
IN_MEASURABLE_BOREL_EQ'
⊢ ∀a f g.
    (∀x. x ∈ space a ⇒ (f x = g x)) ∧ g ∈ Borel_measurable a ⇒
    f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_FN_MINUS
⊢ ∀a f. f ∈ Borel_measurable a ⇒ f⁻ ∈ Borel_measurable a
IN_MEASURABLE_BOREL_FN_PLUS
⊢ ∀a f. f ∈ Borel_measurable a ⇒ f⁺ ∈ Borel_measurable a
IN_MEASURABLE_BOREL_IMP
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x < c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_IMP_BOREL
⊢ ∀f m.
    f ∈ borel_measurable (m_space m,measurable_sets m) ⇒
    Normal ∘ f ∈ Borel_measurable (m_space m,measurable_sets m)
IN_MEASURABLE_BOREL_IMP_BOREL'
⊢ ∀a f.
    sigma_algebra a ∧ f ∈ borel_measurable a ⇒ Normal ∘ f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_INDICATOR
⊢ ∀a A f.
    sigma_algebra a ∧ A ∈ subsets a ∧ (∀x. x ∈ space a ⇒ (f x = 𝟙 A x)) ⇒
    f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_LE
⊢ ∀a f g.
    f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
    {x | f x ≤ g x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_LT
⊢ ∀f g a.
    f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
    {x | f x < g x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_MAX
⊢ ∀a f g.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
    (λx. max (f x) (g x)) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MAXIMAL
⊢ ∀N. FINITE N ⇒
      ∀g f a.
        sigma_algebra a ∧ (∀n. g n ∈ Borel_measurable a) ∧
        (∀x. f x = sup (IMAGE (λn. g n x) N)) ⇒
        f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MIN
⊢ ∀a f g.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
    (λx. min (f x) (g x)) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MINIMAL
⊢ ∀N. FINITE N ⇒
      ∀g f a.
        sigma_algebra a ∧ (∀n. g n ∈ Borel_measurable a) ∧
        (∀x. f x = inf (IMAGE (λn. g n x) N)) ⇒
        f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MINUS
⊢ ∀a f g.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (g x = -f x)) ⇒
    g ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MONO_SUP
⊢ ∀fn f a.
    sigma_algebra a ∧ (∀n. fn n ∈ Borel_measurable a) ∧
    (∀n x. x ∈ space a ⇒ fn n x ≤ fn (SUC n) x) ∧
    (∀x. x ∈ space a ⇒ (f x = sup (IMAGE (λn. fn n x) 𝕌(:num)))) ⇒
    f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MUL
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (h x = f x * g x)) ∧
    (∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ f x ≠ +∞ ∧ g x ≠ −∞ ∧ g x ≠ +∞) ⇒
    h ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MUL_INDICATOR
⊢ ∀a f s.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ s ∈ subsets a ⇒
    (λx. f x * 𝟙 s x) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ
⊢ ∀a f.
    sigma_algebra a ⇒
    (f ∈ Borel_measurable a ⇔ (λx. f x * 𝟙 (space a) x) ∈ Borel_measurable a)
IN_MEASURABLE_BOREL_NEGINF
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x = −∞} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_NOT_NEGINF
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x ≠ −∞} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_NOT_POSINF
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x ≠ +∞} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_NOT_SING
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_OC
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_OO
⊢ ∀f a.
    f ∈ Borel_measurable a ⇒
    ∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_OR
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | c < f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_PLUS_MINUS
⊢ ∀a f.
    f ∈ Borel_measurable a ⇔ f⁺ ∈ Borel_measurable a ∧ f⁻ ∈ Borel_measurable a
IN_MEASURABLE_BOREL_POSINF
⊢ ∀f a. f ∈ Borel_measurable a ⇒ {x | f x = +∞} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_POW
⊢ ∀n a f.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ f x ≠ +∞) ⇒
    (λx. f x pow n) ∈ Borel_measurable a
IN_MEASURABLE_BOREL_RC
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x ≤ c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_RO
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x < c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_SING
⊢ ∀f a. f ∈ Borel_measurable a ⇒ ∀c. {x | f x = c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_SQR
⊢ ∀a f g.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (g x = (f x)²)) ⇒
    g ∈ Borel_measurable a
IN_MEASURABLE_BOREL_SUB
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ g x ≠ +∞ ∨ f x ≠ +∞ ∧ g x ≠ −∞) ∧
    (∀x. x ∈ space a ⇒ (h x = f x − g x)) ⇒
    h ∈ Borel_measurable a
IN_MEASURABLE_BOREL_SUB'
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (h x = f x − g x)) ⇒
    h ∈ Borel_measurable a
IN_MEASURABLE_BOREL_SUM
⊢ ∀a f g s.
