- BIJ_homs_iso
-
⊢ hom f (A,af) (B,bf) ∧ BIJ f A B ⇒ iso (A,af) (B,bf)
- Fpushout_def
-
⊢ Fpushout (A,af) (B,bf) (C',cf) f g ((P,pf),i1,i2) (:δ) ⇔
hom f (A,af) (B,bf) ∧ hom g (A,af) (C',cf) ∧ hom i1 (B,bf) (P,pf) ∧
hom i2 (C',cf) (P,pf) ∧ ((i1 ∘ f)⟨A⟩ = (i2 ∘ g)⟨A⟩) ∧
∀Q qf j1 j2.
hom j1 (B,bf) (Q,qf) ∧ hom j2 (C',cf) (Q,qf) ∧ ((j1 ∘ f)⟨A⟩ = (j2 ∘ g)⟨A⟩) ⇒
∃!u. hom u (P,pf) (Q,qf) ∧ ((u ∘ i1)⟨B⟩ = j1) ∧ ((u ∘ i2)⟨C'⟩ = j2)
- Fpushout_ind
-
⊢ ∀P'.
(∀A af B bf C cf f g P pf i1 i2.
P' (A,af) (B,bf) (C,cf) f g ((P,pf),i1,i2) (:δ)) ⇒
∀v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12.
P' (v,v1) (v2,v3) (v4,v5) v6 v7 ((v8,v9),v10,v11) v12
- INJ_homs_mono
-
⊢ hom f (A,af) (B,bf) ∧ INJ f A B ⇒
∀C cf g h.
hom g (C,cf) (A,af) ∧ hom h (C,cf) (A,af) ∧ (f ∘ g = f ∘ h) ⇒ (g = h)
- SURJ_homs_epi
-
⊢ hom f (A,af) (B,bf) ∧ SURJ f A B ⇒ epi f (A,af) (B,bf) (:γ)
- UNIV_system
-
⊢ system (𝕌(:α),af)
- bisim_RUNION
-
⊢ bisim R1 As Bs ∧ bisim R2 As Bs ⇒ bisim (R1 ∪ᵣ R2) As Bs
- bisim_gbisim
-
⊢ system (A,af) ⇒ bisim (gbisim (A,af)) (A,af) (A,af)
- bisim_system
-
⊢ bisim R As Bs ⇒ system As ∧ system Bs
- bisimilar_equivalence
-
⊢ bisimilar equiv_on system
- bisimulations_compose
-
⊢ bisim R (A,af) (B,bf) ∧ bisim Q (B,bf) (C,cf) ⇒ bisim (Q ∘ᵣ R) (A,af) (C,cf)
- bounded_def
-
⊢ bounded (:α) (:β) ⇔
∀a A af. system (A,af) ∧ a ∈ A ⇒ ∃f V. INJ f (genS (A,af) {a}) V
- bounded_ind
-
⊢ ∀P. P (:α) (:β) ⇒ ∀v v1. P v v1
- bquot_coequalizer
-
⊢ system (A,af) ∧ bisim R (A,af) (A,af) ∧ R equiv_on A ⇒
∃Rf.
coequalizer (Rᴾ,Rf) (A,af) FST⟨Rᴾ⟩ SND⟨Rᴾ⟩ (bquot (A,af) R,eps R A) (:δ)
- bquot_correct
-
⊢ system (A,af) ∧ bisim R (A,af) (A,af) ∧ R equiv_on A ⇒
system (bquot (A,af) R) ∧ hom (eps R A) (A,af) (bquot (A,af) R)
- coequalizer_def
-
⊢ coequalizer (A,af) (B,bf) f1 f2 ((C',cf),g) (:δ) ⇔
hom f1 (A,af) (B,bf) ∧ hom f2 (A,af) (B,bf) ∧ hom g (B,bf) (C',cf) ∧
((g ∘ f1)⟨A⟩ = (g ∘ f2)⟨A⟩) ∧
∀h D df.
hom h (B,bf) (D,df) ∧ ((h ∘ f1)⟨A⟩ = (h ∘ f2)⟨A⟩) ⇒
∃!u. hom u (C',cf) (D,df) ∧ (h = (u ∘ g)⟨B⟩)
- coequalizer_ind
-
⊢ ∀P. (∀A af B bf f1 f2 C cf g. P (A,af) (B,bf) f1 f2 ((C,cf),g) (:δ)) ⇒
∀v v1 v2 v3 v4 v5 v6 v7 v8 v9. P (v,v1) (v2,v3) v4 v5 ((v6,v7),v8) v9
- coequalizer_thm
-
⊢ coequalizer (A,af) (B,bf) f1 f2 (Cs,g) (:δ) ⇔
hom f1 (A,af) (B,bf) ∧ hom f2 (A,af) (B,bf) ∧ hom g (B,bf) Cs ∧
((g ∘ f1)⟨A⟩ = (g ∘ f2)⟨A⟩) ∧
∀h D df.
