Theory "integration"

Parents     derivative

Signature

Constant Type
FINE :(α -> β -> bool) -> (α # (β -> bool) -> bool) -> bool
HK_integral :(real -> bool) -> (real -> real) -> real
absolutely_integrable_on :(real -> real) -> (real -> bool) -> bool
content :(real -> bool) -> real
division_of :((real -> bool) -> bool) -> (real -> bool) -> bool
division_points :(real -> bool) -> ((real -> bool) -> bool) -> num # real -> bool
equiintegrable_on :((real -> real) -> bool) -> (real -> bool) -> bool
gauge_def :(real -> real -> bool) -> bool
has_bounded_setvariation_on :((real -> bool) -> real) -> (real -> bool) -> bool
has_bounded_variation_on :(real -> real) -> (real -> bool) -> bool
has_integral :(real -> real) -> real -> (real -> bool) -> bool
has_integral_compact_interval :(real -> real) -> real -> (real -> bool) -> bool
indicator :(real -> bool) -> real -> real
integrable_on :(real -> real) -> (real -> bool) -> bool
interval_lowerbound :(real -> bool) -> real
interval_upperbound :(real -> bool) -> real
lifted :(β -> γ -> α) -> β option -> γ option -> α option
negligible :(real -> bool) -> bool
operative :(α -> α -> α) -> ((real -> bool) -> α) -> bool
set_variation :(real -> bool) -> ((real -> bool) -> real) -> real
tagged_division_of :(real # (real -> bool) -> bool) -> (real -> bool) -> bool
tagged_partial_division_of :(real # (real -> bool) -> bool) -> (real -> bool) -> bool
vector_variation :(real -> bool) -> (real -> real) -> real

Definitions

FINE
⊢ ∀d s. d FINE s ⇔ ∀x k. (x,k) ∈ s ⇒ k ⊆ d x
absolutely_integrable_on
⊢ ∀f s.
    f absolutely_integrable_on s ⇔
    f integrable_on s ∧ (λx. abs (f x)) integrable_on s
content
⊢ ∀s. content s =
      if s = ∅ then 0 else interval_upperbound s − interval_lowerbound s
division_of
⊢ ∀s i.
    s division_of i ⇔
    FINITE s ∧ (∀k. k ∈ s ⇒ k ⊆ i ∧ k ≠ ∅ ∧ ∃a b. k = interval [(a,b)]) ∧
    (∀k1 k2. k1 ∈ s ∧ k2 ∈ s ∧ k1 ≠ k2 ⇒ (interior k1 ∩ interior k2 = ∅)) ∧
    (BIGUNION s = i)
division_points
⊢ ∀k d.
    division_points k d =
    {(j,x) |
     1 ≤ j ∧ j ≤ 1 ∧ interval_lowerbound k < x ∧ x < interval_upperbound k ∧
     ∃i. i ∈ d ∧ ((interval_lowerbound i = x) ∨ (interval_upperbound i = x))}
equiintegrable_on
⊢ ∀fs i.
    fs equiintegrable_on i ⇔
    (∀f. f ∈ fs ⇒ f integrable_on i) ∧
    ∀e. 0 < e ⇒
        ∃d. gauge d ∧
            ∀f p.
              f ∈ fs ∧ p tagged_division_of i ∧ d FINE p ⇒
              abs (sum p (λ(x,k). content k * f x) − ∫ i f) < e
gauge_def
⊢ ∀d. gauge d ⇔ ∀x. x ∈ d x ∧ open (d x)
has_bounded_setvariation_on
⊢ ∀f s.
    f has_bounded_setvariation_on s ⇔
    ∃B. ∀d t. d division_of t ∧ t ⊆ s ⇒ sum d (λk. abs (f k)) ≤ B
has_bounded_variation_on
⊢ ∀f s.
    f has_bounded_variation_on s ⇔
    (λk. f (interval_upperbound k) − f (interval_lowerbound k)) has_bounded_setvariation_on
    s
has_integral_compact_interval
⊢ ∀f y i.
    (f has_integral_compact_interval y) i ⇔
    ∀e. 0 < e ⇒
        ∃d. gauge d ∧
            ∀p. p tagged_division_of i ∧ d FINE p ⇒
                abs (sum p (λ(x,k). content k * f x) − y) < e
has_integral_def
⊢ ∀f y i.
    (f has_integral y) i ⇔
    if ∃a b. i = interval [(a,b)] then (f has_integral_compact_interval y) i
    else
      ∀e. 0 < e ⇒
          ∃B. 0 < B ∧
              ∀a b.
                ball (0,B) ⊆ interval [(a,b)] ⇒
                ∃z. ((λx. if x ∈ i then f x else 0) has_integral_compact_interval
                     z) (interval [(a,b)]) ∧ abs (z − y) < e
indicator
⊢ ∀s. indicator s = (λx. if x ∈ s then 1 else 0)
integrable_on
⊢ ∀f i. f integrable_on i ⇔ ∃y. (f has_integral y) i
integral
⊢ ∀i f. ∫ i f = @y. (f has_integral y) i
interval_lowerbound
⊢ ∀s. interval_lowerbound s = if s = ∅ then 0 else inf s
interval_upperbound
⊢ ∀s. interval_upperbound s = if s = ∅ then 0 else sup s
negligible
⊢ ∀s. negligible s ⇔ ∀a b. (indicator s has_integral 0) (interval [(a,b)])
operative
⊢ ∀op f.
    operative op f ⇔
    (∀a b.
       (content (interval [(a,b)]) = 0) ⇒ (f (interval [(a,b)]) = neutral op)) ∧
    ∀a b c.
      f (interval [(a,b)]) =
      op (f (interval [(a,b)] ∩ {x | x ≤ c}))
        (f (interval [(a,b)] ∩ {x | x ≥ c}))
set_variation
⊢ ∀s f.
    set_variation s f =
    sup {sum d (λk. abs (f k)) | (∃t. d division_of t ∧ t ⊆ s)}
tagged_division_of
⊢ ∀s i.
    s tagged_division_of i ⇔
    s tagged_partial_division_of i ∧ (BIGUNION {k | (∃x. (x,k) ∈ s)} = i)
tagged_partial_division_of
⊢ ∀s i.
    s tagged_partial_division_of i ⇔
    FINITE s ∧
    (∀x k. (x,k) ∈ s ⇒ x ∈ k ∧ k ⊆ i ∧ ∃a b. k = interval [(a,b)]) ∧
    ∀x1 k1 x2 k2.
      (x1,k1) ∈ s ∧ (x2,k2) ∈ s ∧ (x1,k1) ≠ (x2,k2) ⇒
      (interior k1 ∩ interior k2 = ∅)
vector_variation
⊢ ∀s f.
    vector_variation s f =
    set_variation s
      (λk. f (interval_upperbound k) − f (interval_lowerbound k))


Theorems

ABSOLUTELY_INTEGRABLE_0
⊢ ∀s. (λx. 0) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ABS
⊢ ∀f s.
    f absolutely_integrable_on s ⇒ (λx. abs (f x)) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_BOUND
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ abs (f x) ≤ abs (g x)) ∧ f integrable_on s ∧
    g absolutely_integrable_on s ⇒
    f absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_COMPONENT_LBOUND
⊢ ∀f g s.
    (∀x i. x ∈ s ⇒ f x ≤ g x) ∧ f absolutely_integrable_on s ∧
    g integrable_on s ⇒
    g absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_COMPONENT_UBOUND
⊢ ∀f g s.
    (∀x i. x ∈ s ⇒ f x ≤ g x) ∧ f integrable_on s ∧
    g absolutely_integrable_on s ⇒
    f absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_LBOUND
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ f x ≤ g x) ∧ f absolutely_integrable_on s ∧ g integrable_on s ⇒
    g absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_UBOUND
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ f x ≤ g x) ∧ f integrable_on s ∧ g absolutely_integrable_on s ⇒
    f absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ABS_EQ
⊢ ∀f s.
    f absolutely_integrable_on s ⇔
    f integrable_on s ∧ (λx. abs (f x)) integrable_on s
ABSOLUTELY_INTEGRABLE_ADD
⊢ ∀f g s.
    f absolutely_integrable_on s ∧ g absolutely_integrable_on s ⇒
    (λx. f x + g x) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_BOUNDED_SETVARIATION
⊢ ∀f s.
    f absolutely_integrable_on s ⇒ (λk. ∫ k f) has_bounded_setvariation_on s
ABSOLUTELY_INTEGRABLE_BOUNDED_SETVARIATION_EQ
⊢ ∀f a b.
    f absolutely_integrable_on interval [(a,b)] ⇔
    f integrable_on interval [(a,b)] ∧
    (λk. ∫ k f) has_bounded_setvariation_on interval [(a,b)]
ABSOLUTELY_INTEGRABLE_BOUNDED_SETVARIATION_UNIV_EQ
⊢ ∀f. f absolutely_integrable_on 𝕌(:real) ⇔
      f integrable_on 𝕌(:real) ∧
      (λk. ∫ k f) has_bounded_setvariation_on 𝕌(:real)
ABSOLUTELY_INTEGRABLE_CMUL
⊢ ∀f s c.
    f absolutely_integrable_on s ⇒ (λx. c * f x) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_COMPONENTWISE
⊢ ∀f s. f absolutely_integrable_on s ⇔ (λx. f x) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_CONST
⊢ ∀a b c. (λx. c) absolutely_integrable_on interval [(a,b)]
ABSOLUTELY_INTEGRABLE_CONTINUOUS
⊢ ∀f a b.
    f continuous_on interval [(a,b)] ⇒
    f absolutely_integrable_on interval [(a,b)]
ABSOLUTELY_INTEGRABLE_EQ
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ (f x = g x)) ∧ f absolutely_integrable_on s ⇒
    g absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_IMP_ABS_INTEGRABLE
⊢ ∀f s. f absolutely_integrable_on s ⇒ (λx. abs (f x)) integrable_on s
ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE
⊢ ∀f s. f absolutely_integrable_on s ⇒ f integrable_on s
ABSOLUTELY_INTEGRABLE_INF
⊢ ∀fs s k.
    FINITE k ∧ k ≠ ∅ ∧ (∀i. i ∈ k ⇒ (λx. fs x i) absolutely_integrable_on s) ⇒
    (λx. inf (IMAGE (fs x) k)) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_INTEGRABLE_BOUND
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ abs (f x) ≤ g x) ∧ f integrable_on s ∧ g integrable_on s ⇒
    f absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_LE
⊢ ∀f s. f absolutely_integrable_on s ⇒ abs (∫ s f) ≤ ∫ s (λx. abs (f x))
ABSOLUTELY_INTEGRABLE_LINEAR
⊢ ∀f h s.
    f absolutely_integrable_on s ∧ linear h ⇒ h ∘ f absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_MAX
⊢ ∀f g s.
    f absolutely_integrable_on s ∧ g absolutely_integrable_on s ⇒
    (λx. max (f x) (g x)) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_MIN
⊢ ∀f g s.
    f absolutely_integrable_on s ∧ g absolutely_integrable_on s ⇒
    (λx. min (f x) (g x)) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_NEG
⊢ ∀f s. f absolutely_integrable_on s ⇒ (λx. -f x) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_ON_NULL
⊢ ∀f a b.
    (content (interval [(a,b)]) = 0) ⇒
    f absolutely_integrable_on interval [(a,b)]
ABSOLUTELY_INTEGRABLE_ON_SUBINTERVAL
⊢ ∀f s a b.
    f absolutely_integrable_on s ∧ interval [(a,b)] ⊆ s ⇒
    f absolutely_integrable_on interval [(a,b)]
ABSOLUTELY_INTEGRABLE_RESTRICT_INTER
⊢ ∀f s t.
    (λx. if x ∈ s then f x else 0) absolutely_integrable_on t ⇔
    f absolutely_integrable_on s ∩ t
ABSOLUTELY_INTEGRABLE_RESTRICT_UNIV
⊢ ∀f s.
    (λx. if x ∈ s then f x else 0) absolutely_integrable_on 𝕌(:real) ⇔
    f absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_SET_VARIATION
⊢ ∀f a b.
    f absolutely_integrable_on interval [(a,b)] ⇒
    (set_variation (interval [(a,b)]) (λk. ∫ k f) =
     ∫ (interval [(a,b)]) (λx. abs (f x)))
ABSOLUTELY_INTEGRABLE_SPIKE
⊢ ∀f g s t.
    negligible s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ⇒
    f absolutely_integrable_on t ⇒
    g absolutely_integrable_on t
ABSOLUTELY_INTEGRABLE_SUB
⊢ ∀f g s.
    f absolutely_integrable_on s ∧ g absolutely_integrable_on s ⇒
    (λx. f x − g x) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_SUM
⊢ ∀f s t.
    FINITE t ∧ (∀a. a ∈ t ⇒ f a absolutely_integrable_on s) ⇒
    (λx. sum t (λa. f a x)) absolutely_integrable_on s
ABSOLUTELY_INTEGRABLE_SUP
⊢ ∀fs s k.
    FINITE k ∧ k ≠ ∅ ∧ (∀i. i ∈ k ⇒ (λx. fs x i) absolutely_integrable_on s) ⇒
    (λx. sup (IMAGE (fs x) k)) absolutely_integrable_on s
ABS_LE_L1
⊢ ∀x. abs x ≤ sum (1 .. 1) (λi. abs x)
ABS_TRIANGLE_LE
⊢ ∀x y. abs x + abs y ≤ e ⇒ abs (x + y) ≤ e
ADDITIVE_CONTENT_DIVISION
⊢ ∀d a b.
    d division_of interval [(a,b)] ⇒
    (sum d content = content (interval [(a,b)]))
ADDITIVE_CONTENT_TAGGED_DIVISION
⊢ ∀d a b.
    d tagged_division_of interval [(a,b)] ⇒
    (sum d (λ(x,l). content l) = content (interval [(a,b)]))
ADDITIVE_TAGGED_DIVISION_1
⊢ ∀f p a b.
    a ≤ b ∧ p tagged_division_of interval [(a,b)] ⇒
    (sum p (λ(x,k). f (interval_upperbound k) − f (interval_lowerbound k)) =
     f b − f a)
ANTIDERIVATIVE_CONTINUOUS
⊢ ∀f a b.
    f continuous_on interval [(a,b)] ⇒
    ∃g. ∀x.
      x ∈ interval [(a,b)] ⇒
      (g has_vector_derivative f x) (at x within interval [(a,b)])
ANTIDERIVATIVE_INTEGRAL_CONTINUOUS
⊢ ∀f a b.
    f continuous_on interval [(a,b)] ⇒
    ∃g. ∀u v.
      u ∈ interval [(a,b)] ∧ v ∈ interval [(a,b)] ∧ u ≤ v ⇒
      (f has_integral g v − g u) (interval [(u,v)])
APPROXIMABLE_ON_DIVISION
⊢ ∀f d a b e.
    0 ≤ e ∧ d division_of interval [(a,b)] ∧
    (∀i. i ∈ d ⇒ ∃g. (∀x. x ∈ i ⇒ abs (f x − g x) ≤ e) ∧ g integrable_on i) ⇒
    ∃g. (∀x. x ∈ interval [(a,b)] ⇒ abs (f x − g x) ≤ e) ∧
        g integrable_on interval [(a,b)]
BEPPO_LEVI_DECREASING
⊢ ∀f s.
    (∀k. f k integrable_on s) ∧ (∀k x. x ∈ s ⇒ f (SUC k) x ≤ f k x) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    ∃g k. negligible k ∧ ∀x. x ∈ s DIFF k ⇒ ((λk. f k x) ⟶ g x) sequentially
BEPPO_LEVI_INCREASING
⊢ ∀f s.
    (∀k. f k integrable_on s) ∧ (∀k x. x ∈ s ⇒ f k x ≤ f (SUC k) x) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    ∃g k. negligible k ∧ ∀x. x ∈ s DIFF k ⇒ ((λk. f k x) ⟶ g x) sequentially
BEPPO_LEVI_MONOTONE_CONVERGENCE_DECREASING
⊢ ∀f s.
    (∀k. f k integrable_on s) ∧ (∀k x. x ∈ s ⇒ f (SUC k) x ≤ f k x) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    ∃g k.
      negligible k ∧ (∀x. x ∈ s DIFF k ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
      g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
BEPPO_LEVI_MONOTONE_CONVERGENCE_DECREASING_AE
⊢ ∀f s.
    (∀k. f k integrable_on s) ∧
    (∀k. ∃t. negligible t ∧ ∀x. x ∈ s DIFF t ⇒ f (SUC k) x ≤ f k x) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    ∃g k.
      negligible k ∧ (∀x. x ∈ s DIFF k ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
      g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING
⊢ ∀f s.
    (∀k. f k integrable_on s) ∧ (∀k x. x ∈ s ⇒ f k x ≤ f (SUC k) x) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    ∃g k.
      negligible k ∧ (∀x. x ∈ s DIFF k ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
      g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING_AE
⊢ ∀f s.
