Theory "real_borel"

Parents     sigma_algebra   integration

Signature

Constant Type
borel :real algebra
box :real -> real -> real -> bool
indicator_fn :(Îą -> bool) -> Îą -> real
line :num -> real -> bool
mr2 :(real # real) metric
real_rat_set :real -> bool
right_open_interval :real -> real -> real -> bool
right_open_intervals :real algebra

Definitions

borel
⊢ borel = sigma 𝕌(:real) {s | open s}
box
⊢ ∀a b. box a b = {x | a < x ∧ x < b}
indicator_fn_def
⊢ ∀s. 𝟙 s = (λx. if x ∈ s then 1 else 0)
line
⊢ ∀n. line n = {x | -&n ≤ x ∧ x ≤ &n}
mr2
⊢ mr2 = metric (λ((x1,x2),y1,y2). sqrt ((x1 − y1)² + (x2 − y2)²))
real_rat_set_def
⊢ q_set =
  {x | ∃a b. (x = &a / &b) ∧ 0 < &b} ∪ {x | ∃a b. (x = -(&a / &b)) ∧ 0 < &b}
right_open_interval
⊢ ∀a b. right_open_interval a b = {x | a ≤ x ∧ x < b}
right_open_intervals
⊢ right_open_intervals = (𝕌(:real),{right_open_interval a b | T})


Theorems

ADD_IN_QSET
⊢ ∀x y. x ∈ q_set ∧ y ∈ q_set ⇒ x + y ∈ q_set
BALL_IN_LINE
⊢ ∀n. ball (0,&n) ⊆ line n
BIGUNION_IMAGE_QSET
⊢ ∀a f.
    sigma_algebra a ∧ f ∈ (q_set → subsets a) ⇒
    BIGUNION (IMAGE f q_set) ∈ subsets a
CLG_UBOUND
⊢ ∀x. 0 ≤ x ⇒ &clg x < x + 1
DIV_IN_QSET
⊢ ∀x y. x ∈ q_set ∧ y ∈ q_set ∧ y ≠ 0 ⇒ x / y ∈ q_set
IMAGE_FST_CROSS_INTERVAL
⊢ ∀a b c d.
    c < d ⇒ (IMAGE FST (interval (a,b) × interval (c,d)) = interval (a,b))
IMAGE_SND_CROSS_INTERVAL
⊢ ∀a b c d.
    a < b ⇒ (IMAGE SND (interval (a,b) × interval (c,d)) = interval (c,d))
INV_IN_QSET
⊢ ∀x. x ∈ q_set ∧ x ≠ 0 ⇒ 1 / x ∈ q_set
ISMET_R2
⊢ ismet (λ((x1,x2),y1,y2). sqrt ((x1 − y1)² + (x2 − y2)²))
LINE_MONO
⊢ ∀n N. n ≤ N ⇒ line n ⊆ line N
LINE_MONO_EQ
⊢ ∀n N. line n ⊆ line N ⇔ n ≤ N
LINE_MONO_SUC
⊢ ∀n. line n ⊆ line (SUC n)
MR2_DEF
⊢ ∀x1 x2 y1 y2. dist mr2 ((x1,x2),y1,y2) = sqrt ((x1 − y1)² + (x2 − y2)²)
MUL_IN_QSET
⊢ ∀x y. x ∈ q_set ∧ y ∈ q_set ⇒ x * y ∈ q_set
NON_NEG_REAL_RAT_DENSE
⊢ ∀x y. 0 ≤ x ∧ x < y ⇒ ∃m n. x < &m / &n ∧ &m / &n < y
NUM_IN_QSET
⊢ ∀n. &n ∈ q_set ∧ -&n ∈ q_set
OPP_IN_QSET
⊢ ∀x. x ∈ q_set ⇒ -x ∈ q_set
QSET_COUNTABLE
⊢ COUNTABLE q_set
Q_DENSE_IN_REAL
⊢ ∀x y. x < y ⇒ ∃r. r ∈ q_set ∧ x < r ∧ r < y
Q_DENSE_IN_REAL_LEMMA