hom h (B,bf) (D,df) ∧ ((h ∘ f1)⟨A⟩ = (h ∘ f2)⟨A⟩) ⇒
∃!u. hom u Cs (D,df) ∧ (h = (u ∘ g)⟨B⟩)
- epi_Fpushout
-
⊢ epi f (A,af) (B,bf) (:γ) ⇔
Fpushout (A,af) (B,bf) (B,bf) f f ((B,bf),(λx. x)⟨B⟩,(λx. x)⟨B⟩) (:γ)
- epi_def
-
⊢ epi f (A,af) (B,bf) (:γ) ⇔
hom f (A,af) (B,bf) ∧
∀C cf g h.
hom g (B,bf) (C,cf) ∧ hom h (B,bf) (C,cf) ∧ ((g ∘ f)⟨A⟩ = (h ∘ f)⟨A⟩) ⇒
(g = h)
- epi_ind
-
⊢ ∀P. (∀f A af B bf. P f (A,af) (B,bf) (:γ)) ⇒
∀v v1 v2 v3 v4 v5. P v (v1,v2) (v3,v4) v5
- gbisim_equivalence
-
⊢ system (A,af) ⇒ gbisim (A,af) equiv_on A
- genS_correct
-
⊢ system (A,af) ∧ X ⊆ A ⇒ subsystem (genS (A,af) X) (A,af)
- hom_ID
-
⊢ system (A,af) ⇒ hom (λx. x)⟨A⟩ (A,af) (A,af)
- hom_implies_restr
-
⊢ hom f (A,af) Bs ⇒ (f⟨A⟩ = f)
- hom_shom
-
⊢ hom f (A,af) (B,bf) ⇒ shom f A B
- homs_compose
-
⊢ hom f As Bs ∧ hom g Bs Cs ⇒ hom (g ∘ f)⟨FST As⟩ As Cs
- iso_SYM
-
⊢ iso As Bs ⇔ iso Bs As
- iso_inj_hom
-
⊢ iso (A,af) (B,bf) ∧ hom h (A,af) (C,cf) ∧ INJ h A C ⇒
∃j. hom j (B,bf) (C,cf) ∧ INJ j B C
- lemma2_4_1
-
⊢ hom (h ∘ g) (A,af) (C,cf) ∧ hom g (A,af) (B,bf) ∧ SURJ g A B ∧
(∀b. b ∉ B ⇒ (h b = ARB)) ⇒
hom h (B,bf) (C,cf)
- lemma2_4_2
-
⊢ hom (h ∘ g) (A,af) (C,cf) ∧ hom h (B,bf) (C,cf) ∧ (∀a. a ∈ A ⇒ g a ∈ B) ∧
(∀a. a ∉ A ⇒ (g a = ARB)) ∧ INJ h B C ⇒
hom g (A,af) (B,bf)
- lemma5_3
-
⊢ hom f (A,af) (B,bf) ∧ hom g (A,af) (C,cf) ⇒ bisim (span A f g) (B,bf) (C,cf)
- mapO'
-
⊢ ∀x. mapF f (mapF g x) = mapF (f ∘ g) x
- map_preserves_INJ
-
⊢ INJ f A B ⇒ INJ (mapF f) (Fset A) (Fset B)
- map_preserves_funs
-
⊢ (∀a. a ∈ A ⇒ f a ∈ B) ⇒ ∀af. af ∈ Fset A ⇒ mapF f af ∈ Fset B
- prop5_1
-
⊢ system (A,af) ⇒ bisim (Δ A) (A,af) (A,af)
- prop5_7
-
⊢ hom f (A,af) (B,bf) ⇒
bisim (kernel A f) (A,af) (A,af) ∧ kernel A f equiv_on A
- prop5_8
-
⊢ system (A,af) ∧ bisim R (A,af) (A,af) ∧ R equiv_on A ⇒
system (bquot (A,af) R) ∧ hom (eps R A) (A,af) (bquot (A,af) R)
- prop5_9_1
-
⊢ hom f⟨A⟩ (A,af) (B,bf) ∧ bisim R (A,af) (A,af) ⇒
bisim (RIMAGE f A R) (B,bf) (B,bf)
- prop5_9_2
-
⊢ hom f⟨A⟩ (A,af) (B,bf) ∧ bisim Q (B,bf) (B,bf) ⇒
bisim (RINV_IMAGE f A Q) (A,af) (A,af)
- prop6_1
-
⊢ V ⊆ A ∧ hom (λx. x)⟨V⟩ (V,kf) (A,af) ∧ hom (λx. x)⟨V⟩ (V,lf) (A,af) ⇒
(kf = lf)
- prop6_2
-
⊢ system (A,af) ⇒ (subsystem V (A,af) ⇔ V ⊆ A ∧ bisim (Δ V) (A,af) (A,af))
- relEQ
-
⊢ relF $= = $=
- relF_inv
-
⊢ relF Rᵀ x y ⇔ relF R y x
- relO_EQ
-
⊢ relF R ∘ᵣ relF S = relF (R ∘ᵣ S)
- rel_monotone
-
⊢ (∀a b. R a b ⇒ S a b) ⇒ ∀A B. relF R A B ⇒ relF S A B
- sbisimulation_projns_homo
