Theory "fmsp"

Parents     transfer   sptree

Signature

Constant Type
FMSP :(α -> num -> bool) -> (β -> γ -> bool) -> (α |-> β) -> γ num_map -> bool

Definitions

FMSP_def
⊢ ∀AN BC fm sp.
    FMSP AN BC fm sp ⇔ ∀a n. AN a n ⇒ OPTREL BC (FLOOKUP fm a) (lookup n sp)


Theorems

FMSP_FDOM
⊢ (FMSP AN BC |==> AN |==> $<=>) FDOM domain
FMSP_FDOMSUB
⊢ bi_unique AN ⇒ (FMSP AN BC |==> AN |==> FMSP AN BC) $\\ (flip delete)
FMSP_FEMPTY
⊢ FMSP AN BC FEMPTY LN
FMSP_FUNION
⊢ (FMSP AN BC |==> FMSP AN BC |==> FMSP AN BC) $FUNION union
FMSP_FUPDATE
⊢ bi_unique AN ⇒
  (FMSP AN BC |==> AN ### BC |==> FMSP AN BC) $|+ (λsp (n,v). insert n v sp)
FMSP_bitotal
⊢ bitotal BC ∧ bi_unique AN ⇒ bitotal (FMSP AN BC)
FMSP_surj
⊢ bi_unique AN ∧ surj BC ⇒ surj (FMSP AN BC)