⊢ ∀x y. 0 ≤ x ∧ x < y ⇒ ∃r. r ∈ q_set ∧ x < r ∧ r < y
REAL_IN_LINE
⊢ ∀x. ∃n. x ∈ line n
REAL_RAT_DENSE
⊢ ∀x y. x < y ⇒ ∃r. r ∈ q_set ∧ x < r ∧ r < y
REAL_SING_BIGINTER
⊢ ∀c. {c} =
      BIGINTER
        (IMAGE (λn. {x | c − (1 / 2) pow n ≤ x ∧ x < c + (1 / 2) pow n})
           𝕌(:num))
SUB_IN_QSET
⊢ ∀x y. x ∈ q_set ∧ y ∈ q_set ⇒ x − y ∈ q_set
borel_2d
⊢ borel × borel = sigma 𝕌(:real # real) {s | open_in (mtop mr2) s}
borel_2d_alt_box
⊢ borel × borel = sigma 𝕌(:real # real) {box a b × box c d | T}
borel_closed
⊢ ∀A. closed A ⇒ A ∈ subsets borel
borel_comp
⊢ ∀A. A ∈ subsets borel ⇒ 𝕌(:real) DIFF A ∈ subsets borel
borel_def
⊢ borel = sigma 𝕌(:real) (IMAGE (λa. {x | x ≤ a}) 𝕌(:real))
borel_eq_box
⊢ borel = sigma 𝕌(:real) (IMAGE (λ(a,b). box a b) 𝕌(:real # real))
borel_eq_ge_le
⊢ borel = sigma 𝕌(:real) (IMAGE (λ(a,b). {x | a ≤ x ∧ x ≤ b}) 𝕌(:real # real))
borel_eq_ge_less
⊢ borel = sigma 𝕌(:real) (IMAGE (λ(a,b). {x | a ≤ x ∧ x < b}) 𝕌(:real # real))
borel_eq_gr
⊢ borel = sigma 𝕌(:real) (IMAGE (λa. {x | a < x}) 𝕌(:real))
borel_eq_gr_le
⊢ borel = sigma 𝕌(:real) (IMAGE (λ(a,b). {x | a < x ∧ x ≤ b}) 𝕌(:real # real))
borel_eq_gr_less
⊢ borel = sigma 𝕌(:real) (IMAGE (λ(a,b). {x | a < x ∧ x < b}) 𝕌(:real # real))
borel_eq_le
⊢ borel = sigma 𝕌(:real) (IMAGE (λa. {x | x ≤ a}) 𝕌(:real))
borel_eq_less
⊢ borel = sigma 𝕌(:real) (IMAGE (λa. {x | x < a}) 𝕌(:real))
borel_eq_sigmaI1
⊢ ∀X A f.
    (borel = sigma 𝕌(:real) X) ∧
    (∀x. x ∈ X ⇒ x ∈ subsets (sigma 𝕌(:real) (IMAGE f A))) ∧
    (∀i. i ∈ A ⇒ f i ∈ subsets borel) ⇒
    (borel = sigma 𝕌(:real) (IMAGE f A))
borel_eq_sigmaI2
⊢ ∀G f A B.
    (borel = sigma 𝕌(:real) (IMAGE (λ(i,j). G i j) B)) ∧
    (∀i j.
       (i,j) ∈ B ⇒ G i j ∈ subsets (sigma 𝕌(:real) (IMAGE (λ(i,j). f i j) A))) ∧
    (∀i j. (i,j) ∈ A ⇒ f i j ∈ subsets borel) ⇒
    (borel = sigma 𝕌(:real) (IMAGE (λ(i,j). f i j) A))
borel_eq_sigmaI3
⊢ ∀f A X.
    (borel = sigma 𝕌(:real) X) ∧
    (∀x. x ∈ X ⇒ x ∈ subsets (sigma 𝕌(:real) (IMAGE (λ(i,j). f i j) A))) ∧
    (∀i j. (i,j) ∈ A ⇒ f i j ∈ subsets borel) ⇒
    (borel = sigma 𝕌(:real) (IMAGE (λ(i,j). f i j) A))
borel_eq_sigmaI4
⊢ ∀G f A.