    (∀k. f k integrable_on s) ∧
    (∀k. ∃t. negligible t ∧ ∀x. x ∈ s DIFF t ⇒ f k x ≤ f (SUC k) x) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    ∃g k.
      negligible k ∧ (∀x. x ∈ s DIFF k ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
      g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
BOUNDED_EQUIINTEGRAL_OVER_THIN_TAGGED_PARTIAL_DIVISION
⊢ ∀fs f a b e.
    fs equiintegrable_on interval [(a,b)] ∧ f ∈ fs ∧
    (∀h x. h ∈ fs ∧ x ∈ interval [(a,b)] ⇒ abs (h x) ≤ abs (f x)) ∧ 0 < e ⇒
    ∃d. gauge d ∧
        ∀c p h.
          c ∈ interval [(a,b)] ∧
          p tagged_partial_division_of interval [(a,b)] ∧ d FINE p ∧ h ∈ fs ∧
          (∀x k. (x,k) ∈ p ⇒ k ∩ {x | x = c} ≠ ∅) ⇒
          sum p (λ(x,k). abs (∫ k h)) < e
BOUNDED_SETVARIATION_ABSOLUTELY_INTEGRABLE
⊢ ∀f. f integrable_on 𝕌(:real) ∧
      (λk. ∫ k f) has_bounded_setvariation_on 𝕌(:real) ⇒
      f absolutely_integrable_on 𝕌(:real)
BOUNDED_SETVARIATION_ABSOLUTELY_INTEGRABLE_INTERVAL
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ∧
    (λk. ∫ k f) has_bounded_setvariation_on interval [(a,b)] ⇒
    f absolutely_integrable_on interval [(a,b)]
CONTENT_0_SUBSET
⊢ ∀s a b.
    s ⊆ interval [(a,b)] ∧ (content (interval [(a,b)]) = 0) ⇒ (content s = 0)
CONTENT_0_SUBSET_GEN
⊢ ∀s t. s ⊆ t ∧ bounded t ∧ (content t = 0) ⇒ (content s = 0)
CONTENT_CLOSED_INTERVAL
⊢ ∀a b. a ≤ b ⇒ (content (interval [(a,b)]) = b − a)
CONTENT_CLOSED_INTERVAL_CASES
⊢ ∀a b. content (interval [(a,b)]) = if a ≤ b then b − a else 0
CONTENT_DOUBLESPLIT
⊢ ∀a b c e.
    0 < e ⇒ ∃d. 0 < d ∧ content (interval [(a,b)] ∩ {x | abs (x − c) ≤ d}) < e
CONTENT_EMPTY
⊢ content ∅ = 0
CONTENT_EQ_0
⊢ ∀a b. (content (interval [(a,b)]) = 0) ⇔ b ≤ a
CONTENT_EQ_0_1
⊢ ∀a b. (content (interval [(a,b)]) = 0) ⇔ b ≤ a
CONTENT_EQ_0_GEN
⊢ ∀s. bounded s ⇒ ((content s = 0) ⇔ ∃a. ∀x. x ∈ s ⇒ (x = a))
CONTENT_EQ_0_INTERIOR
⊢ ∀a b. (content (interval [(a,b)]) = 0) ⇔ (interior (interval [(a,b)]) = ∅)
CONTENT_IMAGE_AFFINITY_INTERVAL
⊢ ∀a b m c.
    content (IMAGE (λx. m * x + c) (interval [(a,b)])) =
    abs m pow 1 * content (interval [(a,b)])
CONTENT_IMAGE_STRETCH_INTERVAL
⊢ ∀a b m.
    content (IMAGE (λx. m 1 * x) (interval [(a,b)])) =
    abs (product (1 .. 1) m) * content (interval [(a,b)])
CONTENT_LT_NZ
⊢ ∀a b. 0 < content (interval [(a,b)]) ⇔ content (interval [(a,b)]) ≠ 0
CONTENT_POS_LE
⊢ ∀a b. 0 ≤ content (interval [(a,b)])
CONTENT_POS_LT
⊢ ∀a b. a < b ⇒ 0 < content (interval [(a,b)])
CONTENT_POS_LT_EQ
⊢ ∀a b. 0 < content (interval [(a,b)]) ⇔ a < b
CONTENT_SPLIT
⊢ ∀a b k.
    content (interval [(a,b)]) =
    content (interval [(a,b)] ∩ {x | x ≤ c}) +
    content (interval [(a,b)] ∩ {x | x ≥ c})
CONTENT_SUBSET
⊢ ∀a b c d.
    interval [(a,b)] ⊆ interval [(c,d)] ⇒
    content (interval [(a,b)]) ≤ content (interval [(c,d)])
CONTENT_UNIT
⊢ content (interval [(0,1)]) = 1
CONTINUOUS_ON_VECTOR_VARIATION
⊢ ∀f a b.
    f has_bounded_variation_on interval [(a,b)] ∧
    f continuous_on interval [(a,b)] ⇒
    (λx. vector_variation (interval [(a,x)]) f) continuous_on interval [(a,b)]
CONVEX_CONTAINS_SEGMENT
⊢ ∀s. convex s ⇔ ∀a b. a ∈ s ∧ b ∈ s ⇒ segment [(a,b)] ⊆ s
DECREASING_BOUNDED_VARIATION
⊢ ∀f a b.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f y ≤ f x) ⇒
    f has_bounded_variation_on interval [(a,b)]
DECREASING_BOUNDED_VARIATION_GEN
⊢ ∀f s.
    bounded (IMAGE f s) ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≤ y ⇒ f y ≤ f x) ⇒
    f has_bounded_variation_on s
DECREASING_LEFT_LIMIT
⊢ ∀f a b c.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f y ≤ f x) ∧
    c ∈ interval [(a,b)] ⇒
    ∃l. (f ⟶ l) (at c within interval [(a,c)])
DECREASING_RIGHT_LIMIT
⊢ ∀f a b c.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f y ≤ f x) ∧
    c ∈ interval [(a,b)] ⇒
    ∃l. (f ⟶ l) (at c within interval [(c,b)])
DECREASING_VECTOR_VARIATION
⊢ ∀f a b.
    interval [(a,b)] ≠ ∅ ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f y ≤ f x) ⇒
    (vector_variation (interval [(a,b)]) f = f a − f b)
DIVISION_1_SORT
⊢ ∀d s.
    d division_of s ∧ (∀k. k ∈ d ⇒ interior k ≠ ∅) ⇒
    ∃n t.
      (IMAGE t (1 .. n) = d) ∧
      ∀i j.
        i ∈ (1 .. n) ∧ j ∈ (1 .. n) ∧ i < j ⇒
        t i ≠ t j ∧ ∀x y. x ∈ t i ∧ y ∈ t j ⇒ x ≤ y
DIVISION_COMMON_POINT_BOUND
⊢ ∀d s x. d division_of s ⇒ CARD {k | k ∈ d ∧ content k ≠ 0 ∧ x ∈ k} ≤ 2 ** 1
DIVISION_CONTAINS
⊢ ∀s i. s division_of i ⇒ ∀x. x ∈ i ⇒ ∃k. x ∈ k ∧ k ∈ s
DIVISION_DISJOINT_UNION
⊢ ∀s1 s2 p1 p2.
    p1 division_of s1 ∧ p2 division_of s2 ∧ (interior s1 ∩ interior s2 = ∅) ⇒
    p1 ∪ p2 division_of s1 ∪ s2
DIVISION_DOUBLESPLIT
⊢ ∀p a b c e.
    p division_of interval [(a,b)] ⇒
    {l ∩ {x | abs (x − c) ≤ e} | l | l ∈ p ∧ l ∩ {x | abs (x − c) ≤ e} ≠ ∅} division_of
    interval [(a,b)] ∩ {x | abs (x − c) ≤ e}
DIVISION_INTER
⊢ ∀s1 s2 p1 p2.
    p1 division_of s1 ∧ p2 division_of s2 ⇒
    {k1 ∩ k2 | k1 ∈ p1 ∧ k2 ∈ p2 ∧ k1 ∩ k2 ≠ ∅} division_of s1 ∩ s2
DIVISION_INTER_1
⊢ ∀d i a b.
    d division_of i ∧ interval [(a,b)] ⊆ i ⇒
    {interval [(a,b)] ∩ k | k | k ∈ d ∧ interval [(a,b)] ∩ k ≠ ∅} division_of
    interval [(a,b)]
DIVISION_OF
⊢ ∀s i.
    s division_of i ⇔
    FINITE s ∧ (∀k. k ∈ s ⇒ k ≠ ∅ ∧ ∃a b. k = interval [(a,b)]) ∧
    (∀k1 k2. k1 ∈ s ∧ k2 ∈ s ∧ k1 ≠ k2 ⇒ (interior k1 ∩ interior k2 = ∅)) ∧
    (BIGUNION s = i)
DIVISION_OF_AFFINITY
⊢ ∀d s m c.
    IMAGE (IMAGE (λx. m * x + c)) d division_of IMAGE (λx. m * x + c) s ⇔
    if m = 0 then if s = ∅ then d = ∅ else d ≠ ∅ ∧ ∀k. k ∈ d ⇒ k ≠ ∅
    else d division_of s
DIVISION_OF_BIGUNION
⊢ ∀f. FINITE f ∧ (∀p. p ∈ f ⇒ p division_of BIGUNION p) ∧
      (∀k1 k2.
         k1 ∈ BIGUNION f ∧ k2 ∈ BIGUNION f ∧ k1 ≠ k2 ⇒
         (interior k1 ∩ interior k2 = ∅)) ⇒
      BIGUNION f division_of BIGUNION (BIGUNION f)
DIVISION_OF_CLOSED
⊢ ∀s i. s division_of i ⇒ closed i
DIVISION_OF_CONTENT_0
⊢ ∀a b d.
    (content (interval [(a,b)]) = 0) ∧ d division_of interval [(a,b)] ⇒
    ∀k. k ∈ d ⇒ (content k = 0)
DIVISION_OF_FINITE
⊢ ∀s i. s division_of i ⇒ FINITE s
DIVISION_OF_NONTRIVIAL
⊢ ∀s a b.
    s division_of interval [(a,b)] ∧ content (interval [(a,b)]) ≠ 0 ⇒
    {k | k ∈ s ∧ content k ≠ 0} division_of interval [(a,b)]
DIVISION_OF_REFLECT
⊢ ∀d s.
    IMAGE (IMAGE (λx. -x)) d division_of IMAGE (λx. -x) s ⇔ d division_of s
DIVISION_OF_SELF
⊢ ∀a b. interval [(a,b)] ≠ ∅ ⇒ {interval [(a,b)]} division_of interval [(a,b)]
DIVISION_OF_SING
⊢ ∀s a. s division_of interval [(a,a)] ⇔ (s = {interval [(a,a)]})
DIVISION_OF_SUBSET
⊢ ∀p q. p division_of BIGUNION p ∧ q ⊆ p ⇒ q division_of BIGUNION q
DIVISION_OF_TAGGED_DIVISION
⊢ ∀s i. s tagged_division_of i ⇒ IMAGE SND s division_of i
DIVISION_OF_TRANSLATION
⊢ ∀d s.
    IMAGE (IMAGE (λx. a + x)) d division_of IMAGE (λx. a + x) s ⇔
    d division_of s
DIVISION_OF_TRIVIAL
⊢ ∀s. s division_of ∅ ⇔ (s = ∅)
DIVISION_OF_UNION_SELF
⊢ ∀p s. p division_of s ⇒ p division_of BIGUNION p
DIVISION_POINTS_FINITE
⊢ ∀d i. d division_of i ⇒ FINITE (division_points i d)
DIVISION_POINTS_PSUBSET
⊢ ∀a b c d.
    d division_of interval [(a,b)] ∧ a < b ∧ a < c ∧ c < b ∧
    (∃l. l ∈ d ∧ ((interval_lowerbound l = c) ∨ (interval_upperbound l = c))) ⇒
    division_points (interval [(a,b)] ∩ {x | x ≤ c})
      {l ∩ {x | x ≤ c} | l | l ∈ d ∧ l ∩ {x | x ≤ c} ≠ ∅} ⊂
    division_points (interval [(a,b)]) d ∧
    division_points (interval [(a,b)] ∩ {x | x ≥ c})
      {l ∩ {x | x ≥ c} | l | l ∈ d ∧ l ∩ {x | x ≥ c} ≠ ∅} ⊂
    division_points (interval [(a,b)]) d
DIVISION_POINTS_SUBSET
⊢ ∀a b c d k.
    d division_of interval [(a,b)] ∧ a < b ∧ a < c ∧ c < b ⇒
    division_points (interval [(a,b)] ∩ {x | x ≤ c})
      {l ∩ {x | x ≤ c} | l | l ∈ d ∧ l ∩ {x | x ≤ c} ≠ ∅} ⊆
    division_points (interval [(a,b)]) d ∧
    division_points (interval [(a,b)] ∩ {x | x ≥ c})
      {l ∩ {x | x ≥ c} | l | l ∈ d ∧ l ∩ {x | x ≥ c} ≠ ∅} ⊆
    division_points (interval [(a,b)]) d
DIVISION_SPLIT
⊢ ∀p a b c.
    p division_of interval [(a,b)] ⇒
    {l ∩ {x | x ≤ c} | l | l ∈ p ∧ l ∩ {x | x ≤ c} ≠ ∅} division_of
    interval [(a,b)] ∩ {x | x ≤ c} ∧
    {l ∩ {x | x ≥ c} | l | l ∈ p ∧ l ∩ {x | x ≥ c} ≠ ∅} division_of
    interval [(a,b)] ∩ {x | x ≥ c}
DIVISION_SPLIT_LEFT_INJ
⊢ ∀d i k1 k2 k c.
    d division_of i ∧ k1 ∈ d ∧ k2 ∈ d ∧ k1 ≠ k2 ∧
    (k1 ∩ {x | x ≤ c} = k2 ∩ {x | x ≤ c}) ⇒
    (content (k1 ∩ {x | x ≤ c}) = 0)
DIVISION_SPLIT_LEFT_RIGHT_INJ
⊢ (∀d i k1 k2 k c.
     d division_of i ∧ k1 ∈ d ∧ k2 ∈ d ∧ k1 ≠ k2 ∧
     (k1 ∩ {x | x ≤ c} = k2 ∩ {x | x ≤ c}) ⇒
     (content (k1 ∩ {x | x ≤ c}) = 0)) ∧
  ∀d i k1 k2 k c.
    d division_of i ∧ k1 ∈ d ∧ k2 ∈ d ∧ k1 ≠ k2 ∧
    (k1 ∩ {x | x ≥ c} = k2 ∩ {x | x ≥ c}) ⇒
    (content (k1 ∩ {x | x ≥ c}) = 0)
DIVISION_SPLIT_RIGHT_INJ
⊢ ∀d i k1 k2 k c.
    d division_of i ∧ k1 ∈ d ∧ k2 ∈ d ∧ k1 ≠ k2 ∧
    (k1 ∩ {x | x ≥ c} = k2 ∩ {x | x ≥ c}) ⇒
    (content (k1 ∩ {x | x ≥ c}) = 0)
DIVISION_UNION_INTERVALS_EXISTS
⊢ ∀a b c d.
    interval [(a,b)] ≠ ∅ ⇒
    ∃p. interval [(a,b)] INSERT p division_of
        interval [(a,b)] ∪ interval [(c,d)]
DOMINATED_CONVERGENCE
⊢ ∀f g h s.
    (∀k. f k integrable_on s) ∧ h integrable_on s ∧
    (∀k x. x ∈ s ⇒ abs (f k x) ≤ h x) ∧
    (∀x. x ∈ s ⇒ ((λk. f k x) ⟶ g x) sequentially) ⇒
    g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
DOMINATED_CONVERGENCE_ABSOLUTELY_INTEGRABLE
⊢ ∀f g h s.
    (∀k. f k absolutely_integrable_on s) ∧ h integrable_on s ∧
    (∀k x. x ∈ s ⇒ abs (g x) ≤ h x) ∧
    (∀x. x ∈ s ⇒ ((λk. f k x) ⟶ g x) sequentially) ⇒
    g absolutely_integrable_on s
DOMINATED_CONVERGENCE_AE
⊢ ∀f g h s t.
    (∀k. f k integrable_on s) ∧ h integrable_on s ∧ negligible t ∧
    (∀k x. x ∈ s DIFF t ⇒ abs (f k x) ≤ h x) ∧
    (∀x. x ∈ s DIFF t ⇒ ((λk. f k x) ⟶ g x) sequentially) ⇒
    g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
DOMINATED_CONVERGENCE_INTEGRABLE
⊢ ∀f g h s.
    (∀k. f k absolutely_integrable_on s) ∧ h integrable_on s ∧
    (∀k x. x ∈ s ⇒ abs (g x) ≤ h x) ∧
    (∀x. x ∈ s ⇒ ((λk. f k x) ⟶ g x) sequentially) ⇒
    g integrable_on s
DROP_INDICATOR
⊢ ∀s x. indicator s x = if x ∈ s then 1 else 0
DROP_INDICATOR_ABS_LE_1
⊢ ∀s x. abs (indicator s x) ≤ 1
DROP_INDICATOR_LE_1
⊢ ∀s x. indicator s x ≤ 1
DROP_INDICATOR_POS_LE
⊢ ∀s x. 0 ≤ indicator s x
DSUM_BOUND
⊢ ∀p a b c e.
    p division_of interval [(a,b)] ∧ abs c ≤ e ⇒
    abs (sum p (λl. content l * c)) ≤ e * content (interval [(a,b)])
ELEMENTARY_BIGINTER
⊢ ∀f. FINITE f ∧ f ≠ ∅ ∧ (∀s. s ∈ f ⇒ ∃p. p division_of s) ⇒
      ∃p. p division_of BIGINTER f
ELEMENTARY_BIGUNION_INTERVALS
⊢ ∀f. FINITE f ∧ (∀s. s ∈ f ⇒ ∃a b. s = interval [(a,b)]) ⇒
      ∃p. p division_of BIGUNION f
ELEMENTARY_BOUNDED
⊢ ∀s. (∃p. p division_of s) ⇒ bounded s
ELEMENTARY_COMPACT
⊢ ∀s. (∃d. d division_of s) ⇒ compact s
ELEMENTARY_EMPTY
⊢ ∃p. p division_of ∅
ELEMENTARY_INTER
⊢ ∀s t.
    (∃p. p division_of s) ∧ (∃p. p division_of t) ⇒ ∃p. p division_of s ∩ t
ELEMENTARY_INTERVAL
⊢ ∀a b. ∃p. p division_of interval [(a,b)]
ELEMENTARY_SUBSET_INTERVAL
⊢ ∀s. (∃p. p division_of s) ⇒ ∃a b. s ⊆ interval [(a,b)]
ELEMENTARY_UNION
⊢ ∀s t.
