- ADD_IN_QSET
-
⢠âx y. x â q_set â§ y â q_set â x + y â q_set
- BALL_IN_LINE
-
⢠ân. ball (0,&n) â line n
- BIGUNION_IMAGE_QSET
-
⢠âa f.
sigma_algebra a â§ f â (q_set â subsets a) â
BIGUNION (IMAGE f q_set) â subsets a
- CLG_UBOUND
-
⢠âx. 0 ⤠x â &clg x < x + 1
- DIV_IN_QSET
-
⢠âx y. x â q_set â§ y â q_set â§ y â 0 â x / y â q_set
- IMAGE_FST_CROSS_INTERVAL
-
⢠âa b c d.
c < d â (IMAGE FST (interval (a,b) Ă interval (c,d)) = interval (a,b))
- IMAGE_SND_CROSS_INTERVAL
-
⢠âa b c d.
a < b â (IMAGE SND (interval (a,b) Ă interval (c,d)) = interval (c,d))
- INV_IN_QSET
-
⢠âx. x â q_set â§ x â 0 â 1 / x â q_set
- ISMET_R2
-
⢠ismet (Îť((x1,x2),y1,y2). sqrt ((x1 â y1)² + (x2 â y2)²))
- LINE_MONO
-
⢠ân N. n ⤠N â line n â line N
- LINE_MONO_EQ
-
⢠ân N. line n â line N â n ⤠N
- LINE_MONO_SUC
-
⢠ân. line n â line (SUC n)
- MR2_DEF
-
⢠âx1 x2 y1 y2. dist mr2 ((x1,x2),y1,y2) = sqrt ((x1 â y1)² + (x2 â y2)²)
- MUL_IN_QSET
-
⢠âx y. x â q_set â§ y â q_set â x * y â q_set
- NON_NEG_REAL_RAT_DENSE
-
⢠âx y. 0 ⤠x â§ x < y â âm n. x < &m / &n â§ &m / &n < y
- NUM_IN_QSET
-
⢠ân. &n â q_set â§ -&n â q_set
- OPP_IN_QSET
-
⢠âx. x â q_set â -x â q_set
- QSET_COUNTABLE
-
⢠COUNTABLE q_set
- Q_DENSE_IN_REAL
-
⢠âx y. x < y â âr. r â q_set â§ x < r â§ r < y
- Q_DENSE_IN_REAL_LEMMA
-
⢠âx y. 0 ⤠x â§ x < y â âr. r â q_set â§ x < r â§ r < y
- REAL_IN_LINE
-
⢠âx. ân. x â line n
- REAL_RAT_DENSE
-
⢠âx y. x < y â âr. r â q_set â§ x < r â§ r < y
- REAL_SING_BIGINTER
-
⢠âc. {c} =
BIGINTER
(IMAGE (Îťn. {x | c â (1 / 2) pow n ⤠x â§ x < c + (1 / 2) pow n})
đ(:num))
- SUB_IN_QSET
-
⢠âx y. x â q_set â§ y â q_set â x â y â q_set
- borel_2d
-
⢠borel Ă borel = sigma đ(:real # real) {s | open_in (mtop mr2) s}
- borel_2d_alt_box
-
⢠borel Ă borel = sigma đ(:real # real) {box a b Ă box c d | T}
- borel_closed
-
⢠âA. closed A â A â subsets borel
- borel_comp
-
⢠âA. A â subsets borel â đ(:real) DIFF A â subsets borel
- borel_def
-
⢠borel = sigma đ(:real) (IMAGE (Îťa. {x | x ⤠a}) đ(:real))
- borel_eq_box
-
⢠borel = sigma đ(:real) (IMAGE (Îť(a,b). box a b) đ(:real # real))
- borel_eq_ge_le
-
⢠borel = sigma đ(:real) (IMAGE (Îť(a,b). {x | a ⤠x â§ x ⤠b}) đ(:real # real))
- borel_eq_ge_less
-
⢠borel = sigma đ(:real) (IMAGE (Îť(a,b). {x | a ⤠x â§ x < b}) đ(:real # real))
- borel_eq_gr
-
⢠borel = sigma đ(:real) (IMAGE (Îťa. {x | a < x}) đ(:real))
- borel_eq_gr_le
-
⢠borel = sigma đ(:real) (IMAGE (Îť(a,b). {x | a < x â§ x ⤠b}) đ(:real # real))
- borel_eq_gr_less
-
⢠borel = sigma đ(:real) (IMAGE (Îť(a,b). {x | a < x â§ x < b}) đ(:real # real))
- borel_eq_le
-
⢠borel = sigma đ(:real) (IMAGE (Îťa. {x | x ⤠a}) đ(:real))
- borel_eq_less
-
⢠borel = sigma đ(:real) (IMAGE (Îťa. {x | x < a}) đ(:real))
- borel_eq_sigmaI1
-
⢠âX A f.