    FINITE s ∧ sigma_algebra a ∧ (∀i. i ∈ s ⇒ f i ∈ Borel_measurable a) ∧
    (∀i x. i ∈ s ∧ x ∈ space a ⇒ f i x ≠ −∞) ∧
    (∀x. x ∈ space a ⇒ (g x = ∑ (λi. f i x) s)) ⇒
    g ∈ Borel_measurable a
IN_MEASURABLE_BOREL_SUMINF
⊢ ∀fn f a.
    sigma_algebra a ∧ (∀n. fn n ∈ Borel_measurable a) ∧
    (∀i x. x ∈ space a ⇒ 0 ≤ fn i x) ∧
    (∀x. x ∈ space a ⇒ (f x = suminf (λn. fn n x))) ⇒
    f ∈ Borel_measurable a
IN_MEASURABLE_BOREL_TIMES
⊢ ∀m f g h.
    measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
    g ∈ Borel_measurable (m_space m,measurable_sets m) ∧
    (∀x. x ∈ m_space m ⇒ (h x = f x * g x)) ⇒
    h ∈ Borel_measurable (m_space m,measurable_sets m)
IN_MEASURABLE_BOREL_TIMES'
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (h x = f x * g x)) ⇒
    h ∈ Borel_measurable a
MEASURABLE_BOREL
⊢ ∀f a.
    f ∈ Borel_measurable a ⇔
    sigma_algebra a ∧ f ∈ (space a → 𝕌(:extreal)) ∧
    ∀c. PREIMAGE f {x | x < Normal c} ∩ space a ∈ subsets a
MEASURE_SPACE_LBOREL
⊢ measure_space ext_lborel
SIGMA_ALGEBRA_BOREL
⊢ sigma_algebra Borel
SIGMA_ALGEBRA_BOREL_2D
⊢ sigma_algebra (Borel × Borel)
SIGMA_FINITE_LBOREL
⊢ sigma_finite ext_lborel
SPACE_BOREL
⊢ space Borel = 𝕌(:extreal)
SPACE_BOREL_2D
⊢ space (Borel × Borel) = 𝕌(:extreal # extreal)
absolutely_integrable_on_indicator
⊢ ∀A X. indicator A absolutely_integrable_on X ⇔ indicator A integrable_on X
borel_eq_real_set
⊢ borel = (𝕌(:real),IMAGE real_set (subsets Borel))
borel_imp_lebesgue_measurable
⊢ ∀f. f ∈ borel_measurable (space borel,subsets borel) ⇒
      f ∈ borel_measurable (m_space lebesgue,measurable_sets lebesgue)
borel_imp_lebesgue_sets
⊢ ∀s. s ∈ subsets borel ⇒ s ∈ measurable_sets lebesgue
countably_additive_lebesgue
⊢ countably_additive lebesgue
fn_minus
⊢ ∀f x. f⁻ x = -min 0 (f x)
fn_minus_mul_indicator
⊢ ∀f s. (λx. f x * 𝟙 s x)⁻ = (λx. f⁻ x * 𝟙 s x)
fn_plus
⊢ ∀f x. f⁺ x = max 0 (f x)
fn_plus_mul_indicator
⊢ ∀f s. (λx. f x * 𝟙 s x)⁺ = (λx. f⁺ x * 𝟙 s x)
has_integral_indicator_UNIV
⊢ ∀s A x.
    (indicator (s ∩ A) has_integral x) 𝕌(:real) ⇔
    (indicator s has_integral x) A
has_integral_interval_cube
⊢ ∀a b n.
    (indicator (interval [(a,b)]) has_integral
     content (interval [(a,b)] ∩ line n)) (line n)
in_borel_measurable_continuous_on
⊢ ∀f. f continuous_on 𝕌(:real) ⇒ f ∈ borel_measurable borel
in_borel_measurable_from_Borel
⊢ ∀a f. f ∈ Borel_measurable a ⇒ real ∘ f ∈ borel_measurable a
in_borel_measurable_imp
⊢ ∀m f.
    measure_space m ∧
    (∀s. open s ⇒ PREIMAGE f s ∩ m_space m ∈ measurable_sets m) ⇒
    f ∈ borel_measurable (m_space m,measurable_sets m)
in_measurable_sigma_pow
⊢ ∀m sp N f.