    (∃p. p division_of s) ∧ (∃p. p division_of t) ⇒ ∃p. p division_of s ∪ t
ELEMENTARY_UNION_INTERVAL
⊢ ∀p a b.
    p division_of BIGUNION p ⇒ ∃q. q division_of interval [(a,b)] ∪ BIGUNION p
ELEMENTARY_UNION_INTERVAL_STRONG
⊢ ∀p a b.
    p division_of BIGUNION p ⇒
    ∃q. p ⊆ q ∧ q division_of interval [(a,b)] ∪ BIGUNION p
EMPTY_DIVISION_OF
⊢ ∀s. ∅ division_of s ⇔ (s = ∅)
EQUIINTEGRABLE_ADD
⊢ ∀fs gs s.
    fs equiintegrable_on s ∧ gs equiintegrable_on s ⇒
    {(λx. f x + g x) | f ∈ fs ∧ g ∈ gs} equiintegrable_on s
EQUIINTEGRABLE_CLOSED_INTERVAL_RESTRICTIONS
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ⇒
    {(λx. if x ∈ interval [(c,d)] then f x else 0) |
     c ∈ 𝕌(:real) ∧ d ∈ 𝕌(:real)} equiintegrable_on interval [(a,b)]
EQUIINTEGRABLE_CMUL
⊢ ∀fs s k.
    fs equiintegrable_on s ⇒
    {(λx. c * f x) | abs c ≤ k ∧ f ∈ fs} equiintegrable_on s
EQUIINTEGRABLE_DIVISION
⊢ ∀fs d a b.
    d division_of interval [(a,b)] ⇒
    (fs equiintegrable_on interval [(a,b)] ⇔
     ∀i. i ∈ d ⇒ fs equiintegrable_on i)
EQUIINTEGRABLE_EQ
⊢ ∀fs gs s.
    fs equiintegrable_on s ∧
    (∀g. g ∈ gs ⇒ ∃f. f ∈ fs ∧ ∀x. x ∈ s ⇒ (f x = g x)) ⇒
    gs equiintegrable_on s
EQUIINTEGRABLE_HALFSPACE_RESTRICTIONS_GE
⊢ ∀fs f a b.
    fs equiintegrable_on interval [(a,b)] ∧ f ∈ fs ∧
    (∀h x. h ∈ fs ∧ x ∈ interval [(a,b)] ⇒ abs (h x) ≤ abs (f x)) ⇒
    {(λx. if x ≥ c then h x else 0) | c ∈ 𝕌(:real) ∧ h ∈ fs} equiintegrable_on
    interval [(a,b)]
EQUIINTEGRABLE_HALFSPACE_RESTRICTIONS_GT
⊢ ∀fs f a b.
    fs equiintegrable_on interval [(a,b)] ∧ f ∈ fs ∧
    (∀h x. h ∈ fs ∧ x ∈ interval [(a,b)] ⇒ abs (h x) ≤ abs (f x)) ⇒
    {(λx. if x > c then h x else 0) | c ∈ 𝕌(:real) ∧ h ∈ fs} equiintegrable_on
    interval [(a,b)]
EQUIINTEGRABLE_HALFSPACE_RESTRICTIONS_LE
⊢ ∀fs f a b.
    fs equiintegrable_on interval [(a,b)] ∧ f ∈ fs ∧
    (∀h x. h ∈ fs ∧ x ∈ interval [(a,b)] ⇒ abs (h x) ≤ abs (f x)) ⇒
    {(λx. if x ≤ c then h x else 0) | c ∈ 𝕌(:real) ∧ h ∈ fs} equiintegrable_on
    interval [(a,b)]
EQUIINTEGRABLE_HALFSPACE_RESTRICTIONS_LT
⊢ ∀fs f a b.
    fs equiintegrable_on interval [(a,b)] ∧ f ∈ fs ∧
    (∀h x. h ∈ fs ∧ x ∈ interval [(a,b)] ⇒ abs (h x) ≤ abs (f x)) ⇒
    {(λx. if x < c then h x else 0) | c ∈ 𝕌(:real) ∧ h ∈ fs} equiintegrable_on
    interval [(a,b)]
EQUIINTEGRABLE_LIMIT
⊢ ∀f g a b.
    {f n | n ∈ 𝕌(:num)} equiintegrable_on interval [(a,b)] ∧
    (∀x. x ∈ interval [(a,b)] ⇒ ((λn. f n x) ⟶ g x) sequentially) ⇒
    g integrable_on interval [(a,b)] ∧
    ((λn. ∫ (interval [(a,b)]) (f n)) ⟶ ∫ (interval [(a,b)]) g) sequentially
EQUIINTEGRABLE_NEG
⊢ ∀fs s. fs equiintegrable_on s ⇒ {(λx. -f x) | f ∈ fs} equiintegrable_on s
EQUIINTEGRABLE_ON_NULL
⊢ ∀fs a b.
    (content (interval [(a,b)]) = 0) ⇒ fs equiintegrable_on interval [(a,b)]
EQUIINTEGRABLE_ON_SING
⊢ ∀f a b.
    {f} equiintegrable_on interval [(a,b)] ⇔ f integrable_on interval [(a,b)]
EQUIINTEGRABLE_ON_SPLIT
⊢ ∀fs k a b c.
    fs equiintegrable_on interval [(a,b)] ∩ {x | x ≤ c} ∧
    fs equiintegrable_on interval [(a,b)] ∩ {x | x ≥ c} ⇒
    fs equiintegrable_on interval [(a,b)]
EQUIINTEGRABLE_OPEN_INTERVAL_RESTRICTIONS
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ⇒
    {(λx. if x ∈ interval (c,d) then f x else 0) | c ∈ 𝕌(:real) ∧ d ∈ 𝕌(:real)} equiintegrable_on
    interval [(a,b)]
EQUIINTEGRABLE_REFLECT
⊢ ∀fs a b.
    fs equiintegrable_on interval [(a,b)] ⇒
    {(λx. f (-x)) | f ∈ fs} equiintegrable_on interval [(-b,-a)]
EQUIINTEGRABLE_SUB
⊢ ∀fs gs s.
    fs equiintegrable_on s ∧ gs equiintegrable_on s ⇒
    {(λx. f x − g x) | f ∈ fs ∧ g ∈ gs} equiintegrable_on s
EQUIINTEGRABLE_SUBSET
⊢ ∀fs gs s. fs equiintegrable_on s ∧ gs ⊆ fs ⇒ gs equiintegrable_on s
EQUIINTEGRABLE_SUM
⊢ ∀fs a b.
    fs equiintegrable_on interval [(a,b)] ⇒
    {(λx. sum t (λi. c i * f i x)) |
     FINITE t ∧ (∀i. i ∈ t ⇒ 0 ≤ c i ∧ f i ∈ fs) ∧ (sum t c = 1)} equiintegrable_on
    interval [(a,b)]
EQUIINTEGRABLE_UNIFORM_LIMIT
⊢ ∀fs a b.
    fs equiintegrable_on interval [(a,b)] ⇒
    {g |
     ∀e. 0 < e ⇒ ∃f. f ∈ fs ∧ ∀x. x ∈ interval [(a,b)] ⇒ abs (g x − f x) < e} equiintegrable_on
    interval [(a,b)]
EQUIINTEGRABLE_UNION
⊢ ∀fs gs s.
    fs equiintegrable_on s ∧ gs equiintegrable_on s ⇒
    fs ∪ gs equiintegrable_on s
FATOU
⊢ ∀f g s t B.
    negligible t ∧ (∀n. f n integrable_on s) ∧
    (∀n x. x ∈ s DIFF t ⇒ 0 ≤ f n x) ∧
    (∀x. x ∈ s DIFF t ⇒ ((λn. f n x) ⟶ g x) sequentially) ∧
    (∀n. ∫ s (f n) ≤ B) ⇒
    g integrable_on s ∧ 0 ≤ ∫ s g ∧ ∫ s g ≤ B
FINE_BIGINTER
⊢ ∀f s p. (λx. BIGINTER {f d x | d ∈ s}) FINE p ⇔ ∀d. d ∈ s ⇒ f d FINE p
FINE_BIGUNION
⊢ ∀d ps. (∀p. p ∈ ps ⇒ d FINE p) ⇒ d FINE BIGUNION ps
FINE_DIVISION_EXISTS
⊢ ∀g a b. gauge g ⇒ ∃p. p tagged_division_of interval [(a,b)] ∧ g FINE p
FINE_INTER
⊢ ∀p d1 d2. (λx. d1 x ∩ d2 x) FINE p ⇔ d1 FINE p ∧ d2 FINE p
FINE_SUBSET
⊢ ∀d p q. p ⊆ q ∧ d FINE q ⇒ d FINE p
FINE_UNION
⊢ ∀d p1 p2. d FINE p1 ∧ d FINE p2 ⇒ d FINE p1 ∪ p2
FINITE_POWERSET
⊢ ∀s. FINITE s ⇒ FINITE {t | t ⊆ s}
FLOOR_POS
⊢ ∀x. 0 ≤ x ⇒ ∃n. flr x = n
FORALL_IN_DIVISION
⊢ ∀P d i.
    d division_of i ⇒
    ((∀x. x ∈ d ⇒ P x) ⇔ ∀a b. interval [(a,b)] ∈ d ⇒ P (interval [(a,b)]))
FORALL_IN_DIVISION_NONEMPTY
⊢ ∀P d i.
    d division_of i ⇒
    ((∀x. x ∈ d ⇒ P x) ⇔
     ∀a b. interval [(a,b)] ∈ d ∧ interval [(a,b)] ≠ ∅ ⇒ P (interval [(a,b)]))
FUNDAMENTAL_THEOREM_OF_CALCULUS
⊢ ∀f f' a b.
    a ≤ b ∧
    (∀x. x ∈ interval [(a,b)] ⇒
         (f has_vector_derivative f' x) (at x within interval [(a,b)])) ⇒
    (f' has_integral f b − f a) (interval [(a,b)])
FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR
⊢ ∀f f' a b.
    a ≤ b ∧ f continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) ⇒ (f has_vector_derivative f' x) (at x)) ⇒
    (f' has_integral f b − f a) (interval [(a,b)])
FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG
⊢ ∀f f' s a b.
    COUNTABLE s ∧ a ≤ b ∧ f continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) DIFF s ⇒ (f has_vector_derivative f' x) (at x)) ⇒
    (f' has_integral f b − f a) (interval [(a,b)])
FUNDAMENTAL_THEOREM_OF_CALCULUS_STRONG
⊢ ∀f f' s a b.
    COUNTABLE s ∧ a ≤ b ∧ f continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval [(a,b)] DIFF s ⇒
         (f has_vector_derivative f' x) (at x within interval [(a,b)])) ⇒
    (f' has_integral f b − f a) (interval [(a,b)])
GAUGE_BALL
⊢ ∀e. 0 < e ⇒ gauge (λx. ball (x,e))
GAUGE_BALL_DEPENDENT
⊢ ∀e. (∀x. 0 < e x) ⇒ gauge (λx. ball (x,e x))
GAUGE_BIGINTER
⊢ ∀f s.
    FINITE s ∧ (∀d. d ∈ s ⇒ gauge (f d)) ⇒
    gauge (λx. BIGINTER {f d x | d ∈ s})
GAUGE_EXISTENCE_LEMMA
⊢ ∀p q. (∀x. ∃d. p x ⇒ 0 < d ∧ q d x) ⇔ ∀x. ∃d. 0 < d ∧ (p x ⇒ q d x)
GAUGE_INTER
⊢ ∀d1 d2. gauge d1 ∧ gauge d2 ⇒ gauge (λx. d1 x ∩ d2 x)
GAUGE_MODIFY
⊢ ∀f. (∀s. open s ⇒ open {x | f x ∈ s}) ⇒
      ∀d. gauge d ⇒ gauge (λx y. d (f x) (f y))
GAUGE_TRIVIAL
⊢ gauge (λx. ball (x,1))
HAS_BOUNDED_SETVARIATION_COMPARISON
⊢ ∀f g s.
    f has_bounded_setvariation_on s ∧
    (∀a b.
       interval [(a,b)] ≠ ∅ ∧ interval [(a,b)] ⊆ s ⇒
       abs (g (interval [(a,b)])) ≤ abs (f (interval [(a,b)]))) ⇒
    g has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON
⊢ ∀f s.
    f has_bounded_setvariation_on s ⇔
    ∃B. 0 < B ∧ ∀d t. d division_of t ∧ t ⊆ s ⇒ sum d (λk. abs (f k)) ≤ B
HAS_BOUNDED_SETVARIATION_ON_0
⊢ ∀s. (λx. 0) has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_ABS
⊢ ∀f s.
    (λx. abs (f x)) has_bounded_setvariation_on s ⇔
    f has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_ADD
⊢ ∀f g s.
    f has_bounded_setvariation_on s ∧ g has_bounded_setvariation_on s ⇒
    (λx. f x + g x) has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_CMUL
⊢ ∀f c s.
    f has_bounded_setvariation_on s ⇒
    (λx. c * f x) has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_COMPONENTWISE
⊢ ∀f s.
    f has_bounded_setvariation_on s ⇔ (λk. f k) has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_COMPOSE_LINEAR
⊢ ∀f g s.
    f has_bounded_setvariation_on s ∧ linear g ⇒
    g ∘ f has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_DIVISION
⊢ ∀f a b d.
    operative $+ f ∧ d division_of interval [(a,b)] ⇒
    ((∀k. k ∈ d ⇒ f has_bounded_setvariation_on k) ⇔
     f has_bounded_setvariation_on interval [(a,b)])
HAS_BOUNDED_SETVARIATION_ON_ELEMENTARY
⊢ ∀f s.
    (∃d. d division_of s) ⇒
    (f has_bounded_setvariation_on s ⇔
     ∃B. ∀d. d division_of s ⇒ sum d (λk. abs (f k)) ≤ B)
HAS_BOUNDED_SETVARIATION_ON_EQ
⊢ ∀f g s.
    (∀a b.
       interval [(a,b)] ≠ ∅ ∧ interval [(a,b)] ⊆ s ⇒
       (f (interval [(a,b)]) = g (interval [(a,b)]))) ∧
    f has_bounded_setvariation_on s ⇒
    g has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_IMP_BOUNDED_ON_SUBINTERVALS
⊢ ∀f s.
    f has_bounded_setvariation_on s ⇒
    bounded {f (interval [(c,d)]) | interval [(c,d)] ⊆ s}
HAS_BOUNDED_SETVARIATION_ON_INTERVAL
⊢ ∀f a b.
    f has_bounded_setvariation_on interval [(a,b)] ⇔
    ∃B. ∀d. d division_of interval [(a,b)] ⇒ sum d (λk. abs (f k)) ≤ B
HAS_BOUNDED_SETVARIATION_ON_NEG
⊢ ∀f s.
    (λx. -f x) has_bounded_setvariation_on s ⇔ f has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_NULL
⊢ ∀f s.
    (∀a b. (content (interval [(a,b)]) = 0) ⇒ (f (interval [(a,b)]) = 0)) ∧
    (content s = 0) ∧ bounded s ⇒
    f has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_SUB
⊢ ∀f g s.
    f has_bounded_setvariation_on s ∧ g has_bounded_setvariation_on s ⇒
    (λx. f x − g x) has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_SUBSET
⊢ ∀f s t.
    f has_bounded_setvariation_on s ∧ t ⊆ s ⇒ f has_bounded_setvariation_on t
HAS_BOUNDED_SETVARIATION_ON_SUM
⊢ ∀f s k.
    FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_setvariation_on s) ⇒
    (λx. sum k (λi. f i x)) has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_ON_SUM_AND_SET_VARIATION_SUM_LE
⊢ (∀f s k.
     FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_setvariation_on s) ⇒
     (λx. sum k (λi. f i x)) has_bounded_setvariation_on s) ∧
  ∀f s k.
    FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_setvariation_on s) ⇒
    set_variation s (λx. sum k (λi. f i x)) ≤
    sum k (λi. set_variation s (f i))
HAS_BOUNDED_SETVARIATION_ON_UNIV
⊢ ∀f. f has_bounded_setvariation_on 𝕌(:real) ⇔
      ∃B. ∀d. d division_of BIGUNION d ⇒ sum d (λk. abs (f k)) ≤ B
HAS_BOUNDED_SETVARIATION_REFLECT2_EQ
⊢ ∀f s.
    (λk. f (IMAGE (λx. -x) k)) has_bounded_setvariation_on IMAGE (λx. -x) s ⇔
    f has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_REFLECT2_EQ_AND_SET_VARIATION_REFLECT2
⊢ (∀f s.
     (λk. f (IMAGE (λx. -x) k)) has_bounded_setvariation_on IMAGE (λx. -x) s ⇔
     f has_bounded_setvariation_on s) ∧
  ∀f s.
    set_variation (IMAGE (λx. -x) s) (λk. f (IMAGE (λx. -x) k)) =
    set_variation s f
HAS_BOUNDED_SETVARIATION_TRANSLATION
⊢ ∀f s a.
    f has_bounded_setvariation_on s ⇒
    (λk. f (IMAGE (λx. a + x) k)) has_bounded_setvariation_on
    IMAGE (λx. -a + x) s
HAS_BOUNDED_SETVARIATION_TRANSLATION2_EQ
⊢ ∀a f s.
    (λk. f (IMAGE (λx. a + x) k)) has_bounded_setvariation_on
    IMAGE (λx. -a + x) s ⇔ f has_bounded_setvariation_on s
HAS_BOUNDED_SETVARIATION_TRANSLATION2_EQ_AND_SET_VARIATION_TRANSLATION2
⊢ (∀a f s.
