Theory "comparison"

Parents     toto

Signature

Constant Type
equiv_inj :(α -> α -> ordering) -> (β -> β -> ordering) -> (α -> β) -> bool
good_cmp :(α -> α -> ordering) -> bool
option_cmp2 :(α -> β -> ordering) -> α option -> β option -> ordering
resp_equiv :(α -> α -> ordering) -> (α -> β -> γ) -> bool
resp_equiv2 :(α -> α -> ordering) -> (β -> β -> ordering) -> (α -> β) -> bool

Definitions

equiv_inj_def
⊢ ∀cmp cmp2 f.
    equiv_inj cmp cmp2 f ⇔
    ∀k1 k2. (cmp2 (f k1) (f k2) = Equal) ⇒ (cmp k1 k2 = Equal)
good_cmp_def
⊢ ∀cmp.
    good_cmp cmp ⇔
    (∀x. cmp x x = Equal) ∧ (∀x y. (cmp x y = Equal) ⇒ (cmp y x = Equal)) ∧
    (∀x y. (cmp x y = Greater) ⇔ (cmp y x = Less)) ∧
    (∀x y z. (cmp x y = Equal) ∧ (cmp y z = Less) ⇒ (cmp x z = Less)) ∧
    (∀x y z. (cmp x y = Less) ∧ (cmp y z = Equal) ⇒ (cmp x z = Less)) ∧
    (∀x y z. (cmp x y = Equal) ∧ (cmp y z = Equal) ⇒ (cmp x z = Equal)) ∧
    ∀x y z. (cmp x y = Less) ∧ (cmp y z = Less) ⇒ (cmp x z = Less)
resp_equiv2_def
⊢ ∀cmp cmp2 f.
    resp_equiv2 cmp cmp2 f ⇔
    ∀k1 k2. (cmp k1 k2 = Equal) ⇒ (cmp2 (f k1) (f k2) = Equal)
resp_equiv_def
⊢ ∀cmp f. resp_equiv cmp f ⇔ ∀k1 k2 v. (cmp k1 k2 = Equal) ⇒ (f k1 v = f k2 v)


