| Constant | Type |
|---|---|
| FMSP | :(α -> num -> bool) -> (β -> γ -> bool) -> (α |-> β) -> γ num_map -> bool |
⊢ ∀AN BC fm sp.
FMSP AN BC fm sp ⇔ ∀a n. AN a n ⇒ OPTREL BC (FLOOKUP fm a) (lookup n sp)
⊢ (FMSP AN BC |==> AN |==> $<=>) FDOM domain
⊢ bi_unique AN ⇒ (FMSP AN BC |==> AN |==> FMSP AN BC) $\\ (flip delete)
⊢ FMSP AN BC FEMPTY LN
⊢ (FMSP AN BC |==> FMSP AN BC |==> FMSP AN BC) $FUNION union
⊢ bi_unique AN ⇒ (FMSP AN BC |==> AN ### BC |==> FMSP AN BC) $|+ (λsp (n,v). insert n v sp)
⊢ bitotal BC ∧ bi_unique AN ⇒ bitotal (FMSP AN BC)
⊢ bi_unique AN ∧ surj BC ⇒ surj (FMSP AN BC)