     (λk. f (IMAGE (λx. a + x) k)) has_bounded_setvariation_on
     IMAGE (λx. -a + x) s ⇔ f has_bounded_setvariation_on s) ∧
  ∀a f s.
    set_variation (IMAGE (λx. -a + x) s) (λk. f (IMAGE (λx. a + x) k)) =
    set_variation s f
HAS_BOUNDED_SETVARIATION_WORKS
⊢ ∀f s.
    f has_bounded_setvariation_on s ⇒
    (∀d t. d division_of t ∧ t ⊆ s ⇒ sum d (λk. abs (f k)) ≤ set_variation s f) ∧
    ∀B. (∀d t. d division_of t ∧ t ⊆ s ⇒ sum d (λk. abs (f k)) ≤ B) ⇒
        set_variation s f ≤ B
HAS_BOUNDED_SETVARIATION_WORKS_ON_ELEMENTARY
⊢ ∀f s.
    f has_bounded_setvariation_on s ∧ (∃d. d division_of s) ⇒
    (∀d. d division_of s ⇒ sum d (λk. abs (f k)) ≤ set_variation s f) ∧
    ∀B. (∀d. d division_of s ⇒ sum d (λk. abs (f k)) ≤ B) ⇒
        set_variation s f ≤ B
HAS_BOUNDED_SETVARIATION_WORKS_ON_INTERVAL
⊢ ∀f a b.
    f has_bounded_setvariation_on interval [(a,b)] ⇒
    (∀d. d division_of interval [(a,b)] ⇒
         sum d (λk. abs (f k)) ≤ set_variation (interval [(a,b)]) f) ∧
    ∀B. (∀d. d division_of interval [(a,b)] ⇒ sum d (λk. abs (f k)) ≤ B) ⇒
        set_variation (interval [(a,b)]) f ≤ B
HAS_BOUNDED_VARIATION_AFFINITY2_EQ
⊢ ∀m c f s.
    (λx. f (m * x + c)) has_bounded_variation_on
    IMAGE (λx. m⁻¹ * x + -(m⁻¹ * c)) s ⇔
    (m = 0) ∨ f has_bounded_variation_on s
HAS_BOUNDED_VARIATION_AFFINITY2_EQ_AND_VECTOR_VARIATION_AFFINITY2
⊢ (∀m c f s.
     (λx. f (m * x + c)) has_bounded_variation_on
     IMAGE (λx. m⁻¹ * x + -(m⁻¹ * c)) s ⇔
     (m = 0) ∨ f has_bounded_variation_on s) ∧
  ∀m c f s.
    vector_variation (IMAGE (λx. m⁻¹ * x + -(m⁻¹ * c)) s) (λx. f (m * x + c)) =
    if m = 0 then 0 else vector_variation s f
HAS_BOUNDED_VARIATION_AFFINITY_EQ
⊢ ∀m c f s.
    (λx. f (m * x + c)) has_bounded_variation_on s ⇔
    (m = 0) ∨ f has_bounded_variation_on IMAGE (λx. m * x + c) s
HAS_BOUNDED_VARIATION_AFFINITY_EQ_AND_VECTOR_VARIATION_AFFINITY
⊢ (∀m c f s.
     (λx. f (m * x + c)) has_bounded_variation_on s ⇔
     (m = 0) ∨ f has_bounded_variation_on IMAGE (λx. m * x + c) s) ∧
  ∀m c f s.
    vector_variation s (λx. f (m * x + c)) =
    if m = 0 then 0 else vector_variation (IMAGE (λx. m * x + c) s) f
HAS_BOUNDED_VARIATION_COMPARISON
⊢ ∀f g s.
    f has_bounded_variation_on s ∧
    (∀x y. x ∈ s ∧ y ∈ s ∧ x < y ⇒ dist (g x,g y) ≤ dist (f x,f y)) ⇒
    g has_bounded_variation_on s
HAS_BOUNDED_VARIATION_COMPOSE_DECREASING
⊢ ∀f g a b.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f y ≤ f x) ∧
    g has_bounded_variation_on interval [(f b,f a)] ⇒
    g ∘ f has_bounded_variation_on interval [(a,b)]
HAS_BOUNDED_VARIATION_COMPOSE_INCREASING
⊢ ∀f g a b.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f x ≤ f y) ∧
    g has_bounded_variation_on interval [(f a,f b)] ⇒
    g ∘ f has_bounded_variation_on interval [(a,b)]
HAS_BOUNDED_VARIATION_DARBOUX
⊢ ∀f a b.
    f has_bounded_variation_on interval [(a,b)] ⇔
    ∃g h.
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ∧
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ h x ≤ h y) ∧
      ∀x. f x = g x − h x
HAS_BOUNDED_VARIATION_DARBOUX_STRICT
⊢ ∀f a b.
    f has_bounded_variation_on interval [(a,b)] ⇔
    ∃g h.
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x < y ⇒ g x < g y) ∧
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x < y ⇒ h x < h y) ∧
      ∀x. f x = g x − h x
HAS_BOUNDED_VARIATION_DARBOUX_STRONG
⊢ ∀f a b.
    f has_bounded_variation_on interval [(a,b)] ⇒
    ∃g h.
      (∀x. f x = g x − h x) ∧
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ∧
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ h x ≤ h y) ∧
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x < y ⇒ g x < g y) ∧
      (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x < y ⇒ h x < h y) ∧
      (∀x. x ∈ interval [(a,b)] ∧ f continuous (at x within interval [(a,x)]) ⇒
           g continuous (at x within interval [(a,x)]) ∧
           h continuous (at x within interval [(a,x)])) ∧
      (∀x. x ∈ interval [(a,b)] ∧ f continuous (at x within interval [(x,b)]) ⇒
           g continuous (at x within interval [(x,b)]) ∧
           h continuous (at x within interval [(x,b)])) ∧
      ∀x. x ∈ interval [(a,b)] ∧ f continuous (at x within interval [(a,b)]) ⇒
          g continuous (at x within interval [(a,b)]) ∧
          h continuous (at x within interval [(a,b)])
HAS_BOUNDED_VARIATION_NONTRIVIAL
⊢ ∀f s.
    f has_bounded_variation_on s ⇔
    ∃B. ∀d t.
      d division_of t ∧ t ⊆ s ∧ (∀k. k ∈ d ⇒ interior k ≠ ∅) ⇒
      sum d (λk. abs (f (interval_upperbound k) − f (interval_lowerbound k))) ≤
      B
HAS_BOUNDED_VARIATION_ON_ABS
⊢ ∀f s.
    f has_bounded_variation_on s ⇒ (λx. abs (f x)) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_ADD
⊢ ∀f g s.
    f has_bounded_variation_on s ∧ g has_bounded_variation_on s ⇒
    (λx. f x + g x) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_CLOSURE
⊢ ∀f s.
    is_interval s ∧ f has_bounded_variation_on s ⇒
    f has_bounded_variation_on closure s
HAS_BOUNDED_VARIATION_ON_CMUL
⊢ ∀f c s.
    f has_bounded_variation_on s ⇒ (λx. c * f x) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_COMBINE
⊢ ∀f a b c.
    a ≤ c ∧ c ≤ b ⇒
    (f has_bounded_variation_on interval [(a,b)] ⇔
     f has_bounded_variation_on interval [(a,c)] ∧
     f has_bounded_variation_on interval [(c,b)])
HAS_BOUNDED_VARIATION_ON_COMBINE_GEN
⊢ ∀f s a.
    is_interval s ⇒
    (f has_bounded_variation_on s ⇔
     f has_bounded_variation_on {x | x ∈ s ∧ x ≤ a} ∧
     f has_bounded_variation_on {x | x ∈ s ∧ x ≥ a})
HAS_BOUNDED_VARIATION_ON_COMPONENTWISE
⊢ ∀f s. f has_bounded_variation_on s ⇔ (λx. f x) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_COMPOSE_LINEAR
⊢ ∀f g s.
    f has_bounded_variation_on s ∧ linear g ⇒ g ∘ f has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_CONST
⊢ ∀s c. (λx. c) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_DIVISION
⊢ ∀f a b d.
    d division_of interval [(a,b)] ⇒
    ((∀k. k ∈ d ⇒ f has_bounded_variation_on k) ⇔
     f has_bounded_variation_on interval [(a,b)])
HAS_BOUNDED_VARIATION_ON_EMPTY
⊢ ∀f. f has_bounded_variation_on ∅
HAS_BOUNDED_VARIATION_ON_EQ
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ (f x = g x)) ∧ f has_bounded_variation_on s ⇒
    g has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_ID
⊢ ∀a b. (λx. x) has_bounded_variation_on interval [(a,b)]
HAS_BOUNDED_VARIATION_ON_IMP_BOUNDED
⊢ ∀f s. f has_bounded_variation_on s ∧ is_interval s ⇒ bounded (IMAGE f s)
HAS_BOUNDED_VARIATION_ON_IMP_BOUNDED_ON_INTERVAL
⊢ ∀f a b.
    f has_bounded_variation_on interval [(a,b)] ⇒
    bounded (IMAGE f (interval [(a,b)]))
HAS_BOUNDED_VARIATION_ON_IMP_BOUNDED_ON_SUBINTERVALS
⊢ ∀f s.
    f has_bounded_variation_on s ⇒
    bounded {f d − f c | interval [(c,d)] ⊆ s ∧ interval [(c,d)] ≠ ∅}
HAS_BOUNDED_VARIATION_ON_INDEFINITE_INTEGRAL_LEFT
⊢ ∀f a b.
    f absolutely_integrable_on interval [(a,b)] ⇒
    (λc. ∫ (interval [(c,b)]) f) has_bounded_variation_on interval [(a,b)]
HAS_BOUNDED_VARIATION_ON_INDEFINITE_INTEGRAL_RIGHT
⊢ ∀f a b.
    f absolutely_integrable_on interval [(a,b)] ⇒
    (λc. ∫ (interval [(a,c)]) f) has_bounded_variation_on interval [(a,b)]
HAS_BOUNDED_VARIATION_ON_MAX
⊢ ∀f g s.
    f has_bounded_variation_on s ∧ g has_bounded_variation_on s ⇒
    (λx. max (f x) (g x)) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_MIN
⊢ ∀f g s.
    f has_bounded_variation_on s ∧ g has_bounded_variation_on s ⇒
    (λx. min (f x) (g x)) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_MUL
⊢ ∀f g a b.
    f has_bounded_variation_on interval [(a,b)] ∧
    g has_bounded_variation_on interval [(a,b)] ⇒
    (λx. f x * g x) has_bounded_variation_on interval [(a,b)]
HAS_BOUNDED_VARIATION_ON_NEG
⊢ ∀f s. f has_bounded_variation_on s ⇒ (λx. -f x) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_NULL
⊢ ∀f s. (content s = 0) ∧ bounded s ⇒ f has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_REFLECT
⊢ ∀f s.
    f has_bounded_variation_on IMAGE (λx. -x) s ⇒
    (λx. f (-x)) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_REFLECT_INTERVAL
⊢ ∀f a b.
    f has_bounded_variation_on interval [(-b,-a)] ⇒
    (λx. f (-x)) has_bounded_variation_on interval [(a,b)]
HAS_BOUNDED_VARIATION_ON_SING
⊢ ∀f a. f has_bounded_variation_on {a}
HAS_BOUNDED_VARIATION_ON_SUB
⊢ ∀f g s.
    f has_bounded_variation_on s ∧ g has_bounded_variation_on s ⇒
    (λx. f x − g x) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_SUBSET
⊢ ∀f s t. f has_bounded_variation_on s ∧ t ⊆ s ⇒ f has_bounded_variation_on t
HAS_BOUNDED_VARIATION_ON_SUM
⊢ ∀f s k.
    FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_variation_on s) ⇒
    (λx. sum k (λi. f i x)) has_bounded_variation_on s
HAS_BOUNDED_VARIATION_ON_SUM_AND_SUM_LE
⊢ (∀f s k.
     FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_variation_on s) ⇒
     (λx. sum k (λi. f i x)) has_bounded_variation_on s) ∧
  ∀f s k.
    FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_variation_on s) ⇒
    vector_variation s (λx. sum k (λi. f i x)) ≤
    sum k (λi. vector_variation s (f i))
HAS_BOUNDED_VARIATION_REFLECT2_EQ
⊢ ∀f s.
    (λx. f (-x)) has_bounded_variation_on IMAGE (λx. -x) s ⇔
    f has_bounded_variation_on s
HAS_BOUNDED_VARIATION_REFLECT2_EQ_AND_VECTOR_VARIATION_REFLECT2
⊢ (∀f s.
     (λx. f (-x)) has_bounded_variation_on IMAGE (λx. -x) s ⇔
     f has_bounded_variation_on s) ∧
  ∀f s.
    vector_variation (IMAGE (λx. -x) s) (λx. f (-x)) = vector_variation s f
HAS_BOUNDED_VARIATION_REFLECT_EQ
⊢ ∀f s.
    (λx. f (-x)) has_bounded_variation_on s ⇔
    f has_bounded_variation_on IMAGE (λx. -x) s
HAS_BOUNDED_VARIATION_REFLECT_EQ_AND_VECTOR_VARIATION_REFLECT
⊢ (∀f s.
     (λx. f (-x)) has_bounded_variation_on s ⇔
     f has_bounded_variation_on IMAGE (λx. -x) s) ∧
  ∀f s.
    vector_variation s (λx. f (-x)) = vector_variation (IMAGE (λx. -x) s) f
HAS_BOUNDED_VARIATION_REFLECT_EQ_INTERVAL
⊢ ∀f u v.
    (λx. f (-x)) has_bounded_variation_on interval [(u,v)] ⇔
    f has_bounded_variation_on interval [(-v,-u)]
HAS_BOUNDED_VARIATION_REFLECT_EQ_INTERVAL_AND_VECTOR_VARIATION_REFLECT_INTERVAL
⊢ (∀f u v.
     (λx. f (-x)) has_bounded_variation_on interval [(u,v)] ⇔
     f has_bounded_variation_on interval [(-v,-u)]) ∧
  ∀f u v.
    vector_variation (interval [(u,v)]) (λx. f (-x)) =
    vector_variation (interval [(-v,-u)]) f
HAS_BOUNDED_VARIATION_SUM_LE
⊢ ∀f s k.
    FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_variation_on s) ⇒
    vector_variation s (λx. sum k (λi. f i x)) ≤
    sum k (λi. vector_variation s (f i))
HAS_BOUNDED_VARIATION_TRANSLATION
⊢ ∀f s a.
    f has_bounded_variation_on s ⇒
    (λx. f (a + x)) has_bounded_variation_on IMAGE (λx. -a + x) s
HAS_BOUNDED_VARIATION_TRANSLATION2_EQ
⊢ ∀a f s.
    (λx. f (a + x)) has_bounded_variation_on IMAGE (λx. -a + x) s ⇔
    f has_bounded_variation_on s
HAS_BOUNDED_VARIATION_TRANSLATION2_EQ_AND_VECTOR_VARIATION_TRANSLATION2
⊢ (∀a f s.
     (λx. f (a + x)) has_bounded_variation_on IMAGE (λx. -a + x) s ⇔
     f has_bounded_variation_on s) ∧
  ∀a f s.
    vector_variation (IMAGE (λx. -a + x) s) (λx. f (a + x)) =
    vector_variation s f
HAS_BOUNDED_VARIATION_TRANSLATION_EQ
⊢ ∀a f s.
    (λx. f (a + x)) has_bounded_variation_on s ⇔
    f has_bounded_variation_on IMAGE (λx. a + x) s
HAS_BOUNDED_VARIATION_TRANSLATION_EQ_AND_VECTOR_VARIATION_TRANSLATION
⊢ (∀a f s.
     (λx. f (a + x)) has_bounded_variation_on s ⇔
     f has_bounded_variation_on IMAGE (λx. a + x) s) ∧
  ∀a f s.
    vector_variation s (λx. f (a + x)) =
    vector_variation (IMAGE (λx. a + x) s) f
HAS_BOUNDED_VARIATION_TRANSLATION_EQ_INTERVAL
⊢ ∀a f u v.
    (λx. f (a + x)) has_bounded_variation_on interval [(u,v)] ⇔
    f has_bounded_variation_on interval [(a + u,a + v)]
HAS_BOUNDED_VARIATION_TRANSLATION_EQ_INTERVAL_AND_VECTOR_VARIATION_TRANSLATION_INTERVAL
⊢ (∀a f u v.
     (λx. f (a + x)) has_bounded_variation_on interval [(u,v)] ⇔
     f has_bounded_variation_on interval [(a + u,a + v)]) ∧
  ∀a f u v.
    vector_variation (interval [(u,v)]) (λx. f (a + x)) =
    vector_variation (interval [(a + u,a + v)]) f
HAS_BOUNDED_VECTOR_VARIATION_LEFT_LIMIT
⊢ ∀f a b c.
    f has_bounded_variation_on interval [(a,b)] ∧ c ∈ interval [(a,b)] ⇒
    ∃l. (f ⟶ l) (at c within interval [(a,c)])
HAS_BOUNDED_VECTOR_VARIATION_RIGHT_LIMIT
⊢ ∀f a b c.
    f has_bounded_variation_on interval [(a,b)] ∧ c ∈ interval [(a,b)] ⇒
    ∃l. (f ⟶ l) (at c within interval [(c,b)])
HAS_DERIVATIVE_ZERO_UNIQUE_STRONG_INTERVAL
⊢ ∀f a b k y.
    COUNTABLE k ∧ f continuous_on interval [(a,b)] ∧ (f a = y) ∧
    (∀x. x ∈ interval [(a,b)] DIFF k ⇒
         (f has_derivative (λh. 0)) (at x within interval [(a,b)])) ⇒
    ∀x. x ∈ interval [(a,b)] ⇒ (f x = y)
HAS_INTEGRAL
⊢ ∀f i s.
    (f has_integral i) s ⇔
    ∀e. 0 < e ⇒
        ∃B. 0 < B ∧
            ∀a b.
              ball (0,B) ⊆ interval [(a,b)] ⇒
              ∃z. ((λx. if x ∈ s then f x else 0) has_integral z)
                    (interval [(a,b)]) ∧ abs (z − i) < e
HAS_INTEGRAL_0
⊢ ∀s. ((λx. 0) has_integral 0) s
HAS_INTEGRAL_0_EQ
⊢ ∀i s. ((λx. 0) has_integral i) s ⇔ (i = 0)
HAS_INTEGRAL_ABS_BOUND_INTEGRAL_COMPONENT
⊢ ∀f g s i j.