    (borel = sigma 𝕌(:real) (IMAGE (λ(i,j). G i j) A)) ∧
    (∀i j. (i,j) ∈ A ⇒ G i j ∈ subsets (sigma 𝕌(:real) (IMAGE f 𝕌(:γ)))) ∧
    (∀i. f i ∈ subsets borel) ⇒
    (borel = sigma 𝕌(:real) (IMAGE f 𝕌(:γ)))
borel_eq_sigmaI5
⊢ ∀G f.
    (borel = sigma 𝕌(:real) (IMAGE G 𝕌(:α))) ∧
    (∀i. G i ∈ subsets (sigma 𝕌(:real) (IMAGE (λ(i,j). f i j) 𝕌(:β # γ)))) ∧
    (∀i j. f i j ∈ subsets borel) ⇒
    (borel = sigma 𝕌(:real) (IMAGE (λ(i,j). f i j) 𝕌(:β # γ)))
borel_line
⊢ ∀n. line n ∈ subsets borel
borel_measurable_const
⊢ ∀M c. sigma_algebra M ⇒ (λx. c) ∈ borel_measurable M
borel_measurable_image
⊢ ∀f M x. f ∈ borel_measurable M ⇒ PREIMAGE f {x} ∩ space M ∈ subsets M
borel_measurable_indicator
⊢ ∀s a. sigma_algebra s ∧ a ∈ subsets s ⇒ 𝟙 a ∈ borel_measurable s
borel_measurable_sets
⊢ (∀a. {x | x < a} ∈ subsets borel) ∧ (∀a. {x | x ≤ a} ∈ subsets borel) ∧
  (∀a. {x | a < x} ∈ subsets borel) ∧ (∀a. {x | a ≤ x} ∈ subsets borel) ∧
  (∀a b. {x | a < x ∧ x < b} ∈ subsets borel) ∧
  (∀a b. {x | a < x ∧ x ≤ b} ∈ subsets borel) ∧
  (∀a b. {x | a ≤ x ∧ x < b} ∈ subsets borel) ∧
  (∀a b. {x | a ≤ x ∧ x ≤ b} ∈ subsets borel) ∧ (∀c. {c} ∈ subsets borel) ∧
  ∀c. {x | x ≠ c} ∈ subsets borel
borel_measurable_sets_ge
⊢ ∀a. {x | a ≤ x} ∈ subsets borel
borel_measurable_sets_ge_le
⊢ ∀a b. {x | a ≤ x ∧ x ≤ b} ∈ subsets borel
borel_measurable_sets_ge_less
⊢ ∀a b. {x | a ≤ x ∧ x < b} ∈ subsets borel
borel_measurable_sets_gr
⊢ ∀a. {x | a < x} ∈ subsets borel
borel_measurable_sets_gr_le
⊢ ∀a b. {x | a < x ∧ x ≤ b} ∈ subsets borel
borel_measurable_sets_gr_less
⊢ ∀a b. {x | a < x ∧ x < b} ∈ subsets borel
borel_measurable_sets_le
⊢ ∀a. {x | x ≤ a} ∈ subsets borel
borel_measurable_sets_less
⊢ ∀a. {x | x < a} ∈ subsets borel
borel_measurable_sets_not_sing
⊢ ∀c. {x | x ≠ c} ∈ subsets borel
borel_measurable_sets_sing
⊢ ∀c. {c} ∈ subsets borel
borel_open
⊢ ∀A. open A ⇒ A ∈ subsets borel
borel_sigma_sets_subset
⊢ ∀A. A ⊆ subsets borel ⇒ sigma_sets 𝕌(:real) A ⊆ subsets borel
borel_singleton
⊢ ∀A x. A ∈ subsets borel ⇒ x INSERT A ∈ subsets borel
box_alt
⊢ ∀a b. box a b = interval (a,b)
box_open_in_mr2
⊢ ∀a b c d. open_in (mtop mr2) (interval (a,b) × interval (c,d))
countable_real_rat_set
⊢ COUNTABLE q_set
in_borel_measurable
⊢ ∀f s.
    f ∈ borel_measurable s ⇔
    sigma_algebra s ∧
    ∀s'.
      s' ∈ subsets (sigma 𝕌(:real) (IMAGE (λa. {x | x ≤ a}) 𝕌(:real))) ⇒
      PREIMAGE f s' ∊ space s ∈ subsets s
in_borel_measurable_add
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ borel_measurable a ∧ g ∈ borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (h x = f x + g x)) ⇒
    h ∈ borel_measurable a
in_borel_measurable_borel
⊢ ∀f M.