Theorems

TO_inv_invert
⊢ ∀c. TotOrd c ⇒ (TO_inv c = CURRY (invert_comparison ∘ cᴾ))
TO_of_LinearOrder_LLEX
⊢ ∀R. irreflexive R ⇒
      (TO_of_LinearOrder (LLEX R) = list_cmp (TO_of_LinearOrder R))
TotOrd_list_cmp
⊢ ∀c. TotOrd c ⇒ TotOrd (list_cmp c)
TotOrder_imp_good_cmp
⊢ ∀cmp. TotOrd cmp ⇒ good_cmp cmp
antisym_resp_equiv
⊢ ∀cmp f.
    (∀x y. (cmp x y = Equal) ⇒ (x = y)) ⇒
    resp_equiv cmp f ∧ ∀cmp2. good_cmp cmp2 ⇒ resp_equiv2 cmp cmp2 f
bool_cmp_antisym
⊢ ∀x y. (bool_cmp x y = Equal) ⇔ (x ⇔ y)
bool_cmp_def
⊢ (bool_cmp T T = Equal) ∧ (bool_cmp F F = Equal) ∧ (bool_cmp T F = Greater) ∧
  (bool_cmp F T = Less)
bool_cmp_good
⊢ good_cmp bool_cmp
char_cmp_antisym
⊢ ∀x y. (char_cmp x y = Equal) ⇔ (x = y)
char_cmp_charOrd
⊢ char_cmp = charOrd
char_cmp_def
⊢ ∀c1 c2. char_cmp c1 c2 = num_cmp (ORD c1) (ORD c2)
char_cmp_good
⊢ good_cmp char_cmp
cmp_thms
⊢ (Less ≠ Equal ∧ Less ≠ Greater ∧ Equal ≠ Greater) ∧
  ((∀v0 v1 v2. (case Less of Less => v0 | Equal => v1 | Greater => v2) = v0) ∧
   (∀v0 v1 v2. (case Equal of Less => v0 | Equal => v1 | Greater => v2) = v1) ∧
   ∀v0 v1 v2. (case Greater of Less => v0 | Equal => v1 | Greater => v2) = v2) ∧
  (∀a. (a = Less) ∨ (a = Equal) ∨ (a = Greater)) ∧
  ∀cmp.
    good_cmp cmp ⇔
    (∀x. cmp x x = Equal) ∧ (∀x y. (cmp x y = Equal) ⇒ (cmp y x = Equal)) ∧
    (∀x y. (cmp x y = Greater) ⇔ (cmp y x = Less)) ∧
    (∀x y z. (cmp x y = Equal) ∧ (cmp y z = Less) ⇒ (cmp x z = Less)) ∧
    (∀x y z. (cmp x y = Less) ∧ (cmp y z = Equal) ⇒ (cmp x z = Less)) ∧
    (∀x y z. (cmp x y = Equal) ∧ (cmp y z = Equal) ⇒ (cmp x z = Equal)) ∧
    ∀x y z. (cmp x y = Less) ∧ (cmp y z = Less) ⇒ (cmp x z = Less)
good_cmp_Less_irrefl_trans
⊢ ∀cmp.
    good_cmp cmp ⇒
    irreflexive (λk k'. cmp k k' = Less) ∧ transitive (λk k'. cmp k k' = Less)
good_cmp_Less_trans
⊢ ∀cmp. good_cmp cmp ⇒ transitive (λk k'. cmp k k' = Less)
good_cmp_thm
⊢ ∀cmp.
    good_cmp cmp ⇔
    (∀x. cmp x x = Equal) ∧
    ∀x y z.
      ((cmp x y = Greater) ⇔ (cmp y x = Less)) ∧
      ((cmp x y = Less) ∧ (cmp y z = Equal) ⇒ (cmp x z = Less)) ∧
      ((cmp x y = Less) ∧ (cmp y z = Less) ⇒ (cmp x z = Less))
good_cmp_trans
⊢ ∀cmp. good_cmp cmp ⇒ transitive (λ(k,v) (k',v'). cmp k k' = Less)
list_cmp_ListOrd
⊢ ∀c. TotOrd c ⇒ (list_cmp c = ListOrd (TO c))
list_cmp_antisym
⊢ ∀cmp x y.
    (∀x y. (cmp x y = Equal) ⇔ (x = y)) ⇒
    ((list_cmp cmp x y = Equal) ⇔ (x = y))
list_cmp_cong
⊢ ∀cmp l1 l2 cmp' l1' l2'.
    (l1 = l1') ∧ (l2 = l2') ∧
    (∀x x'. MEM x l1' ∧ MEM x' l2' ⇒ (cmp x x' = cmp' x x')) ⇒
    (list_cmp cmp l1 l2 = list_cmp cmp' l1' l2')
list_cmp_equal_list_rel
⊢ ∀cmp l1 l2.
    (list_cmp cmp l1 l2 = Equal) ⇔ LIST_REL (λx y. cmp x y = Equal) l1 l2
list_cmp_good