    (f has_integral i) s ∧ (g has_integral j) s ∧
    (∀x. x ∈ s ⇒ abs (f x) ≤ g x) ⇒
    abs i ≤ j
HAS_INTEGRAL_ADD
⊢ ∀f g s k.
    (f has_integral k) s ∧ (g has_integral l) s ⇒
    ((λx. f x + g x) has_integral k + l) s
HAS_INTEGRAL_AFFINITY
⊢ ∀f i a b m c.
    (f has_integral i) (interval [(a,b)]) ∧ m ≠ 0 ⇒
    ((λx. f (m * x + c)) has_integral (abs m pow 1)⁻¹ * i)
      (IMAGE (λx. m⁻¹ * x + -(m⁻¹ * c)) (interval [(a,b)]))
HAS_INTEGRAL_ALT
⊢ ∀f s i.
    (f has_integral i) s ⇔
    (∀a b. (λx. if x ∈ s then f x else 0) integrable_on interval [(a,b)]) ∧
    ∀e. 0 < e ⇒
        ∃B. 0 < B ∧
            ∀a b.
              ball (0,B) ⊆ interval [(a,b)] ⇒
              abs (∫ (interval [(a,b)]) (λx. if x ∈ s then f x else 0) − i) <
              e
HAS_INTEGRAL_BIGUNION
⊢ ∀f i t.
    FINITE t ∧ (∀s. s ∈ t ⇒ (f has_integral i s) s) ∧
    (∀s s'. s ∈ t ∧ s' ∈ t ∧ s ≠ s' ⇒ negligible (s ∩ s')) ⇒
    (f has_integral sum t i) (BIGUNION t)
HAS_INTEGRAL_BOUND
⊢ ∀f a b i B.
    0 ≤ B ∧ (f has_integral i) (interval [(a,b)]) ∧
    (∀x. x ∈ interval [(a,b)] ⇒ abs (f x) ≤ B) ⇒
    abs i ≤ B * content (interval [(a,b)])
HAS_INTEGRAL_CLOSURE
⊢ ∀f y s.
    negligible (frontier s) ⇒
    ((f has_integral y) (closure s) ⇔ (f has_integral y) s)
HAS_INTEGRAL_CMUL
⊢ ∀f k s c. (f has_integral k) s ⇒ ((λx. c * f x) has_integral c * k) s
HAS_INTEGRAL_COMBINE
⊢ ∀f i j a b c.
    a ≤ c ∧ c ≤ b ∧ (f has_integral i) (interval [(a,c)]) ∧
    (f has_integral j) (interval [(c,b)]) ⇒
    (f has_integral i + j) (interval [(a,b)])
HAS_INTEGRAL_COMBINE_DIVISION
⊢ ∀f s d i.
    d division_of s ∧ (∀k. k ∈ d ⇒ (f has_integral i k) k) ⇒
    (f has_integral sum d i) s
HAS_INTEGRAL_COMBINE_DIVISION_TOPDOWN
⊢ ∀f s d k.
    f integrable_on s ∧ d division_of k ∧ k ⊆ s ⇒
    (f has_integral sum d (λi. ∫ i f)) k
HAS_INTEGRAL_COMBINE_TAGGED_DIVISION
⊢ ∀f s p i.
    p tagged_division_of s ∧ (∀x k. (x,k) ∈ p ⇒ (f has_integral i k) k) ⇒
    (f has_integral sum p (λ(x,k). i k)) s
HAS_INTEGRAL_COMBINE_TAGGED_DIVISION_TOPDOWN
⊢ ∀f a b p.
    f integrable_on interval [(a,b)] ∧ p tagged_division_of interval [(a,b)] ⇒
    (f has_integral sum p (λ(x,k). ∫ k f)) (interval [(a,b)])
HAS_INTEGRAL_COMPONENTWISE
⊢ ∀f s y. (f has_integral y) s ⇔ ((λx. f x) has_integral y) s
HAS_INTEGRAL_COMPONENT_LBOUND
⊢ ∀f a b i.
    (f has_integral i) (interval [(a,b)]) ∧
    (∀x. x ∈ interval [(a,b)] ⇒ B ≤ f x) ⇒
    B * content (interval [(a,b)]) ≤ i
HAS_INTEGRAL_COMPONENT_LE
⊢ ∀f g s i j.
    (f has_integral i) s ∧ (g has_integral j) s ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒
    i ≤ j
HAS_INTEGRAL_COMPONENT_LE_AE
⊢ ∀f g s i j k t.
    negligible t ∧ (f has_integral i) s ∧ (g has_integral j) s ∧
    (∀x. x ∈ s DIFF t ⇒ f x ≤ g x) ⇒
    i ≤ j
HAS_INTEGRAL_COMPONENT_NEG
⊢ ∀f s i. (f has_integral i) s ∧ (∀x. x ∈ s ⇒ f x ≤ 0) ⇒ i ≤ 0
HAS_INTEGRAL_COMPONENT_POS
⊢ ∀f s i. (f has_integral i) s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ i
HAS_INTEGRAL_COMPONENT_UBOUND
⊢ ∀f a b i.
    (f has_integral i) (interval [(a,b)]) ∧
    (∀x. x ∈ interval [(a,b)] ⇒ f x ≤ B) ⇒
    i ≤ B * content (interval [(a,b)])
HAS_INTEGRAL_CONST
⊢ ∀a b c.
    ((λx. c) has_integral content (interval [(a,b)]) * c) (interval [(a,b)])
HAS_INTEGRAL_DIFF
⊢ ∀f i j s t.
    (f has_integral i) s ∧ (f has_integral j) t ∧ negligible (t DIFF s) ⇒
    (f has_integral i − j) (s DIFF t)
HAS_INTEGRAL_DROP_LE
⊢ ∀f g s i j.
    (f has_integral i) s ∧ (g has_integral j) s ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒
    i ≤ j
HAS_INTEGRAL_DROP_NEG
⊢ ∀f s i. (f has_integral i) s ∧ (∀x. x ∈ s ⇒ f x ≤ 0) ⇒ i ≤ 0
HAS_INTEGRAL_DROP_POS
⊢ ∀f s i. (f has_integral i) s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ i
HAS_INTEGRAL_DROP_POS_AE
⊢ ∀f s t i.
    (f has_integral i) s ∧ negligible t ∧ (∀x. x ∈ s DIFF t ⇒ 0 ≤ f x) ⇒ 0 ≤ i
HAS_INTEGRAL_EMPTY
⊢ ∀f. (f has_integral 0) ∅
HAS_INTEGRAL_EMPTY_EQ
⊢ ∀f i. (f has_integral i) ∅ ⇔ (i = 0)
HAS_INTEGRAL_EQ
⊢ ∀f g k s.
    (∀x. x ∈ s ⇒ (f x = g x)) ∧ (f has_integral k) s ⇒ (g has_integral k) s
HAS_INTEGRAL_EQ_EQ
⊢ ∀f g k s.
    (∀x. x ∈ s ⇒ (f x = g x)) ⇒ ((f has_integral k) s ⇔ (g has_integral k) s)
HAS_INTEGRAL_FACTOR_CONTENT
⊢ ∀f i a b.
    (f has_integral i) (interval [(a,b)]) ⇔
    ∀e. 0 < e ⇒
        ∃d. gauge d ∧
            ∀p. p tagged_division_of interval [(a,b)] ∧ d FINE p ⇒
                abs (sum p (λ(x,k). content k * f x) − i) ≤
                e * content (interval [(a,b)])
HAS_INTEGRAL_INTEGRABLE
⊢ ∀f i s. (f has_integral i) s ⇒ f integrable_on s
HAS_INTEGRAL_INTEGRABLE_INTEGRAL
⊢ ∀f i s. (f has_integral i) s ⇔ f integrable_on s ∧ (∫ s f = i)
HAS_INTEGRAL_INTEGRAL
⊢ ∀f s. f integrable_on s ⇔ (f has_integral ∫ s f) s
HAS_INTEGRAL_INTERIOR
⊢ ∀f y s.
    negligible (frontier s) ⇒
    ((f has_integral y) (interior s) ⇔ (f has_integral y) s)
HAS_INTEGRAL_IS_0
⊢ ∀f s. (∀x. x ∈ s ⇒ (f x = 0)) ⇒ (f has_integral 0) s
HAS_INTEGRAL_LE_AE
⊢ ∀f g s i j t.
    (f has_integral i) s ∧ (g has_integral j) s ∧ negligible t ∧
    (∀x. x ∈ s DIFF t ⇒ f x ≤ g x) ⇒
    i ≤ j
HAS_INTEGRAL_LIM_AT_POSINFINITY
⊢ ∀f l.
    (f has_integral l) {t | 0 ≤ t} ⇔
    (∀a. f integrable_on interval [(0,a)]) ∧
    ((λa. ∫ (interval [(0,a)]) f) ⟶ l) at_posinfinity
HAS_INTEGRAL_LIM_SEQUENTIALLY
⊢ ∀f l.
    (f ⟶ 0) at_posinfinity ∧ (∀n. f integrable_on interval [(0,&n)]) ∧
    ((λn. ∫ (interval [(0,&n)]) f) ⟶ l) sequentially ⇒
    (f has_integral l) {t | 0 ≤ t}
HAS_INTEGRAL_LINEAR
⊢ ∀f y s h. (f has_integral y) s ∧ linear h ⇒ (h ∘ f has_integral h y) s
HAS_INTEGRAL_NEG
⊢ ∀f k s. (f has_integral k) s ⇒ ((λx. -f x) has_integral -k) s
HAS_INTEGRAL_NEGLIGIBLE
⊢ ∀f s t. negligible s ∧ (∀x. x ∈ t DIFF s ⇒ (f x = 0)) ⇒ (f has_integral 0) t
HAS_INTEGRAL_NEGLIGIBLE_EQ
⊢ ∀f s.
    (∀x i. x ∈ s ⇒ 0 ≤ f x) ⇒
    ((f has_integral 0) s ⇔ negligible {x | x ∈ s ∧ f x ≠ 0})
HAS_INTEGRAL_NULL
⊢ ∀f a b.
    (content (interval [(a,b)]) = 0) ⇒ (f has_integral 0) (interval [(a,b)])
HAS_INTEGRAL_NULL_EQ
⊢ ∀f a b i.
    (content (interval [(a,b)]) = 0) ⇒
    ((f has_integral i) (interval [(a,b)]) ⇔ (i = 0))
HAS_INTEGRAL_ON_SUPERSET
⊢ ∀f s t i.
    (∀x. x ∉ s ⇒ (f x = 0)) ∧ s ⊆ t ∧ (f has_integral i) s ⇒
    (f has_integral i) t
HAS_INTEGRAL_REFL
⊢ ∀f a. (f has_integral 0) (interval [(a,a)])
HAS_INTEGRAL_REFLECT
⊢ ∀f i a b.
    ((λx. f (-x)) has_integral i) (interval [(-b,-a)]) ⇔
    (f has_integral i) (interval [(a,b)])
HAS_INTEGRAL_REFLECT_GEN
⊢ ∀f i s.
    ((λx. f (-x)) has_integral i) s ⇔ (f has_integral i) (IMAGE (λx. -x) s)
HAS_INTEGRAL_REFLECT_LEMMA
⊢ ∀f i a b.
    (f has_integral i) (interval [(a,b)]) ⇒
    ((λx. f (-x)) has_integral i) (interval [(-b,-a)])
HAS_INTEGRAL_RESTRICT
⊢ ∀f s t i.
    s ⊆ t ⇒
    (((λx. if x ∈ s then f x else 0) has_integral i) t ⇔ (f has_integral i) s)
HAS_INTEGRAL_RESTRICT_CLOSED_SUBINTERVAL
⊢ ∀f a b c d i.
    (f has_integral i) (interval [(c,d)]) ∧
    interval [(c,d)] ⊆ interval [(a,b)] ⇒
    ((λx. if x ∈ interval [(c,d)] then f x else 0) has_integral i)
      (interval [(a,b)])
HAS_INTEGRAL_RESTRICT_CLOSED_SUBINTERVALS_EQ
⊢ ∀f a b c d i.
    interval [(c,d)] ⊆ interval [(a,b)] ⇒
    (((λx. if x ∈ interval [(c,d)] then f x else 0) has_integral i)
       (interval [(a,b)]) ⇔ (f has_integral i) (interval [(c,d)]))
HAS_INTEGRAL_RESTRICT_INTER
⊢ ∀f s t.
    ((λx. if x ∈ s then f x else 0) has_integral i) t ⇔
    (f has_integral i) (s ∩ t)
HAS_INTEGRAL_RESTRICT_OPEN_SUBINTERVAL
⊢ ∀f a b c d i.
    (f has_integral i) (interval [(c,d)]) ∧
    interval [(c,d)] ⊆ interval [(a,b)] ⇒
    ((λx. if x ∈ interval (c,d) then f x else 0) has_integral i)
      (interval [(a,b)])
HAS_INTEGRAL_RESTRICT_UNIV
⊢ ∀f s i.
    ((λx. if x ∈ s then f x else 0) has_integral i) 𝕌(:real) ⇔
    (f has_integral i) s
HAS_INTEGRAL_SEPARATE_SIDES
⊢ ∀f i a b.
    (f has_integral i) (interval [(a,b)]) ⇒
    ∀e. 0 < e ⇒
        ∃d. gauge d ∧
            ∀p1 p2.
              p1 tagged_division_of interval [(a,b)] ∩ {x | x ≤ c} ∧
              d FINE p1 ∧
              p2 tagged_division_of interval [(a,b)] ∩ {x | x ≥ c} ∧ d FINE p2 ⇒
              abs
                (sum p1 (λ(x,k). content k * f x) +
                 sum p2 (λ(x,k). content k * f x) − i) < e
HAS_INTEGRAL_SPIKE
⊢ ∀f g s t y.
    negligible s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ∧ (f has_integral y) t ⇒
    (g has_integral y) t
HAS_INTEGRAL_SPIKE_EQ
⊢ ∀f g s t y.
    negligible s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ⇒
    ((f has_integral y) t ⇔ (g has_integral y) t)
HAS_INTEGRAL_SPIKE_FINITE
⊢ ∀f g s t y.
    FINITE s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ∧ (f has_integral y) t ⇒
    (g has_integral y) t
HAS_INTEGRAL_SPIKE_FINITE_EQ
⊢ ∀f g s t y.
    FINITE s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ⇒
    ((f has_integral y) t ⇔ (g has_integral y) t)
HAS_INTEGRAL_SPIKE_INTERIOR
⊢ ∀f g a b y.
    (∀x. x ∈ interval (a,b) ⇒ (g x = f x)) ∧
    (f has_integral y) (interval [(a,b)]) ⇒
    (g has_integral y) (interval [(a,b)])
HAS_INTEGRAL_SPIKE_INTERIOR_EQ
⊢ ∀f g a b y.
    (∀x. x ∈ interval (a,b) ⇒ (g x = f x)) ⇒
    ((f has_integral y) (interval [(a,b)]) ⇔
     (g has_integral y) (interval [(a,b)]))
HAS_INTEGRAL_SPIKE_SET
⊢ ∀f s t y.
    negligible (s DIFF t ∪ (t DIFF s)) ∧ (f has_integral y) s ⇒
    (f has_integral y) t
HAS_INTEGRAL_SPIKE_SET_EQ
⊢ ∀f s t y.
    negligible (s DIFF t ∪ (t DIFF s)) ⇒
    ((f has_integral y) s ⇔ (f has_integral y) t)
HAS_INTEGRAL_SPLIT
⊢ ∀f a b c.
    (f has_integral i) (interval [(a,b)] ∩ {x | x ≤ c}) ∧
    (f has_integral j) (interval [(a,b)] ∩ {x | x ≥ c}) ⇒
    (f has_integral i + j) (interval [(a,b)])
HAS_INTEGRAL_STRADDLE_NULL
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ 0 ≤ f x ∧ f x ≤ g x) ∧ (g has_integral 0) s ⇒
    (f has_integral 0) s
HAS_INTEGRAL_STRETCH
⊢ ∀f i m a b.
    (f has_integral i) (interval [(a,b)]) ∧ m 1 ≠ 0 ⇒
    ((λx. f (m 1 * x)) has_integral (abs (product (1 .. 1) m))⁻¹ * i)
      (IMAGE (λx. (m 1)⁻¹ * x) (interval [(a,b)]))
HAS_INTEGRAL_SUB
⊢ ∀f g s k l.
    (f has_integral k) s ∧ (g has_integral l) s ⇒
    ((λx. f x − g x) has_integral k − l) s
HAS_INTEGRAL_SUBSET_COMPONENT_LE
⊢ ∀f s t i j.
    s ⊆ t ∧ (f has_integral i) s ∧ (f has_integral j) t ∧
    (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒
    i ≤ j
HAS_INTEGRAL_SUBSET_DROP_LE
⊢ ∀f s t i j.
    s ⊆ t ∧ (f has_integral i) s ∧ (f has_integral j) t ∧
    (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒
    i ≤ j
HAS_INTEGRAL_SUM
⊢ ∀f s t.
    FINITE t ∧ (∀a. a ∈ t ⇒ (f a has_integral i a) s) ⇒
    ((λx. sum t (λa. f a x)) has_integral sum t i) s
HAS_INTEGRAL_TWIDDLE
⊢ ∀f g h r i a b.
    0 < r ∧ (∀x. h (g x) = x) ∧ (∀x. g (h x) = x) ∧ (∀x. g continuous at x) ∧
    (∀u v. ∃w z. IMAGE g (interval [(u,v)]) = interval [(w,z)]) ∧
    (∀u v. ∃w z. IMAGE h (interval [(u,v)]) = interval [(w,z)]) ∧
    (∀u v.
       content (IMAGE g (interval [(u,v)])) = r * content (interval [(u,v)])) ∧
    (f has_integral i) (interval [(a,b)]) ⇒
    ((λx. f (g x)) has_integral r⁻¹ * i) (IMAGE h (interval [(a,b)]))
HAS_INTEGRAL_UNION
⊢ ∀f i j s t.