(borel = sigma đ(:real) X) â§
(âx. x â X â x â subsets (sigma đ(:real) (IMAGE f A))) â§
(âi. i â A â f i â subsets borel) â
(borel = sigma đ(:real) (IMAGE f A))
- borel_eq_sigmaI2
-
⢠âG f A B.
(borel = sigma đ(:real) (IMAGE (Îť(i,j). G i j) B)) â§
(âi j.
(i,j) â B â G i j â subsets (sigma đ(:real) (IMAGE (Îť(i,j). f i j) A))) â§
(âi j. (i,j) â A â f i j â subsets borel) â
(borel = sigma đ(:real) (IMAGE (Îť(i,j). f i j) A))
- borel_eq_sigmaI3
-
⢠âf A X.
(borel = sigma đ(:real) X) â§
(âx. x â X â x â subsets (sigma đ(:real) (IMAGE (Îť(i,j). f i j) A))) â§
(âi j. (i,j) â A â f i j â subsets borel) â
(borel = sigma đ(:real) (IMAGE (Îť(i,j). f i j) A))
- borel_eq_sigmaI4
-
⢠âG f A.
(borel = sigma đ(:real) (IMAGE (Îť(i,j). G i j) A)) â§
(âi j. (i,j) â A â G i j â subsets (sigma đ(:real) (IMAGE f đ(:Îł)))) â§
(âi. f i â subsets borel) â
(borel = sigma đ(:real) (IMAGE f đ(:Îł)))
- borel_eq_sigmaI5
-
⢠âG f.
(borel = sigma đ(:real) (IMAGE G đ(:Îą))) â§
(âi. G i â subsets (sigma đ(:real) (IMAGE (Îť(i,j). f i j) đ(:β # Îł)))) â§
(âi j. f i j â subsets borel) â
(borel = sigma đ(:real) (IMAGE (Îť(i,j). f i j) đ(:β # Îł)))
- borel_line
-
⢠ân. line n â subsets borel
- borel_measurable_const
-
⢠âM c. sigma_algebra M â (Îťx. c) â borel_measurable M
- borel_measurable_image
-
⢠âf M x. f â borel_measurable M â PREIMAGE f {x} ⊠space M â subsets M
- borel_measurable_indicator
-
⢠âs a. sigma_algebra s â§ a â subsets s â đ a â borel_measurable s
- borel_measurable_sets
-
⢠(âa. {x | x < a} â subsets borel) â§ (âa. {x | x ⤠a} â subsets borel) â§
(âa. {x | a < x} â subsets borel) â§ (âa. {x | a ⤠x} â subsets borel) â§
(âa b. {x | a < x â§ x < b} â subsets borel) â§
(âa b. {x | a < x â§ x ⤠b} â subsets borel) â§
(âa b. {x | a ⤠x â§ x < b} â subsets borel) â§
(âa b. {x | a ⤠x â§ x ⤠b} â subsets borel) â§ (âc. {c} â subsets borel) â§
âc. {x | x â c} â subsets borel
- borel_measurable_sets_ge
-
⢠âa. {x | a ⤠x} â subsets borel
- borel_measurable_sets_ge_le
-
⢠âa b. {x | a ⤠x â§ x ⤠b} â subsets borel
- borel_measurable_sets_ge_less
-
⢠âa b. {x | a ⤠x â§ x < b} â subsets borel
- borel_measurable_sets_gr
-
⢠âa. {x | a < x} â subsets borel
- borel_measurable_sets_gr_le
-
⢠âa b. {x | a < x â§ x ⤠b} â subsets borel
- borel_measurable_sets_gr_less
-
⢠âa b. {x | a < x â§ x < b} â subsets borel
- borel_measurable_sets_le
-
⢠âa. {x | x ⤠a} â subsets borel
- borel_measurable_sets_less
-
⢠âa. {x | x < a} â subsets borel
- borel_measurable_sets_not_sing
-
⢠âc. {x | x â c} â subsets borel
- borel_measurable_sets_sing
-
⢠âc. {c} â subsets borel
- borel_open
-
⢠âA. open A â A â subsets borel
- borel_sigma_sets_subset
-
⢠âA. A â subsets borel â sigma_sets đ(:real) A â subsets borel
- borel_singleton
-
⢠âA x. A â subsets borel â x INSERT A â subsets borel
- box_alt
-
⢠âa b. box a b = interval (a,b)
- box_open_in_mr2
-
⢠âa b c d. open_in (mtop mr2) (interval (a,b) Ă interval (c,d))
- countable_real_rat_set
-
⢠COUNTABLE q_set
- in_borel_measurable
-
⢠âf s.