    measure_space m ∧ N ⊆ POW sp ∧ f ∈ (m_space m → sp) ∧
    (∀y. y ∈ N ⇒ PREIMAGE f y ∩ m_space m ∈ measurable_sets m) ⇒
    f ∈ measurable (m_space m,measurable_sets m) (sigma sp N)
in_sets_lebesgue
⊢ ∀A. (∀n. indicator A integrable_on line n) ⇒ A ∈ measurable_sets lebesgue
in_sets_lebesgue_imp
⊢ ∀A n. A ∈ measurable_sets lebesgue ⇒ indicator A integrable_on line n
indicator_fn_general_cross
⊢ ∀cons car cdr s t x y.
    pair_operation cons car cdr ⇒
    (𝟙 (general_cross cons s t) (cons x y) = 𝟙 s x * 𝟙 t y)
indicator_fn_normal
⊢ ∀s x. ∃r. (𝟙 s x = Normal r) ∧ 0 ≤ r ∧ r ≤ 1
indicator_fn_split
⊢ ∀r s b.
    FINITE r ∧ (BIGUNION (IMAGE b r) = s) ∧
    (∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ⇒
    ∀a. a ⊆ s ⇒ (𝟙 a = (λx. ∑ (λi. 𝟙 (a ∩ b i) x) r))
indicator_fn_suminf
⊢ ∀a x.
    (∀m n. m ≠ n ⇒ DISJOINT (a m) (a n)) ⇒
    (suminf (λi. 𝟙 (a i) x) = 𝟙 (BIGUNION (IMAGE a 𝕌(:num))) x)
integrable_indicator_UNIV
⊢ ∀s A. indicator (s ∩ A) integrable_on 𝕌(:real) ⇔ indicator s integrable_on A
integral_indicator_UNIV
⊢ ∀s A. ∫ 𝕌(:real) (indicator (s ∩ A)) = ∫ A (indicator s)
integral_one
⊢ ∀A. ∫ A (λx. 1) = ∫ 𝕌(:real) (indicator A)
lambda0_empty
⊢ lambda0 ∅ = 0
lambda0_not_infty
⊢ ∀a b.
    lambda0 (right_open_interval a b) ≠ +∞ ∧
    lambda0 (right_open_interval a b) ≠ −∞
lambda_closed_interval
⊢ ∀a b. a ≤ b ⇒ (lambda (interval [(a,b)]) = Normal (b − a))
lambda_closed_interval_content
⊢ ∀a b. lambda (interval [(a,b)]) = Normal (content (interval [(a,b)]))
lambda_empty
⊢ lambda ∅ = 0
lambda_eq
⊢ ∀m. (∀a b.
         measure m (interval [(a,b)]) = Normal (content (interval [(a,b)]))) ∧
      measure_space m ∧ (m_space m = space borel) ∧
      (measurable_sets m = subsets borel) ⇒
      ∀s. s ∈ subsets borel ⇒ (lambda s = measure m s)
lambda_eq_lebesgue
⊢ ∀s. s ∈ subsets borel ⇒ (lambda s = measure lebesgue s)
lambda_not_infty
⊢ ∀a b.
    lambda (right_open_interval a b) ≠ +∞ ∧
    lambda (right_open_interval a b) ≠ −∞
lambda_open_interval
⊢ ∀a b. a ≤ b ⇒ (lambda (interval (a,b)) = Normal (b − a))
lambda_prop
⊢ ∀a b. a ≤ b ⇒ (lambda (right_open_interval a b) = Normal (b − a))
lambda_sing
⊢ ∀c. lambda {c} = 0
lborel0_additive
⊢ additive lborel0
lborel0_finite_additive
⊢ finite_additive lborel0
lborel0_positive
⊢ positive lborel0
lborel0_premeasure
⊢ premeasure lborel0
lborel0_subadditive
⊢ subadditive lborel0
lborel_subset_lebesgue
⊢ measurable_sets lborel ⊆ measurable_sets lebesgue
lebesgue_closed_interval
⊢ ∀a b. a ≤ b ⇒ (measure lebesgue (interval [(a,b)]) = Normal (b − a))
lebesgue_closed_interval_content
⊢ ∀a b.
    measure lebesgue (interval [(a,b)]) = Normal (content (interval [(a,b)]))
lebesgue_empty
⊢ measure lebesgue ∅ = 0
lebesgue_eq_lambda
⊢ ∀s. s ∈ subsets borel ⇒ (measure lebesgue s = lambda s)
lebesgue_measure_iff_LIMSEQ
⊢ ∀A m.