    (f has_integral i) s ∧ (f has_integral j) t ∧ negligible (s ∩ t) ⇒
    (f has_integral i + j) (s ∪ t)
HAS_INTEGRAL_UNIQUE
⊢ ∀f i k1 k2. (f has_integral k1) i ∧ (f has_integral k2) i ⇒ (k1 = k2)
HENSTOCK_LEMMA
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ⇒
    ∀e. 0 < e ⇒
        ∃d. gauge d ∧
            ∀p. p tagged_partial_division_of interval [(a,b)] ∧ d FINE p ⇒
                sum p (λ(x,k). abs (content k * f x − ∫ k f)) < e
HENSTOCK_LEMMA_PART1
⊢ ∀f a b d e.
    f integrable_on interval [(a,b)] ∧ 0 < e ∧ gauge d ∧
    (∀p. p tagged_division_of interval [(a,b)] ∧ d FINE p ⇒
         abs (sum p (λ(x,k). content k * f x) − ∫ (interval [(a,b)]) f) < e) ⇒
    ∀p. p tagged_partial_division_of interval [(a,b)] ∧ d FINE p ⇒
        abs (sum p (λ(x,k). content k * f x − ∫ k f)) ≤ e
HENSTOCK_LEMMA_PART2
⊢ ∀f a b d e.
    f integrable_on interval [(a,b)] ∧ 0 < e ∧ gauge d ∧
    (∀p. p tagged_division_of interval [(a,b)] ∧ d FINE p ⇒
         abs (sum p (λ(x,k). content k * f x) − ∫ (interval [(a,b)]) f) < e) ⇒
    ∀p. p tagged_partial_division_of interval [(a,b)] ∧ d FINE p ⇒
        sum p (λ(x,k). abs (content k * f x − ∫ k f)) ≤ 2 * 1 * e
INCREASING_BOUNDED_VARIATION
⊢ ∀f a b.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f x ≤ f y) ⇒
    f has_bounded_variation_on interval [(a,b)]
INCREASING_BOUNDED_VARIATION_GEN
⊢ ∀f s.
    bounded (IMAGE f s) ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≤ y ⇒ f x ≤ f y) ⇒
    f has_bounded_variation_on s
INCREASING_LEFT_LIMIT
⊢ ∀f a b c.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f x ≤ f y) ∧
    c ∈ interval [(a,b)] ⇒
    ∃l. (f ⟶ l) (at c within interval [(a,c)])
INCREASING_RIGHT_LIMIT
⊢ ∀f a b c.
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f x ≤ f y) ∧
    c ∈ interval [(a,b)] ⇒
    ∃l. (f ⟶ l) (at c within interval [(c,b)])
INCREASING_VECTOR_VARIATION
⊢ ∀f a b.
    interval [(a,b)] ≠ ∅ ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f x ≤ f y) ⇒
    (vector_variation (interval [(a,b)]) f = f b − f a)
INDEFINITE_INTEGRAL_CONTINUOUS
⊢ ∀f a b c d e.
    f integrable_on interval [(a,b)] ∧ c ∈ interval [(a,b)] ∧
    d ∈ interval [(a,b)] ∧ 0 < e ⇒
    ∃k. 0 < k ∧
        ∀c' d'.
          c' ∈ interval [(a,b)] ∧ d' ∈ interval [(a,b)] ∧ abs (c' − c) ≤ k ∧
          abs (d' − d) ≤ k ⇒
          abs (∫ (interval [(c',d')]) f − ∫ (interval [(c,d)]) f) < e
INDEFINITE_INTEGRAL_CONTINUOUS_LEFT
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ⇒
    (λx. ∫ (interval [(x,b)]) f) continuous_on interval [(a,b)]
INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ⇒
    (λx. ∫ (interval [(a,x)]) f) continuous_on interval [(a,b)]
INDICATOR_EMPTY
⊢ indicator ∅ = (λx. 0)
INTEGRABLE_0
⊢ ∀s. (λx. 0) integrable_on s
INTEGRABLE_ADD
⊢ ∀f g s.
    f integrable_on s ∧ g integrable_on s ⇒ (λx. f x + g x) integrable_on s
INTEGRABLE_AFFINITY
⊢ ∀f a b m c.
    f integrable_on interval [(a,b)] ∧ m ≠ 0 ⇒
    (λx. f (m * x + c)) integrable_on
    IMAGE (λx. m⁻¹ * x + -(m⁻¹ * c)) (interval [(a,b)])
INTEGRABLE_ALT
⊢ ∀f s.
    f integrable_on s ⇔
    (∀a b. (λx. if x ∈ s then f x else 0) integrable_on interval [(a,b)]) ∧
    ∀e. 0 < e ⇒
        ∃B. 0 < B ∧
            ∀a b c d.
              ball (0,B) ⊆ interval [(a,b)] ∧ ball (0,B) ⊆ interval [(c,d)] ⇒
              abs
                (∫ (interval [(a,b)]) (λx. if x ∈ s then f x else 0) −
                 ∫ (interval [(c,d)]) (λx. if x ∈ s then f x else 0)) < e
INTEGRABLE_ALT_SUBSET
⊢ ∀f s.
    f integrable_on s ⇔
    (∀a b. (λx. if x ∈ s then f x else 0) integrable_on interval [(a,b)]) ∧
    ∀e. 0 < e ⇒
        ∃B. 0 < B ∧
            ∀a b c d.
              ball (0,B) ⊆ interval [(a,b)] ∧
              interval [(a,b)] ⊆ interval [(c,d)] ⇒
              abs
                (∫ (interval [(a,b)]) (λx. if x ∈ s then f x else 0) −
                 ∫ (interval [(c,d)]) (λx. if x ∈ s then f x else 0)) < e
INTEGRABLE_BOUNDED_VARIATION
⊢ ∀f a b.
    f has_bounded_variation_on interval [(a,b)] ⇒
    f integrable_on interval [(a,b)]
INTEGRABLE_BOUNDED_VARIATION_BILINEAR_LMUL
⊢ ∀op f g a b.
    bilinear op ∧ f integrable_on interval [(a,b)] ∧
    g has_bounded_variation_on interval [(a,b)] ⇒
    (λx. op (g x) (f x)) integrable_on interval [(a,b)]
INTEGRABLE_BOUNDED_VARIATION_BILINEAR_RMUL
⊢ ∀op f g a b.
    bilinear op ∧ f integrable_on interval [(a,b)] ∧
    g has_bounded_variation_on interval [(a,b)] ⇒
    (λx. op (f x) (g x)) integrable_on interval [(a,b)]
INTEGRABLE_BOUNDED_VARIATION_PRODUCT
⊢ ∀f g a b.
    f integrable_on interval [(a,b)] ∧
    g has_bounded_variation_on interval [(a,b)] ⇒
    (λx. g x * f x) integrable_on interval [(a,b)]
INTEGRABLE_BOUNDED_VARIATION_PRODUCT_ALT
⊢ ∀f g a b.
    f integrable_on interval [(a,b)] ∧
    g has_bounded_variation_on interval [(a,b)] ⇒
    (λx. g x * f x) integrable_on interval [(a,b)]
INTEGRABLE_BY_PARTS
⊢ ∀bop f g f' g' a b c.
    bilinear bop ∧ COUNTABLE c ∧
    (λx. bop (f x) (g x)) continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) DIFF c ⇒
         (f has_vector_derivative f' x) (at x) ∧
         (g has_vector_derivative g' x) (at x)) ∧
    (λx. bop (f x) (g' x)) integrable_on interval [(a,b)] ⇒
    (λx. bop (f' x) (g x)) integrable_on interval [(a,b)]
INTEGRABLE_BY_PARTS_EQ
⊢ ∀bop f g f' g' a b c.
    bilinear bop ∧ COUNTABLE c ∧
    (λx. bop (f x) (g x)) continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) DIFF c ⇒
         (f has_vector_derivative f' x) (at x) ∧
         (g has_vector_derivative g' x) (at x)) ⇒
    ((λx. bop (f x) (g' x)) integrable_on interval [(a,b)] ⇔
     (λx. bop (f' x) (g x)) integrable_on interval [(a,b)])
INTEGRABLE_CASES
⊢ ∀P f g s.
    f integrable_on {x | x ∈ s ∧ P x} ∧ g integrable_on {x | x ∈ s ∧ ¬P x} ⇒
    (λx. if P x then f x else g x) integrable_on s
INTEGRABLE_CAUCHY
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ⇔
    ∀e. 0 < e ⇒
        ∃d. gauge d ∧
            ∀p1 p2.
              p1 tagged_division_of interval [(a,b)] ∧ d FINE p1 ∧
              p2 tagged_division_of interval [(a,b)] ∧ d FINE p2 ⇒
              abs
                (sum p1 (λ(x,k). content k * f x) −
                 sum p2 (λ(x,k). content k * f x)) < e
INTEGRABLE_CMUL
⊢ ∀f c s. f integrable_on s ⇒ (λx. c * f x) integrable_on s
INTEGRABLE_CMUL_EQ
⊢ ∀f s c. (λx. c * f x) integrable_on s ⇔ (c = 0) ∨ f integrable_on s
INTEGRABLE_COMBINE
⊢ ∀f a b c.
    a ≤ c ∧ c ≤ b ∧ f integrable_on interval [(a,c)] ∧
    f integrable_on interval [(c,b)] ⇒
    f integrable_on interval [(a,b)]
INTEGRABLE_COMBINE_DIVISION
⊢ ∀f d s.
    d division_of s ∧ (∀i. i ∈ d ⇒ f integrable_on i) ⇒ f integrable_on s
INTEGRABLE_COMPONENTWISE
⊢ ∀f s. f integrable_on s ⇔ (λx. f x) integrable_on s
INTEGRABLE_CONST
⊢ ∀a b c. (λx. c) integrable_on interval [(a,b)]
INTEGRABLE_CONTINUOUS
⊢ ∀f a b. f continuous_on interval [(a,b)] ⇒ f integrable_on interval [(a,b)]
INTEGRABLE_DECREASING
⊢ ∀f a b.
    (∀x y i. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f y ≤ f x) ⇒
    f integrable_on interval [(a,b)]
INTEGRABLE_DECREASING_PRODUCT
⊢ ∀f g a b.
    f integrable_on interval [(a,b)] ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g y ≤ g x) ⇒
    (λx. g x * f x) integrable_on interval [(a,b)]
INTEGRABLE_DECREASING_PRODUCT_UNIV
⊢ ∀f g B.
    f integrable_on 𝕌(:real) ∧ (∀x y. x ≤ y ⇒ g y ≤ g x) ∧ (∀x. abs (g x) ≤ B) ⇒
    (λx. g x * f x) integrable_on 𝕌(:real)
INTEGRABLE_EQ
⊢ ∀f g s. (∀x. x ∈ s ⇒ (f x = g x)) ∧ f integrable_on s ⇒ g integrable_on s
INTEGRABLE_INCREASING
⊢ ∀f a b.
    (∀x y i. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ f x ≤ f y) ⇒
    f integrable_on interval [(a,b)]
INTEGRABLE_INCREASING_PRODUCT
⊢ ∀f g a b.
    f integrable_on interval [(a,b)] ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ⇒
    (λx. g x * f x) integrable_on interval [(a,b)]
INTEGRABLE_INCREASING_PRODUCT_UNIV
⊢ ∀f g B.
    f integrable_on 𝕌(:real) ∧ (∀x y. x ≤ y ⇒ g x ≤ g y) ∧ (∀x. abs (g x) ≤ B) ⇒
    (λx. g x * f x) integrable_on 𝕌(:real)
INTEGRABLE_INTEGRAL
⊢ ∀f i. f integrable_on i ⇒ (f has_integral ∫ i f) i
INTEGRABLE_LINEAR
⊢ ∀f h s. f integrable_on s ∧ linear h ⇒ h ∘ f integrable_on s
INTEGRABLE_MIN_CONST
⊢ ∀f s t.
    0 ≤ t ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ∧ (λx. f x) integrable_on s ⇒
    (λx. min (f x) t) integrable_on s
INTEGRABLE_NEG
⊢ ∀f s. f integrable_on s ⇒ (λx. -f x) integrable_on s
INTEGRABLE_ON_ALL_INTERVALS_INTEGRABLE_BOUND
⊢ ∀f g s.
    (∀a b. (λx. if x ∈ s then f x else 0) integrable_on interval [(a,b)]) ∧
    (∀x. x ∈ s ⇒ abs (f x) ≤ g x) ∧ g integrable_on s ⇒
    f integrable_on s
INTEGRABLE_ON_EMPTY
⊢ ∀f. f integrable_on ∅
INTEGRABLE_ON_LITTLE_SUBINTERVALS
⊢ ∀f a b.
    (∀x. x ∈ interval [(a,b)] ⇒
         ∃d. 0 < d ∧
             ∀u v.
               x ∈ interval [(u,v)] ∧ interval [(u,v)] ⊆ ball (x,d) ∧
               interval [(u,v)] ⊆ interval [(a,b)] ⇒
               f integrable_on interval [(u,v)]) ⇒
    f integrable_on interval [(a,b)]
INTEGRABLE_ON_NULL
⊢ ∀f a b. (content (interval [(a,b)]) = 0) ⇒ f integrable_on interval [(a,b)]
INTEGRABLE_ON_REFL
⊢ ∀f a. f integrable_on interval [(a,a)]
INTEGRABLE_ON_SUBDIVISION
⊢ ∀f s d i. d division_of i ∧ f integrable_on s ∧ i ⊆ s ⇒ f integrable_on i
INTEGRABLE_ON_SUBINTERVAL
⊢ ∀f s a b.
    f integrable_on s ∧ interval [(a,b)] ⊆ s ⇒
    f integrable_on interval [(a,b)]
INTEGRABLE_ON_SUPERSET
⊢ ∀f s t.
    (∀x. x ∉ s ⇒ (f x = 0)) ∧ s ⊆ t ∧ f integrable_on s ⇒ f integrable_on t
INTEGRABLE_REFLECT
⊢ ∀f a b.
    (λx. f (-x)) integrable_on interval [(-b,-a)] ⇔
    f integrable_on interval [(a,b)]
INTEGRABLE_REFLECT_GEN
⊢ ∀f s. (λx. f (-x)) integrable_on s ⇔ f integrable_on IMAGE (λx. -x) s
INTEGRABLE_RESTRICT
⊢ ∀f s t.
    s ⊆ t ⇒
    ((λx. if x ∈ s then f x else 0) integrable_on t ⇔ f integrable_on s)
INTEGRABLE_RESTRICT_INTER
⊢ ∀f s t.
    (λx. if x ∈ s then f x else 0) integrable_on t ⇔ f integrable_on s ∩ t
INTEGRABLE_RESTRICT_UNIV
⊢ ∀f s.
    (λx. if x ∈ s then f x else 0) integrable_on 𝕌(:real) ⇔ f integrable_on s
INTEGRABLE_SPIKE
⊢ ∀f g s t.
    negligible s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ⇒
    f integrable_on t ⇒
    g integrable_on t
INTEGRABLE_SPIKE_EQ
⊢ ∀f g s t.
    negligible s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ⇒
    (f integrable_on t ⇔ g integrable_on t)
INTEGRABLE_SPIKE_FINITE
⊢ ∀f g s.
    FINITE s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ⇒
    f integrable_on t ⇒
    g integrable_on t
INTEGRABLE_SPIKE_INTERIOR
⊢ ∀f g a b.
    (∀x. x ∈ interval (a,b) ⇒ (g x = f x)) ⇒
    f integrable_on interval [(a,b)] ⇒
    g integrable_on interval [(a,b)]
INTEGRABLE_SPIKE_SET
⊢ ∀f s t.
    negligible (s DIFF t ∪ (t DIFF s)) ⇒ f integrable_on s ⇒ f integrable_on t
INTEGRABLE_SPIKE_SET_EQ
⊢ ∀f s t.
    negligible (s DIFF t ∪ (t DIFF s)) ⇒
    (f integrable_on s ⇔ f integrable_on t)
INTEGRABLE_SPLIT
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ⇒
    f integrable_on interval [(a,b)] ∩ {x | x ≤ c} ∧
    f integrable_on interval [(a,b)] ∩ {x | x ≥ c}
INTEGRABLE_STRADDLE
⊢ ∀f s.
    (∀e. 0 < e ⇒
         ∃g h i j.
           (g has_integral i) s ∧ (h has_integral j) s ∧ abs (i − j) < e ∧
           ∀x. x ∈ s ⇒ g x ≤ f x ∧ f x ≤ h x) ⇒
    f integrable_on s
INTEGRABLE_STRADDLE_INTERVAL
⊢ ∀f a b.
    (∀e. 0 < e ⇒
         ∃g h i j.
           (g has_integral i) (interval [(a,b)]) ∧
           (h has_integral j) (interval [(a,b)]) ∧ abs (i − j) < e ∧
           ∀x. x ∈ interval [(a,b)] ⇒ g x ≤ f x ∧ f x ≤ h x) ⇒
    f integrable_on interval [(a,b)]
INTEGRABLE_STRETCH
⊢ ∀f m a b.
    f integrable_on interval [(a,b)] ∧ m 1 ≠ 0 ⇒
    (λx. f (m 1 * x)) integrable_on IMAGE (λx. (m 1)⁻¹ * x) (interval [(a,b)])
INTEGRABLE_SUB
⊢ ∀f g s.
    f integrable_on s ∧ g integrable_on s ⇒ (λx. f x − g x) integrable_on s
INTEGRABLE_SUBINTERVAL
⊢ ∀f a b c d.
    f integrable_on interval [(a,b)] ∧ interval [(c,d)] ⊆ interval [(a,b)] ⇒
    f integrable_on interval [(c,d)]
INTEGRABLE_SUM
⊢ ∀f s t.
    FINITE t ∧ (∀a. a ∈ t ⇒ f a integrable_on s) ⇒
    (λx. sum t (λa. f a x)) integrable_on s
INTEGRABLE_UNIFORM_LIMIT
⊢ ∀f a b.