    f ∈ borel_measurable M ⇔
    sigma_algebra M ∧
    ∀s. s ∈ subsets borel ⇒ PREIMAGE f s ∩ space M ∈ subsets M
in_borel_measurable_cmul
⊢ ∀a f g z.
    sigma_algebra a ∧ f ∈ borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (g x = z * f x)) ⇒
    g ∈ borel_measurable a
in_borel_measurable_const
⊢ ∀a k f.
    sigma_algebra a ∧ (∀x. x ∈ space a ⇒ (f x = k)) ⇒ f ∈ borel_measurable a
in_borel_measurable_ge
⊢ ∀f m.
    f ∈ borel_measurable m ⇔
    sigma_algebra m ∧ f ∈ (space m → 𝕌(:real)) ∧
    ∀a. {w | w ∈ space m ∧ a ≤ f w} ∈ subsets m
in_borel_measurable_gr
⊢ ∀f m.
    f ∈ borel_measurable m ⇔
    sigma_algebra m ∧ f ∈ (space m → 𝕌(:real)) ∧
    ∀a. {w | w ∈ space m ∧ a < f w} ∈ subsets m
in_borel_measurable_le
⊢ ∀f m.
    f ∈ borel_measurable m ⇔
    sigma_algebra m ∧ f ∈ (space m → 𝕌(:real)) ∧
    ∀a. {w | w ∈ space m ∧ f w ≤ a} ∈ subsets m
in_borel_measurable_less
⊢ ∀f m.
    f ∈ borel_measurable m ⇔
    sigma_algebra m ∧ f ∈ (space m → 𝕌(:real)) ∧
    ∀a. {w | w ∈ space m ∧ f w < a} ∈ subsets m
in_borel_measurable_mul
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ borel_measurable a ∧ g ∈ borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (h x = f x * g x)) ⇒
    h ∈ borel_measurable a
in_borel_measurable_open
⊢ ∀f M.
    f ∈ borel_measurable M ⇔
    sigma_algebra M ∧
    ∀s. s ∈ subsets (sigma 𝕌(:real) {s | open s}) ⇒
        PREIMAGE f s ∊ space M ∈ subsets M
in_borel_measurable_sqr
⊢ ∀a f g.
    sigma_algebra a ∧ f ∈ borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (g x = (f x)²)) ⇒
    g ∈ borel_measurable a
in_borel_measurable_sub
⊢ ∀a f g h.
    sigma_algebra a ∧ f ∈ borel_measurable a ∧ g ∈ borel_measurable a ∧
    (∀x. x ∈ space a ⇒ (h x = f x − g x)) ⇒
    h ∈ borel_measurable a
in_right_open_interval
⊢ ∀a b x. x ∈ right_open_interval a b ⇔ a ≤ x ∧ x < b
in_right_open_intervals
⊢ ∀s. s ∈ subsets right_open_intervals ⇔ ∃a b. s = right_open_interval a b
in_right_open_intervals_nonempty
⊢ ∀s. s ≠ ∅ ∧ s ∈ subsets right_open_intervals ⇔
      ∃a b. a < b ∧ (s = right_open_interval a b)
line_closed
⊢ ∀n. closed (line n)
open_UNION_box
⊢ ∀M. open M ⇒ (M = BIGUNION {box a b | box a b ⊆ M})
open_UNION_rational_box
⊢ ∀M. open M ⇒ (M = BIGUNION {box a b | a ∈ q_set ∧ b ∈ q_set ∧ box a b ⊆ M})
q_set_def
⊢ q_set =
  {x | ∃a b. (x = &a / &b) ∧ 0 < &b} ∪ {x | ∃a b. (x = -(&a / &b)) ∧ 0 < &b}
rational_boxes
⊢ ∀x e.