-
⊢ bisim R (A,af) (B,bf) ⇔
∃Rf. hom FST⟨Rᴾ⟩ (Rᴾ,Rf) (A,af) ∧ hom SND⟨Rᴾ⟩ (Rᴾ,Rf) (B,bf)
- set_map'
-
⊢ ∀x x'. x' ∈ setF (mapF f x) ⇔ ∃x''. (x' = f x'') ∧ x'' ∈ setF x
- simple_eq3
-
⊢ simple As ⇔ ∀R. bisim R As As ∧ R equiv_on FST As ⇒ (R = Δ (FST As))
- simple_imp4
-
⊢ simple As ⇒ ∀Bs f g. hom f Bs As ∧ hom g Bs As ⇒ (f = g)
- subsystem_ALT
-
⊢ subsystem V (A,af) ⇔ V ⊆ A ∧ system (A,af) ∧ hom (λx. x)⟨V⟩ (V,af⟨V⟩) (A,af)
- subsystem_INTER
-
⊢ system (A,af) ∧ (∀V. V ∈ VS ⇒ subsystem V (A,af)) ∧ VS ≠ ∅ ⇒
subsystem (BIGINTER VS) (A,af)
- subsystem_INTER2
-
⊢ system (A,af) ∧ subsystem V1 (A,af) ∧ subsystem V2 (A,af) ⇒
subsystem (V1 ∩ V2) (A,af)
- subsystem_UNION
-
⊢ system (A,af) ∧ (∀V. V ∈ VS ⇒ subsystem V (A,af)) ⇒
subsystem (BIGUNION VS) (A,af)
- subsystem_refl
-
⊢ system (A,af) ⇒ subsystem A (A,af)
- subsystem_system
-
⊢ subsystem V (A,af) ⇒ system (V,af⟨V⟩)
- system_members
-
⊢ system (A,af) ⇒ ∀a b. a ∈ A ∧ b ∈ setF (af a) ⇒ b ∈ A
- thm2_5
-
⊢ hom h (A,af) (B,bf) ⇔
(∀a. a ∈ A ⇒ h a ∈ B) ∧ (∀a. a ∉ A ⇒ (h a = ARB)) ∧
bisim (Gr h A) (A,af) (B,bf)
- thm5_2
-
⊢ bisim Rᵀ Bs As ⇔ bisim R As Bs
- thm5_4
-
⊢ bisim R (A,af) (B,bf) ∧ bisim Q (B,bf) (C,cf) ⇒ bisim (Q ∘ᵣ R) (A,af) (C,cf)
- thm5_5
-
⊢ (∀R. R ∈ Rs ⇒ bisim R As Bs) ∧ system As ∧ system Bs ⇒
bisim (λa b. ∃R. R ∈ Rs ∧ R a b) As Bs
- thm6_3_1
-
⊢ hom f (A,af) (B,bf) ∧ subsystem V (A,af) ⇒ subsystem (IMAGE f V) (B,bf)
- thm6_3_2
-
⊢ hom f (A,af) (B,bf) ∧ subsystem W (B,bf) ⇒
subsystem (PREIMAGE f W ∩ A) (A,af)
- thm7_1
-
⊢ hom f (A,af) (B,bf) ⇒
hom f (A,af) (IMAGE f A,bf⟨IMAGE f A⟩) ∧
(∀g h C cf.
hom g (IMAGE f A,bf⟨IMAGE f A⟩) (C,cf) ∧
hom h (IMAGE f A,bf⟨IMAGE f A⟩) (C,cf) ∧ ((h ∘ f)⟨A⟩ = (g ∘ f)⟨A⟩) ⇒
(h = g)) ∧ hom (eps (kernel A f) A) (A,af) (bquot (A,af) (kernel A f)) ∧
hom (λx. x)⟨IMAGE f A⟩ (IMAGE f A,bf⟨IMAGE f A⟩) (B,bf) ∧
iso (IMAGE f A,bf⟨IMAGE f A⟩) (bquot (A,af) (kernel A f)) ∧
∃mu.
hom mu (bquot (A,af) (kernel A f)) (B,bf) ∧
INJ mu (FST (bquot (A,af) (kernel A f))) B
- thm7_2
-
⊢ hom f (A,af) (B,bf) ∧ bisim R (A,af) (A,af) ∧ R ⊆ᵣ kernel A f ∧ R equiv_on A ⇒
∃!fbar. hom fbar (bquot (A,af) R) (B,bf) ∧ (f = (fbar ∘ eps R A)⟨A⟩)
- thm7_3
-
⊢ system (A,af) ∧ subsystem B (A,af) ∧ bisim R (A,af) (A,af) ∧ R equiv_on A ∧
Abbrev (TR = {a | a ∈ A ∧ ∃b. b ∈ B ∧ R a b}) ⇒
subsystem TR (A,af) ∧
(let
Q = CURRY (Rᴾ ∩ (B × B))
in
bisim Q (B,af⟨B⟩) (B,af⟨B⟩) ∧ Q equiv_on B ∧
iso (bquot (B,af⟨B⟩) Q) (bquot (TR,af⟨TR⟩) R))