    (∀e. 0 < e ⇒
         ∃g. (∀x. x ∈ interval [(a,b)] ⇒ abs (f x − g x) ≤ e) ∧
             g integrable_on interval [(a,b)]) ⇒
    f integrable_on interval [(a,b)]
INTEGRAL_0
⊢ ∀s. ∫ s (λx. 0) = 0
INTEGRAL_ABS_BOUND_INTEGRAL
⊢ ∀f g s.
    f integrable_on s ∧ g integrable_on s ∧ (∀x. x ∈ s ⇒ abs (f x) ≤ g x) ⇒
    abs (∫ s f) ≤ ∫ s g
INTEGRAL_ABS_BOUND_INTEGRAL_AE
⊢ ∀f g s t.
    f integrable_on s ∧ g integrable_on s ∧ negligible t ∧
    (∀x. x ∈ s DIFF t ⇒ abs (f x) ≤ g x) ⇒
    abs (∫ s f) ≤ ∫ s g
INTEGRAL_ABS_BOUND_INTEGRAL_COMPONENT
⊢ ∀f g s.
    f integrable_on s ∧ g integrable_on s ∧ (∀x. x ∈ s ⇒ abs (f x) ≤ g x) ⇒
    abs (∫ s f) ≤ ∫ s g
INTEGRAL_ADD
⊢ ∀f g s.
    f integrable_on s ∧ g integrable_on s ⇒
    (∫ s (λx. f x + g x) = ∫ s f + ∫ s g)
INTEGRAL_CMUL
⊢ ∀f c s. f integrable_on s ⇒ (∫ s (λx. c * f x) = c * ∫ s f)
INTEGRAL_COMBINE
⊢ ∀f a b c.
    a ≤ c ∧ c ≤ b ∧ f integrable_on interval [(a,b)] ⇒
    (∫ (interval [(a,c)]) f + ∫ (interval [(c,b)]) f = ∫ (interval [(a,b)]) f)
INTEGRAL_COMBINE_DIVISION_BOTTOMUP
⊢ ∀f d s.
    d division_of s ∧ (∀k. k ∈ d ⇒ f integrable_on k) ⇒
    (∫ s f = sum d (λi. ∫ i f))
INTEGRAL_COMBINE_DIVISION_TOPDOWN
⊢ ∀f d s. f integrable_on s ∧ d division_of s ⇒ (∫ s f = sum d (λi. ∫ i f))
INTEGRAL_COMBINE_TAGGED_DIVISION_BOTTOMUP
⊢ ∀f p a b.
    p tagged_division_of interval [(a,b)] ∧
    (∀x k. (x,k) ∈ p ⇒ f integrable_on k) ⇒
    (∫ (interval [(a,b)]) f = sum p (λ(x,k). ∫ k f))
INTEGRAL_COMBINE_TAGGED_DIVISION_TOPDOWN
⊢ ∀f a b p.
    f integrable_on interval [(a,b)] ∧ p tagged_division_of interval [(a,b)] ⇒
    (∫ (interval [(a,b)]) f = sum p (λ(x,k). ∫ k f))
INTEGRAL_COMPONENT
⊢ ∀f s. f integrable_on s ⇒ (∫ s f = ∫ s (λx. f x))
INTEGRAL_COMPONENT_LBOUND
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ∧ (∀x. x ∈ interval [(a,b)] ⇒ B ≤ f x) ⇒
    B * content (interval [(a,b)]) ≤ ∫ (interval [(a,b)]) f
INTEGRAL_COMPONENT_LE
⊢ ∀f g s.
    f integrable_on s ∧ g integrable_on s ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒
    ∫ s f ≤ ∫ s g
INTEGRAL_COMPONENT_LE_AE
⊢ ∀f g s k t.
    negligible t ∧ f integrable_on s ∧ g integrable_on s ∧
    (∀x. x ∈ s DIFF t ⇒ f x ≤ g x) ⇒
    ∫ s f ≤ ∫ s g
INTEGRAL_COMPONENT_POS
⊢ ∀f s. f integrable_on s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ ∫ s f
INTEGRAL_COMPONENT_UBOUND
⊢ ∀f a b.
    f integrable_on interval [(a,b)] ∧ (∀x. x ∈ interval [(a,b)] ⇒ f x ≤ B) ⇒
    ∫ (interval [(a,b)]) f ≤ B * content (interval [(a,b)])
INTEGRAL_CONST
⊢ ∀a b c. ∫ (interval [(a,b)]) (λx. c) = content (interval [(a,b)]) * c
INTEGRAL_DIFF
⊢ ∀f s t.
    f integrable_on s ∧ f integrable_on t ∧ negligible (t DIFF s) ⇒
    (∫ (s DIFF t) f = ∫ s f − ∫ t f)
INTEGRAL_DROP_LE
⊢ ∀f g s.
    f integrable_on s ∧ g integrable_on s ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒
    ∫ s f ≤ ∫ s g
INTEGRAL_DROP_POS
⊢ ∀f s. f integrable_on s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ ∫ s f
INTEGRAL_DROP_POS_AE
⊢ ∀f s t.
    f integrable_on s ∧ negligible t ∧ (∀x. x ∈ s DIFF t ⇒ 0 ≤ f x) ⇒
    0 ≤ ∫ s f
INTEGRAL_EMPTY
⊢ ∀f. ∫ ∅ f = 0
INTEGRAL_EQ
⊢ ∀f g s. (∀x. x ∈ s ⇒ (f x = g x)) ⇒ (∫ s f = ∫ s g)
INTEGRAL_EQ_0
⊢ ∀f s. (∀x. x ∈ s ⇒ (f x = 0)) ⇒ (∫ s f = 0)
INTEGRAL_EQ_HAS_INTEGRAL
⊢ ∀s f y. f integrable_on s ⇒ ((∫ s f = y) ⇔ (f has_integral y) s)
INTEGRAL_HAS_VECTOR_DERIVATIVE
⊢ ∀f a b.
    f continuous_on interval [(a,b)] ⇒
    ∀x. x ∈ interval [(a,b)] ⇒
        ((λu. ∫ (interval [(a,u)]) f) has_vector_derivative f x)
          (at x within interval [(a,b)])
INTEGRAL_HAS_VECTOR_DERIVATIVE_POINTWISE
⊢ ∀f a b x.
    f integrable_on interval [(a,b)] ∧ x ∈ interval [(a,b)] ∧
    f continuous (at x within interval [(a,b)]) ⇒
    ((λu. ∫ (interval [(a,u)]) f) has_vector_derivative f x)
      (at x within interval [(a,b)])
INTEGRAL_LE_AE
⊢ ∀f g s t.
    f integrable_on s ∧ g integrable_on s ∧ negligible t ∧
    (∀x. x ∈ s DIFF t ⇒ f x ≤ g x) ⇒
    ∫ s f ≤ ∫ s g
INTEGRAL_LINEAR
⊢ ∀f s h. f integrable_on s ∧ linear h ⇒ (∫ s (h ∘ f) = h (∫ s f))
INTEGRAL_NEG
⊢ ∀f s. f integrable_on s ⇒ (∫ s (λx. -f x) = -∫ s f)
INTEGRAL_NULL
⊢ ∀f a b. (content (interval [(a,b)]) = 0) ⇒ (∫ (interval [(a,b)]) f = 0)
INTEGRAL_REFL
⊢ ∀f a. ∫ (interval [(a,a)]) f = 0
INTEGRAL_REFLECT
⊢ ∀f a b. ∫ (interval [(-b,-a)]) (λx. f (-x)) = ∫ (interval [(a,b)]) f
INTEGRAL_REFLECT_GEN
⊢ ∀f s. ∫ s (λx. f (-x)) = ∫ (IMAGE (λx. -x) s) f
INTEGRAL_RESTRICT
⊢ ∀f s t. s ⊆ t ⇒ (∫ t (λx. if x ∈ s then f x else 0) = ∫ s f)
INTEGRAL_RESTRICT_INTER
⊢ ∀f s t. ∫ t (λx. if x ∈ s then f x else 0) = ∫ (s ∩ t) f
INTEGRAL_RESTRICT_UNIV
⊢ ∀f s. ∫ 𝕌(:real) (λx. if x ∈ s then f x else 0) = ∫ s f
INTEGRAL_SPIKE
⊢ ∀f g s t y.
    negligible s ∧ (∀x. x ∈ t DIFF s ⇒ (g x = f x)) ⇒ (∫ t f = ∫ t g)
INTEGRAL_SPIKE_SET
⊢ ∀f s t. negligible (s DIFF t ∪ (t DIFF s)) ⇒ (∫ s f = ∫ t f)
INTEGRAL_SPLIT
⊢ ∀f a b t.
    f integrable_on interval [(a,b)] ⇒
    (∫ (interval [(a,b)]) f =
     ∫ (interval [(a,@f. f = min b t)]) f +
     ∫ (interval [((@f. f = max a t),b)]) f)
INTEGRAL_SPLIT_SIGNED
⊢ ∀f a b t.
    a ≤ t ∧ a ≤ b ∧ f integrable_on interval [(a,@f. f = max b t)] ⇒
    (∫ (interval [(a,b)]) f =
     ∫ (interval [(a,@f. f = t)]) f +
     (if b < t then -1 else 1) *
     ∫ (interval [((@f. f = min b t),@f. f = max b t)]) f)
INTEGRAL_SUB
⊢ ∀f g k l s.
    f integrable_on s ∧ g integrable_on s ⇒
    (∫ s (λx. f x − g x) = ∫ s f − ∫ s g)
INTEGRAL_SUBSET_COMPONENT_LE
⊢ ∀f s t.
    s ⊆ t ∧ f integrable_on s ∧ f integrable_on t ∧ (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒
    ∫ s f ≤ ∫ t f
INTEGRAL_SUBSET_DROP_LE
⊢ ∀f s t.
    s ⊆ t ∧ f integrable_on s ∧ f integrable_on t ∧ (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒
    ∫ s f ≤ ∫ t f
INTEGRAL_SUM
⊢ ∀f s t.
    FINITE t ∧ (∀a. a ∈ t ⇒ f a integrable_on s) ⇒
    (∫ s (λx. sum t (λa. f a x)) = sum t (λa. ∫ s (f a)))
INTEGRAL_UNION
⊢ ∀f s t.
    f integrable_on s ∧ f integrable_on t ∧ negligible (s ∩ t) ⇒
    (∫ (s ∪ t) f = ∫ s f + ∫ t f)
INTEGRAL_UNIQUE
⊢ ∀f y k. (f has_integral y) k ⇒ (∫ k f = y)
INTEGRATION_BY_PARTS
⊢ ∀bop f g f' g' a b c y.
    bilinear bop ∧ a ≤ b ∧ COUNTABLE c ∧
    (λx. bop (f x) (g x)) continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) DIFF c ⇒
         (f has_vector_derivative f' x) (at x) ∧
         (g has_vector_derivative g' x) (at x)) ∧
    ((λx. bop (f x) (g' x)) has_integral bop (f b) (g b) − bop (f a) (g a) − y)
      (interval [(a,b)]) ⇒
    ((λx. bop (f' x) (g x)) has_integral y) (interval [(a,b)])
INTEGRATION_BY_PARTS_SIMPLE
⊢ ∀bop f g f' g' a b y.
    bilinear bop ∧ a ≤ b ∧
    (∀x. x ∈ interval [(a,b)] ⇒
         (f has_vector_derivative f' x) (at x within interval [(a,b)]) ∧
         (g has_vector_derivative g' x) (at x within interval [(a,b)])) ∧
    ((λx. bop (f x) (g' x)) has_integral bop (f b) (g b) − bop (f a) (g a) − y)
      (interval [(a,b)]) ⇒
    ((λx. bop (f' x) (g x)) has_integral y) (interval [(a,b)])
INTERIOR_SUBSET_UNION_INTERVALS
⊢ ∀s i j.
    (∃a b. i = interval [(a,b)]) ∧ (∃c d. j = interval [(c,d)]) ∧
    interior j ≠ ∅ ∧ i ⊆ j ∪ s ∧ (interior i ∩ interior j = ∅) ⇒
    interior i ⊆ interior s
INTERVAL_BISECTION
⊢ ∀P. P ∅ ∧ (∀s t. P s ∧ P t ∧ (interior s ∩ interior t = ∅) ⇒ P (s ∪ t)) ⇒
      ∀a b.
        ¬P (interval [(a,b)]) ⇒
        ∃x. x ∈ interval [(a,b)] ∧
            ∀e. 0 < e ⇒
                ∃c d.
                  x ∈ interval [(c,d)] ∧ interval [(c,d)] ⊆ ball (x,e) ∧
                  interval [(c,d)] ⊆ interval [(a,b)] ∧ ¬P (interval [(c,d)])
INTERVAL_BISECTION_STEP
⊢ ∀P. P ∅ ∧ (∀s t. P s ∧ P t ∧ (interior s ∩ interior t = ∅) ⇒ P (s ∪ t)) ⇒
      ∀a b.
        ¬P (interval [(a,b)]) ⇒
        ∃c d.
          ¬P (interval [(c,d)]) ∧ a ≤ c ∧ c ≤ d ∧ d ≤ b ∧ 2 * (d − c) ≤ b − a
INTERVAL_BOUNDS_EMPTY
⊢ interval_upperbound ∅ = interval_lowerbound ∅
INTERVAL_BOUNDS_NULL
⊢ ∀a b.
    (content (interval [(a,b)]) = 0) ⇒
    (interval_upperbound (interval [(a,b)]) =
     interval_lowerbound (interval [(a,b)]))
INTERVAL_DOUBLESPLIT
⊢ ∀e a b c.
    interval [(a,b)] ∩ {x | abs (x − c) ≤ e} =
    interval [(max a (c − e),min b (c + e))]
INTERVAL_IMAGE_AFFINITY_INTERVAL
⊢ ∀a b m c. ∃u v. IMAGE (λx. m * x + c) (interval [(a,b)]) = interval [(u,v)]
INTERVAL_LOWERBOUND
⊢ ∀a b. a ≤ b ⇒ (interval_lowerbound (interval [(a,b)]) = a)
INTERVAL_LOWERBOUND_NONEMPTY
⊢ ∀a b. interval [(a,b)] ≠ ∅ ⇒ (interval_lowerbound (interval [(a,b)]) = a)
INTERVAL_SPLIT
⊢ ∀a b c.
    (interval [(a,b)] ∩ {x | x ≤ c} = interval [(a,min b c)]) ∧
    (interval [(a,b)] ∩ {x | x ≥ c} = interval [(max a c,b)])
INTERVAL_SUBDIVISION
⊢ ∀a b c.
    c ∈ interval [(a,b)] ⇒
    IMAGE
      (λs.
           interval
             [((@f. f = if 1 ∈ s then c else a),@f. f = if 1 ∈ s then b else c)])
      {s | s ⊆ (1 .. 1)} division_of interval [(a,b)]
INTERVAL_UPPERBOUND
⊢ ∀a b. a ≤ b ⇒ (interval_upperbound (interval [(a,b)]) = b)
INTERVAL_UPPERBOUND_NONEMPTY
⊢ ∀a b. interval [(a,b)] ≠ ∅ ⇒ (interval_upperbound (interval [(a,b)]) = b)
INTER_INTERIOR_BIGUNION_INTERVALS
⊢ ∀s f.
    FINITE f ∧ open s ∧ (∀t. t ∈ f ⇒ ∃a b. t = interval [(a,b)]) ∧
    (∀t. t ∈ f ⇒ (s ∩ interior t = ∅)) ⇒
    (s ∩ interior (BIGUNION f) = ∅)
ITERATE_AND
⊢ ∀p s. FINITE s ⇒ (iterate $/\ s p ⇔ ∀x. x ∈ s ⇒ p x)
ITERATE_NONZERO_IMAGE_LEMMA
⊢ ∀op s f g a.
    monoidal op ∧ FINITE s ∧ (g a = neutral op) ∧
    (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ∧ x ≠ y ⇒ (g (f x) = neutral op)) ⇒
    (iterate op {f x | x | x ∈ s ∧ f x ≠ a} g = iterate op s (g ∘ f))
ITERATE_SOME
⊢ ∀op.
    monoidal op ⇒
    ∀f s.
      FINITE s ⇒
      (iterate (lifted op) s (λx. SOME (f x)) = SOME (iterate op s f))
MONOIDAL_AND
⊢ monoidal $/\
MONOIDAL_LIFTED
⊢ ∀op. monoidal op ⇒ monoidal (lifted op)
MONOTONE_CONVERGENCE_DECREASING
⊢ ∀f g s.
    (∀k. f k integrable_on s) ∧ (∀k x. x ∈ s ⇒ f (SUC k) x ≤ f k x) ∧
    (∀x. x ∈ s ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
MONOTONE_CONVERGENCE_DECREASING_AE
⊢ ∀f g s t.
    (∀k. f k integrable_on s) ∧ negligible t ∧
    (∀k x. x ∈ s DIFF t ⇒ f (SUC k) x ≤ f k x) ∧
    (∀x. x ∈ s DIFF t ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
MONOTONE_CONVERGENCE_INCREASING
⊢ ∀f g s.
    (∀k. f k integrable_on s) ∧ (∀k x. x ∈ s ⇒ f k x ≤ f (SUC k) x) ∧
    (∀x. x ∈ s ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
MONOTONE_CONVERGENCE_INCREASING_AE
⊢ ∀f g s t.
    (∀k. f k integrable_on s) ∧ negligible t ∧
    (∀k x. x ∈ s DIFF t ⇒ f k x ≤ f (SUC k) x) ∧
    (∀x. x ∈ s DIFF t ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
    bounded {∫ s (f k) | k ∈ 𝕌(:num)} ⇒
    g integrable_on s ∧ ((λk. ∫ s (f k)) ⟶ ∫ s g) sequentially
MONOTONE_CONVERGENCE_INTERVAL
⊢ ∀f g a b.