f â borel_measurable s â
sigma_algebra s â§
âs'.
s' â subsets (sigma đ(:real) (IMAGE (Îťa. {x | x ⤠a}) đ(:real))) â
PREIMAGE f s' ⊠space s â subsets s
- in_borel_measurable_add
-
⢠âa f g h.
sigma_algebra a â§ f â borel_measurable a â§ g â borel_measurable a â§
(âx. x â space a â (h x = f x + g x)) â
h â borel_measurable a
- in_borel_measurable_borel
-
⢠âf M.
f â borel_measurable M â
sigma_algebra M â§
âs. s â subsets borel â PREIMAGE f s ⊠space M â subsets M
- in_borel_measurable_cmul
-
⢠âa f g z.
sigma_algebra a â§ f â borel_measurable a â§
(âx. x â space a â (g x = z * f x)) â
g â borel_measurable a
- in_borel_measurable_const
-
⢠âa k f.
sigma_algebra a â§ (âx. x â space a â (f x = k)) â f â borel_measurable a
- in_borel_measurable_ge
-
⢠âf m.
f â borel_measurable m â
sigma_algebra m â§ f â (space m â đ(:real)) â§
âa. {w | w â space m â§ a ⤠f w} â subsets m
- in_borel_measurable_gr
-
⢠âf m.
f â borel_measurable m â
sigma_algebra m â§ f â (space m â đ(:real)) â§
âa. {w | w â space m â§ a < f w} â subsets m
- in_borel_measurable_le
-
⢠âf m.
f â borel_measurable m â
sigma_algebra m â§ f â (space m â đ(:real)) â§
âa. {w | w â space m â§ f w ⤠a} â subsets m
- in_borel_measurable_less
-
⢠âf m.
f â borel_measurable m â
sigma_algebra m â§ f â (space m â đ(:real)) â§
âa. {w | w â space m â§ f w < a} â subsets m
- in_borel_measurable_mul
-
⢠âa f g h.
sigma_algebra a â§ f â borel_measurable a â§ g â borel_measurable a â§
(âx. x â space a â (h x = f x * g x)) â
h â borel_measurable a
- in_borel_measurable_open
-
⢠âf M.
f â borel_measurable M â
sigma_algebra M â§
âs. s â subsets (sigma đ(:real) {s | open s}) â
PREIMAGE f s ⊠space M â subsets M
- in_borel_measurable_sqr
-
⢠âa f g.
sigma_algebra a â§ f â borel_measurable a â§
(âx. x â space a â (g x = (f x)²)) â
g â borel_measurable a
- in_borel_measurable_sub
-
⢠âa f g h.
sigma_algebra a â§ f â borel_measurable a â§ g â borel_measurable a â§
(âx. x â space a â (h x = f x â g x)) â
h â borel_measurable a
- in_right_open_interval
-
⢠âa b x. x â right_open_interval a b â a ⤠x â§ x < b
- in_right_open_intervals
-
⢠âs. s â subsets right_open_intervals â âa b. s = right_open_interval a b
- in_right_open_intervals_nonempty
-
⢠âs. s â â
â§ s â subsets right_open_intervals â
âa b. a < b â§ (s = right_open_interval a b)
- line_closed
-
⢠ân. closed (line n)
- open_UNION_box
-
⢠âM. open M â (M = BIGUNION {box a b | box a b â M})
- open_UNION_rational_box
-
⢠âM. open M â (M = BIGUNION {box a b | a â q_set â§ b â q_set â§ box a b â M})
- q_set_def
-
⢠q_set =
{x | âa b. (x = &a / &b) â§ 0 < &b} ⪠{x | âa b. (x = -(&a / &b)) â§ 0 < &b}
- rational_boxes
-
⢠âx e.