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (list_cmp cmp)
num_cmp_antisym
⊢ ∀x y. (num_cmp x y = Equal) ⇔ (x = y)
num_cmp_def
⊢ ∀n1 n2.
    num_cmp n1 n2 =
    if n1 = n2 then Equal else if n1 < n2 then Less else Greater
num_cmp_good
⊢ good_cmp num_cmp
num_cmp_numOrd
⊢ num_cmp = numOrd
option_cmp2_TO_inv
⊢ ∀c. option_cmp2 c = TO_inv (option_cmp (TO_inv c))
option_cmp2_antisym
⊢ ∀cmp x y.
    (∀x y. (cmp x y = Equal) ⇔ (x = y)) ⇒
    ((option_cmp2 cmp x y = Equal) ⇔ (x = y))
option_cmp2_cong
⊢ ∀cmp v1 v2 cmp' v1' v2'.
    (v1 = v1') ∧ (v2 = v2') ∧
    (∀x x'. (v1' = SOME x) ∧ (v2' = SOME x') ⇒ (cmp x x' = cmp' x x')) ⇒
    (option_cmp2 cmp v1 v2 = option_cmp2 cmp' v1' v2')
option_cmp2_def
⊢ (option_cmp2 cmp NONE NONE = Equal) ∧
  (option_cmp2 cmp NONE (SOME x') = Greater) ∧
  (option_cmp2 cmp (SOME x) NONE = Less) ∧
  (option_cmp2 cmp (SOME x) (SOME y) = cmp x y)
option_cmp2_good
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp2 cmp)
option_cmp2_ind
⊢ ∀P. (∀cmp. P cmp NONE NONE) ∧ (∀cmp x. P cmp NONE (SOME x)) ∧
      (∀cmp x. P cmp (SOME x) NONE) ∧ (∀cmp x y. P cmp (SOME x) (SOME y)) ⇒
      ∀v v1 v2. P v v1 v2
option_cmp_antisym
⊢ ∀cmp x y.
    (∀x y. (cmp x y = Equal) ⇔ (x = y)) ⇒
    ((option_cmp cmp x y = Equal) ⇔ (x = y))
option_cmp_cong
⊢ ∀cmp v1 v2 cmp' v1' v2'.
    (v1 = v1') ∧ (v2 = v2') ∧
    (∀x x'. (v1' = SOME x) ∧ (v2' = SOME x') ⇒ (cmp x x' = cmp' x x')) ⇒
    (option_cmp cmp v1 v2 = option_cmp cmp' v1' v2')
option_cmp_def
⊢ (option_cmp c NONE NONE = Equal) ∧ (option_cmp c NONE (SOME v0) = Less) ∧
  (option_cmp c (SOME v3) NONE = Greater) ∧
  (option_cmp c (SOME v1) (SOME v2) = c v1 v2)
option_cmp_good
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp cmp)
pair_cmp_antisym
⊢ ∀cmp1 cmp2 x y.
    (∀x y. (cmp1 x y = Equal) ⇔ (x = y)) ∧
    (∀x y. (cmp2 x y = Equal) ⇔ (x = y)) ⇒
    ((pair_cmp cmp1 cmp2 x y = Equal) ⇔ (x = y))
pair_cmp_cong
⊢ ∀cmp1 cmp2 v1 v2 cmp1' cmp2' v1' v2'.
    (v1 = v1') ∧ (v2 = v2') ∧
    (∀a b c d. (v1' = (a,b)) ∧ (v2' = (c,d)) ⇒ (cmp1 a c = cmp1' a c)) ∧
    (∀a b c d. (v1' = (a,b)) ∧ (v2' = (c,d)) ⇒ (cmp2 b d = cmp2' b d)) ⇒
    (pair_cmp cmp1 cmp2 v1 v2 = pair_cmp cmp1' cmp2' v1' v2')
pair_cmp_def
⊢ pair_cmp c1 c2 x y =
  case c1 (FST x) (FST y) of
    Less => Less
  | Equal => c2 (SND x) (SND y)
  | Greater => Greater
pair_cmp_good
⊢ ∀cmp1 cmp2. good_cmp cmp1 ∧ good_cmp cmp2 ⇒ good_cmp (pair_cmp cmp1 cmp2)
pair_cmp_lexTO
⊢ ∀R V. TotOrd R ∧ TotOrd V ⇒ (pair_cmp R V = R lexTO V)
string_cmp_antisym
⊢ ∀x y. (string_cmp x y = Equal) ⇔ (x = y)
string_cmp_def
⊢ string_cmp = list_cmp char_cmp
string_cmp_good
⊢ good_cmp string_cmp
string_cmp_stringto
⊢ string_cmp = apto stringto