    0 < e ⇒ ∃a b. a ∈ q_set ∧ b ∈ q_set ∧ x ∈ box a b ∧ box a b ⊆ ball (x,e)
right_open_interval_11
⊢ ∀a b c d.
    a < b ∧ c < d ⇒
    ((right_open_interval a b = right_open_interval c d) ⇔ (a = c) ∧ (b = d))
right_open_interval_DISJOINT
⊢ ∀a b c d.
    a ≤ b ∧ b ≤ c ∧ c ≤ d ⇒
    DISJOINT (right_open_interval a b) (right_open_interval c d)
right_open_interval_DISJOINT_imp
⊢ ∀a b c d.
    a < b ∧ c < d ∧
    DISJOINT (right_open_interval a b) (right_open_interval c d) ⇒
    b ≤ c ∨ d ≤ a
right_open_interval_between_bounds
⊢ ∀x a b.
    x ∈ right_open_interval a b ⇔
    interval_lowerbound (right_open_interval a b) ≤ x ∧
    x < interval_upperbound (right_open_interval a b)
right_open_interval_disjoint
⊢ ∀a b c d.
    a ≤ b ∧ b ≤ c ∧ c ≤ d ⇒
    disjoint {right_open_interval a b; right_open_interval c d}
right_open_interval_empty
⊢ ∀a b. (right_open_interval a b = ∅) ⇔ ¬(a < b)
right_open_interval_empty_eq
⊢ ∀a b. (a = b) ⇒ (right_open_interval a b = ∅)
right_open_interval_in_intervals
⊢ ∀a b. right_open_interval a b ∈ subsets right_open_intervals
right_open_interval_inter
⊢ ∀a b c d.
    right_open_interval a b ∊ right_open_interval c d =
    right_open_interval (max a c) (min b d)
right_open_interval_interior
⊢ ∀a b. a < b ⇒ a ∈ right_open_interval a b
right_open_interval_lowerbound
⊢ ∀a b. a < b ⇒ (interval_lowerbound (right_open_interval a b) = a)
right_open_interval_two_bounds
⊢ ∀a b.
    interval_lowerbound (right_open_interval a b) ≤
    interval_upperbound (right_open_interval a b)
right_open_interval_union
⊢ ∀a b c d.
    a < b ∧ c < d ∧ a ≤ d ∧ c ≤ b ⇒
    (right_open_interval a b ∪ right_open_interval c d =
     right_open_interval (min a c) (max b d))
right_open_interval_union_imp
⊢ ∀a b c d.
    a < b ∧ c < d ∧
    right_open_interval a b ∪ right_open_interval c d ∈
    subsets right_open_intervals ⇒
    a ≤ d ∧ c ≤ b
right_open_interval_upperbound
⊢ ∀a b. a < b ⇒ (interval_upperbound (right_open_interval a b) = b)
right_open_intervals_semiring
⊢ semiring right_open_intervals
right_open_intervals_sigma_borel
⊢ sigma (space right_open_intervals) (subsets right_open_intervals) = borel
right_open_intervals_subset_borel
⊢ subsets right_open_intervals ⊆ subsets borel
sigma_algebra_borel
⊢ sigma_algebra borel
sigma_algebra_borel_2d
⊢ sigma_algebra (borel × borel)
sigma_ge_gr
⊢ ∀f A.
    sigma_algebra A ∧ (∀a. {w | w ∈ space A ∧ a ≤ f w} ∈ subsets A) ⇒
    ∀a. {w | w ∈ space A ∧ a < f w} ∈ subsets A
sigma_gr_le
⊢ ∀f A.
    sigma_algebra A ∧ (∀a. {w | w ∈ space A ∧ a < f w} ∈ subsets A) ⇒
    ∀a. {w | w ∈ space A ∧ f w ≤ a} ∈ subsets A
sigma_le_less
⊢ ∀f A.
    sigma_algebra A ∧ (∀a. {w | w ∈ space A ∧ f w ≤ a} ∈ subsets A) ⇒
    ∀a. {w | w ∈ space A ∧ f w < a} ∈ subsets A
sigma_less_ge
⊢ ∀f A.
    sigma_algebra A ∧ (∀a. {w | w ∈ space A ∧ f w < a} ∈ subsets A) ⇒
    ∀a. {w | w ∈ space A ∧ a ≤ f w} ∈ subsets A
space_borel
⊢ space borel = 𝕌(:real)
space_in_borel
⊢ 𝕌(:real) ∈ subsets borel