0 < e â âa b. a â q_set â§ b â q_set â§ x â box a b â§ box a b â ball (x,e)
- right_open_interval_11
-
⢠âa b c d.
a < b â§ c < d â
((right_open_interval a b = right_open_interval c d) â (a = c) â§ (b = d))
- right_open_interval_DISJOINT
-
⢠âa b c d.
a ⤠b â§ b ⤠c â§ c ⤠d â
DISJOINT (right_open_interval a b) (right_open_interval c d)
- right_open_interval_DISJOINT_imp
-
⢠âa b c d.
a < b â§ c < d â§
DISJOINT (right_open_interval a b) (right_open_interval c d) â
b ⤠c ⨠d ⤠a
- right_open_interval_between_bounds
-
⢠âx a b.
x â right_open_interval a b â
interval_lowerbound (right_open_interval a b) ⤠x â§
x < interval_upperbound (right_open_interval a b)
- right_open_interval_disjoint
-
⢠âa b c d.
a ⤠b â§ b ⤠c â§ c ⤠d â
disjoint {right_open_interval a b; right_open_interval c d}
- right_open_interval_empty
-
⢠âa b. (right_open_interval a b = â
) â ÂŹ(a < b)
- right_open_interval_empty_eq
-
⢠âa b. (a = b) â (right_open_interval a b = â
)
- right_open_interval_in_intervals
-
⢠âa b. right_open_interval a b â subsets right_open_intervals
- right_open_interval_inter
-
⢠âa b c d.
right_open_interval a b ⊠right_open_interval c d =
right_open_interval (max a c) (min b d)
- right_open_interval_interior
-
⢠âa b. a < b â a â right_open_interval a b
- right_open_interval_lowerbound
-
⢠âa b. a < b â (interval_lowerbound (right_open_interval a b) = a)
- right_open_interval_two_bounds
-
⢠âa b.
interval_lowerbound (right_open_interval a b) â¤
interval_upperbound (right_open_interval a b)
- right_open_interval_union
-
⢠âa b c d.
a < b â§ c < d â§ a ⤠d â§ c ⤠b â
(right_open_interval a b ⪠right_open_interval c d =
right_open_interval (min a c) (max b d))
- right_open_interval_union_imp
-
⢠âa b c d.
a < b â§ c < d â§
right_open_interval a b ⪠right_open_interval c d â
subsets right_open_intervals â
a ⤠d ⧠c ⤠b
- right_open_interval_upperbound
-
⢠âa b. a < b â (interval_upperbound (right_open_interval a b) = b)
- right_open_intervals_semiring
-
⢠semiring right_open_intervals
- right_open_intervals_sigma_borel
-
⢠sigma (space right_open_intervals) (subsets right_open_intervals) = borel
- right_open_intervals_subset_borel
-
⢠subsets right_open_intervals â subsets borel
- sigma_algebra_borel
-
⢠sigma_algebra borel
- sigma_algebra_borel_2d
-
⢠sigma_algebra (borel à borel)
- sigma_ge_gr
-
⢠âf A.
sigma_algebra A â§ (âa. {w | w â space A â§ a ⤠f w} â subsets A) â
âa. {w | w â space A â§ a < f w} â subsets A
- sigma_gr_le
-
⢠âf A.
sigma_algebra A â§ (âa. {w | w â space A â§ a < f w} â subsets A) â
âa. {w | w â space A â§ f w ⤠a} â subsets A
- sigma_le_less
-
⢠âf A.
sigma_algebra A â§ (âa. {w | w â space A â§ f w ⤠a} â subsets A) â
âa. {w | w â space A â§ f w < a} â subsets A
- sigma_less_ge
-
⢠âf A.
sigma_algebra A â§ (âa. {w | w â space A â§ f w < a} â subsets A) â
âa. {w | w â space A â§ a ⤠f w} â subsets A
- space_borel
-
⢠space borel = đ(:real)
- space_in_borel
-
⢠đ(:real) â subsets borel