    A ∈ measurable_sets lebesgue ∧ 0 ≤ m ⇒
    ((measure lebesgue A = Normal m) ⇔
     ((λn. ∫ (line n) (indicator A)) ⟶ m) sequentially)
lebesgue_of_negligible
⊢ ∀s. negligible s ⇒ (measure lebesgue s = 0)
lebesgue_open_interval
⊢ ∀a b. a ≤ b ⇒ (measure lebesgue (interval (a,b)) = Normal (b − a))
lebesgue_sing
⊢ ∀c. measure lebesgue {c} = 0
liminf_limsup
⊢ ∀E. COMPL (liminf E) = limsup (COMPL ∘ E)
liminf_limsup_sp
⊢ ∀sp E. (∀n. E n ⊆ sp) ⇒ (sp DIFF liminf E = limsup (λn. sp DIFF E n))
limseq_indicator_BIGUNION
⊢ ∀A x.
    ((λk. indicator (BIGUNION {A i | i < k}) x) ⟶
     indicator (BIGUNION {A i | i ∈ 𝕌(:num)}) x) sequentially
limsup_suminf_indicator
⊢ ∀A. limsup A = {x | suminf (λn. 𝟙 (A n) x) = +∞}
limsup_suminf_indicator_space
⊢ ∀a A.
    sigma_algebra a ∧ (∀n. A n ∈ subsets a) ⇒
    (limsup A = {x | x ∈ space a ∧ (suminf (λn. 𝟙 (A n) x) = +∞)})
m_space_lborel
⊢ m_space lborel = space borel
measure_lebesgue
⊢ measure lebesgue =
  (λA. sup {Normal (∫ (line n) (indicator A)) | n ∈ 𝕌(:num)})
measure_liminf
⊢ ∀p A.
    measure_space p ∧ (∀n. A n ∈ measurable_sets p) ⇒
    (measure p (liminf A) =
     sup (IMAGE (λm. measure p (BIGINTER {A n | m ≤ n})) 𝕌(:num)))
measure_limsup
⊢ ∀p A.
    measure_space p ∧ measure p (BIGUNION (IMAGE A 𝕌(:num))) < +∞ ∧
    (∀n. A n ∈ measurable_sets p) ⇒
    (measure p (limsup A) =
     inf (IMAGE (λm. measure p (BIGUNION {A n | m ≤ n})) 𝕌(:num)))
measure_limsup_finite
⊢ ∀p A.
    measure_space p ∧ measure p (m_space p) < +∞ ∧
    (∀n. A n ∈ measurable_sets p) ⇒
    (measure p (limsup A) =
     inf (IMAGE (λm. measure p (BIGUNION {A n | m ≤ n})) 𝕌(:num)))
measure_space_lborel
⊢ measure_space lborel
measure_space_lebesgue
⊢ measure_space lebesgue
negligible_in_lebesgue
⊢ ∀s. negligible s ⇒ s ∈ measurable_sets lebesgue
nonneg_abs
⊢ ∀f. nonneg (abs ∘ f)
nonneg_fn_abs
⊢ ∀f. nonneg f ⇒ (abs ∘ f = f)
nonneg_fn_minus
⊢ ∀f. nonneg f ⇒ (f⁻ = (λx. 0))
nonneg_fn_plus
⊢ ∀f. nonneg f ⇒ (f⁺ = f)
positive_lebesgue
⊢ positive lebesgue
seq_le_imp_lim_le
⊢ ∀x y f. (∀n. f n ≤ x) ∧ (f ⟶ y) sequentially ⇒ y ≤ x
seq_mono_le
⊢ ∀f x n. (∀n. f n ≤ f (n + 1)) ∧ (f ⟶ x) sequentially ⇒ f n ≤ x
set_limsup_alt
⊢ ∀E. limsup E = BIGINTER (IMAGE (λn. BIGUNION (IMAGE E (from n))) 𝕌(:num))
sets_lborel
⊢ measurable_sets lborel = subsets borel
sets_lebesgue
⊢ measurable_sets lebesgue = {A | ∀n. indicator A integrable_on line n}
sigma_algebra_lebesgue
⊢ sigma_algebra (𝕌(:real),{A | ∀n. indicator A integrable_on line n})
sigma_finite_lborel
⊢ sigma_finite lborel
space_lborel
⊢ m_space lborel = 𝕌(:real)
space_lebesgue
⊢ m_space lebesgue = 𝕌(:real)
sup_sequence
⊢ ∀f l.
    mono_increasing f ⇒
    ((f ⟶ l) sequentially ⇔
     (sup (IMAGE (λn. Normal (f n)) 𝕌(:num)) = Normal l))