    (∀k. f k integrable_on interval [(a,b)]) ∧
    (∀k x. x ∈ interval [(a,b)] ⇒ f k x ≤ f (SUC k) x) ∧
    (∀x. x ∈ interval [(a,b)] ⇒ ((λk. f k x) ⟶ g x) sequentially) ∧
    bounded {∫ (interval [(a,b)]) (f k) | k ∈ 𝕌(:num)} ⇒
    g integrable_on interval [(a,b)] ∧
    ((λk. ∫ (interval [(a,b)]) (f k)) ⟶ ∫ (interval [(a,b)]) g) sequentially
NEGLIGIBLE
⊢ ∀s. negligible s ⇔ ∀t. (indicator s has_integral 0) t
NEGLIGIBLE_BIGUNION
⊢ ∀s. FINITE s ∧ (∀t. t ∈ s ⇒ negligible t) ⇒ negligible (BIGUNION s)
NEGLIGIBLE_BOUNDED_SUBSETS
⊢ ∀s. negligible s ⇔ ∀t. bounded t ∧ t ⊆ s ⇒ negligible t
NEGLIGIBLE_COUNTABLE
⊢ ∀s. COUNTABLE s ⇒ negligible s
NEGLIGIBLE_COUNTABLE_BIGUNION
⊢ ∀s. (∀n. negligible (s n)) ⇒ negligible (BIGUNION {s n | n ∈ 𝕌(:num)})
NEGLIGIBLE_DIFF
⊢ ∀s t. negligible s ⇒ negligible (s DIFF t)
NEGLIGIBLE_EMPTY
⊢ negligible ∅
NEGLIGIBLE_FINITE
⊢ ∀s. FINITE s ⇒ negligible s
NEGLIGIBLE_FRONTIER_INTERVAL
⊢ ∀a b. negligible (interval [(a,b)] DIFF interval (a,b))
NEGLIGIBLE_INSERT
⊢ ∀a s. negligible (a INSERT s) ⇔ negligible s
NEGLIGIBLE_INTER
⊢ ∀s t. negligible s ∨ negligible t ⇒ negligible (s ∩ t)
NEGLIGIBLE_ON_COUNTABLE_INTERVALS
⊢ ∀s. negligible s ⇔ ∀n. negligible (s ∩ interval [(-n,n)])
NEGLIGIBLE_ON_INTERVALS
⊢ ∀s. negligible s ⇔ ∀a b. negligible (s ∩ interval [(a,b)])
NEGLIGIBLE_ON_UNIV
⊢ ∀s. negligible s ⇔ (indicator s has_integral 0) 𝕌(:real)
NEGLIGIBLE_SING
⊢ ∀a. negligible {a}
NEGLIGIBLE_STANDARD_HYPERPLANE
⊢ ∀c. negligible {x | x = c}
NEGLIGIBLE_SUBSET
⊢ ∀s t. negligible s ∧ t ⊆ s ⇒ negligible t
NEGLIGIBLE_UNION
⊢ ∀s t. negligible s ∧ negligible t ⇒ negligible (s ∪ t)
NEGLIGIBLE_UNION_EQ
⊢ ∀s t. negligible (s ∪ t) ⇔ negligible s ∧ negligible t
NEUTRAL_AND
⊢ neutral $/\ ⇔ T
NEUTRAL_LIFTED
⊢ ∀op. monoidal op ⇒ (neutral (lifted op) = SOME (neutral op))
NONNEGATIVE_ABSOLUTELY_INTEGRABLE
⊢ ∀f s.
    (∀x i. x ∈ s ⇒ 0 ≤ f x) ∧ f integrable_on s ⇒ f absolutely_integrable_on s
NONNEGATIVE_ABSOLUTELY_INTEGRABLE_AE
⊢ ∀f s t.
    negligible t ∧ (∀x i. x ∈ s DIFF t ⇒ 0 ≤ f x) ∧ f integrable_on s ⇒
    f absolutely_integrable_on s
OPEN_INTERVAL_LOWERBOUND
⊢ ∀a b. a < b ⇒ (interval_lowerbound (interval (a,b)) = a)
OPEN_INTERVAL_UPPERBOUND
⊢ ∀a b. a < b ⇒ (interval_upperbound (interval (a,b)) = b)
OPERATIVE_1_LE
⊢ ∀op.
    monoidal op ⇒
    ∀f. operative op f ⇔
        (∀a b. b ≤ a ⇒ (f (interval [(a,b)]) = neutral op)) ∧
        ∀a b c.
          a ≤ c ∧ c ≤ b ⇒
          (op (f (interval [(a,c)])) (f (interval [(c,b)])) =
           f (interval [(a,b)]))
OPERATIVE_1_LT
⊢ ∀op.
    monoidal op ⇒
    ∀f. operative op f ⇔
        (∀a b. b ≤ a ⇒ (f (interval [(a,b)]) = neutral op)) ∧
        ∀a b c.
          a < c ∧ c < b ⇒
          (op (f (interval [(a,c)])) (f (interval [(c,b)])) =
           f (interval [(a,b)]))
OPERATIVE_APPROXIMABLE
⊢ ∀f e.
    0 ≤ e ⇒
    operative $/\
      (λi. ∃g. (∀x. x ∈ i ⇒ abs (f x − g x) ≤ e) ∧ g integrable_on i)
OPERATIVE_CONTENT
⊢ operative $+ content
OPERATIVE_DIVISION
⊢ ∀op d a b f.
    monoidal op ∧ operative op f ∧ d division_of interval [(a,b)] ⇒
    (iterate op d f = f (interval [(a,b)]))
OPERATIVE_DIVISION_AND
⊢ ∀P d a b.
    operative $/\ P ∧ d division_of interval [(a,b)] ⇒
    ((∀i. i ∈ d ⇒ P i) ⇔ P (interval [(a,b)]))
OPERATIVE_EMPTY
⊢ ∀op f. operative op f ⇒ (f ∅ = neutral op)
OPERATIVE_FUNCTION_ENDPOINT_DIFF
⊢ ∀f. operative $+ (λk. f (interval_upperbound k) − f (interval_lowerbound k))
OPERATIVE_INTEGRABLE
⊢ ∀f. operative $/\ (λi. f integrable_on i)
OPERATIVE_INTEGRAL
⊢ ∀f. operative (lifted $+)
        (λi. if f integrable_on i then SOME (∫ i f) else NONE)
OPERATIVE_LIFTED_SETVARIATION
⊢ ∀f. operative $+ f ⇒
      operative (lifted $+)
        (λi.
             if f has_bounded_setvariation_on i then SOME (set_variation i f)
             else NONE)
OPERATIVE_LIFTED_VECTOR_VARIATION
⊢ ∀f. operative (lifted $+)
        (λi.
             if f has_bounded_variation_on i then SOME (vector_variation i f)
             else NONE)
OPERATIVE_REAL_FUNCTION_ENDPOINT_DIFF
⊢ ∀f. operative $+ (λk. f (interval_upperbound k) − f (interval_lowerbound k))
OPERATIVE_TAGGED_DIVISION
⊢ ∀op d a b f.
    monoidal op ∧ operative op f ∧ d tagged_division_of interval [(a,b)] ⇒
    (iterate op d (λ(x,l). f l) = f (interval [(a,b)]))
OPERATIVE_TRIVIAL
⊢ ∀op f a b.
    operative op f ∧ (content (interval [(a,b)]) = 0) ⇒
    (f (interval [(a,b)]) = neutral op)
PARTIAL_DIVISION_EXTEND
⊢ ∀p q s t.
    p division_of s ∧ q division_of t ∧ s ⊆ t ⇒ ∃r. p ⊆ r ∧ r division_of t
PARTIAL_DIVISION_EXTEND_1
⊢ ∀a b c d.
    interval [(c,d)] ⊆ interval [(a,b)] ∧ interval [(c,d)] ≠ ∅ ⇒
    ∃p. p division_of interval [(a,b)] ∧ interval [(c,d)] ∈ p
PARTIAL_DIVISION_EXTEND_INTERVAL
⊢ ∀p a b.
    p division_of BIGUNION p ∧ BIGUNION p ⊆ interval [(a,b)] ⇒
    ∃q. p ⊆ q ∧ q division_of interval [(a,b)]
PARTIAL_DIVISION_OF_TAGGED_DIVISION
⊢ ∀s i.
    s tagged_partial_division_of i ⇒
    IMAGE SND s division_of BIGUNION (IMAGE SND s)
PROPERTY_EMPTY_INTERVAL
⊢ ∀P. (∀a b. (content (interval [(a,b)]) = 0) ⇒ P (interval [(a,b)])) ⇒ P ∅
REAL_MUL_POS_LT
⊢ ∀x y. 0 < x * y ⇔ 0 < x ∧ 0 < y ∨ x < 0 ∧ y < 0
REAL_SUP_LE_FINITE
⊢ ∀s a. FINITE s ∧ s ≠ ∅ ⇒ (sup s ≤ a ⇔ ∀x. x ∈ s ⇒ x ≤ a)
RSUM_BOUND
⊢ ∀p a b f e.
    p tagged_division_of interval [(a,b)] ∧
    (∀x. x ∈ interval [(a,b)] ⇒ abs (f x) ≤ e) ⇒
    abs (sum p (λ(x,k). content k * f x)) ≤ e * content (interval [(a,b)])
RSUM_COMPONENT_LE
⊢ ∀p a b f g.
    p tagged_division_of interval [(a,b)] ∧
    (∀x. x ∈ interval [(a,b)] ⇒ f x ≤ g x) ⇒
    sum p (λ(x,k). content k * f x) ≤ sum p (λ(x,k). content k * g x)
RSUM_DIFF_BOUND
⊢ ∀e p a b f g.
    p tagged_division_of interval [(a,b)] ∧
    (∀x. x ∈ interval [(a,b)] ⇒ abs (f x − g x) ≤ e) ⇒
    abs (sum p (λ(x,k). content k * f x) − sum p (λ(x,k). content k * g x)) ≤
    e * content (interval [(a,b)])
SECOND_MEAN_VALUE_THEOREM
⊢ ∀f g a b.
    interval [(a,b)] ≠ ∅ ∧ f integrable_on interval [(a,b)] ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ⇒
    ∃c. c ∈ interval [(a,b)] ∧
        (∫ (interval [(a,b)]) (λx. g x * f x) =
         g a * ∫ (interval [(a,c)]) f + g b * ∫ (interval [(c,b)]) f)
SECOND_MEAN_VALUE_THEOREM_BONNET
⊢ ∀f g a b.
    interval [(a,b)] ≠ ∅ ∧ f integrable_on interval [(a,b)] ∧
    (∀x. x ∈ interval [(a,b)] ⇒ 0 ≤ g x) ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ⇒
    ∃c. c ∈ interval [(a,b)] ∧
        (∫ (interval [(a,b)]) (λx. g x * f x) = g b * ∫ (interval [(c,b)]) f)
SECOND_MEAN_VALUE_THEOREM_BONNET_FULL
⊢ ∀f g a b.
    interval [(a,b)] ≠ ∅ ∧ f integrable_on interval [(a,b)] ∧
    (∀x. x ∈ interval [(a,b)] ⇒ 0 ≤ g x) ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ⇒
    ∃c. c ∈ interval [(a,b)] ∧
        ((λx. g x * f x) has_integral g b * ∫ (interval [(c,b)]) f)
          (interval [(a,b)])
SECOND_MEAN_VALUE_THEOREM_FULL
⊢ ∀f g a b.
    interval [(a,b)] ≠ ∅ ∧ f integrable_on interval [(a,b)] ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ⇒
    ∃c. c ∈ interval [(a,b)] ∧
        ((λx. g x * f x) has_integral
         g a * ∫ (interval [(a,c)]) f + g b * ∫ (interval [(c,b)]) f)
          (interval [(a,b)])
SECOND_MEAN_VALUE_THEOREM_GEN
⊢ ∀f g a b u v.
    interval [(a,b)] ≠ ∅ ∧ f integrable_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) ⇒ u ≤ g x ∧ g x ≤ v) ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ⇒
    ∃c. c ∈ interval [(a,b)] ∧
        (∫ (interval [(a,b)]) (λx. g x * f x) =
         u * ∫ (interval [(a,c)]) f + v * ∫ (interval [(c,b)]) f)
SECOND_MEAN_VALUE_THEOREM_GEN_FULL
⊢ ∀f g a b u v.
    interval [(a,b)] ≠ ∅ ∧ f integrable_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) ⇒ u ≤ g x ∧ g x ≤ v) ∧
    (∀x y. x ∈ interval [(a,b)] ∧ y ∈ interval [(a,b)] ∧ x ≤ y ⇒ g x ≤ g y) ⇒
    ∃c. c ∈ interval [(a,b)] ∧
        ((λx. g x * f x) has_integral
         u * ∫ (interval [(a,c)]) f + v * ∫ (interval [(c,b)]) f)
          (interval [(a,b)])
SETVARIATION_EQUAL_LEMMA
⊢ ∀mf ms ms'.
    (∀s. (ms' (ms s) = s) ∧ (ms (ms' s) = s)) ∧
    (∀f a b.
       interval [(a,b)] ≠ ∅ ⇒
       (mf f (ms (interval [(a,b)])) = f (interval [(a,b)])) ∧
       ∃a' b'.
         interval [(a',b')] ≠ ∅ ∧
         (ms' (interval [(a,b)]) = interval [(a',b')])) ∧
    (∀t u. t ⊆ u ⇒ ms t ⊆ ms u ∧ ms' t ⊆ ms' u) ∧
    (∀d t.
       d division_of t ⇒
       IMAGE ms d division_of ms t ∧ IMAGE ms' d division_of ms' t) ⇒
    (∀f s.
       mf f has_bounded_setvariation_on ms s ⇔ f has_bounded_setvariation_on s) ∧
    ∀f s. set_variation (ms s) (mf f) = set_variation s f
SET_VARIATION
⊢ ∀f s d t.
    f has_bounded_setvariation_on s ∧ d division_of t ∧ t ⊆ s ⇒
    sum d (λk. abs (f k)) ≤ set_variation s f
SET_VARIATION_0
⊢ ∀s. set_variation s (λx. 0) = 0
SET_VARIATION_COMPARISON
⊢ ∀f g s.
    f has_bounded_setvariation_on s ∧
    (∀a b.
       interval [(a,b)] ≠ ∅ ∧ interval [(a,b)] ⊆ s ⇒
       abs (g (interval [(a,b)])) ≤ abs (f (interval [(a,b)]))) ⇒
    set_variation s g ≤ set_variation s f
SET_VARIATION_ELEMENTARY_LEMMA
⊢ ∀f s b.
    (∃d. d division_of s) ⇒
    ((∀d t. d division_of t ∧ t ⊆ s ⇒ sum d (λk. abs (f k)) ≤ b) ⇔
     ∀d. d division_of s ⇒ sum d (λk. abs (f k)) ≤ b)
SET_VARIATION_EQ
⊢ ∀f g s.
    (∀a b.
       interval [(a,b)] ≠ ∅ ∧ interval [(a,b)] ⊆ s ⇒
       (f (interval [(a,b)]) = g (interval [(a,b)]))) ⇒
    (set_variation s f = set_variation s g)
SET_VARIATION_GE_FUNCTION
⊢ ∀f s a b.
    f has_bounded_setvariation_on s ∧ interval [(a,b)] ⊆ s ∧
    interval [(a,b)] ≠ ∅ ⇒
    abs (f (interval [(a,b)])) ≤ set_variation s f
SET_VARIATION_LBOUND
⊢ ∀f s B.
    f has_bounded_setvariation_on s ∧
    (∃d t. d division_of t ∧ t ⊆ s ∧ B ≤ sum d (λk. abs (f k))) ⇒
    B ≤ set_variation s f
SET_VARIATION_LBOUND_ON_INTERVAL
⊢ ∀f a b B.
    f has_bounded_setvariation_on interval [(a,b)] ∧
    (∃d. d division_of interval [(a,b)] ∧ B ≤ sum d (λk. abs (f k))) ⇒
    B ≤ set_variation (interval [(a,b)]) f
SET_VARIATION_MONOTONE
⊢ ∀f s t.
    f has_bounded_setvariation_on s ∧ t ⊆ s ⇒
    set_variation t f ≤ set_variation s f
SET_VARIATION_ON_DIVISION
⊢ ∀f a b d.
    operative $+ f ∧ d division_of interval [(a,b)] ∧
    f has_bounded_setvariation_on interval [(a,b)] ⇒
    (sum d (λk. set_variation k f) = set_variation (interval [(a,b)]) f)
SET_VARIATION_ON_ELEMENTARY
⊢ ∀f s.
    (∃d. d division_of s) ⇒
    (set_variation s f = sup {sum d (λk. abs (f k)) | d division_of s})
SET_VARIATION_ON_INTERVAL
⊢ ∀f a b.
    set_variation (interval [(a,b)]) f =
    sup {sum d (λk. abs (f k)) | d division_of interval [(a,b)]}
SET_VARIATION_ON_NULL
⊢ ∀f s.
    (∀a b. (content (interval [(a,b)]) = 0) ⇒ (f (interval [(a,b)]) = 0)) ∧
    (content s = 0) ∧ bounded s ⇒
    (set_variation s f = 0)
SET_VARIATION_POS_LE
⊢ ∀f s. f has_bounded_setvariation_on s ⇒ 0 ≤ set_variation s f
SET_VARIATION_REFLECT2
⊢ ∀f s.
    set_variation (IMAGE (λx. -x) s) (λk. f (IMAGE (λx. -x) k)) =
    set_variation s f
SET_VARIATION_SUM_LE
⊢ ∀f s k.
    FINITE k ∧ (∀i. i ∈ k ⇒ f i has_bounded_setvariation_on s) ⇒
    set_variation s (λx. sum k (λi. f i x)) ≤
    sum k (λi. set_variation s (f i))
SET_VARIATION_TRANSLATION2
⊢ ∀a f s.
    set_variation (IMAGE (λx. -a + x) s) (λk. f (IMAGE (λx. a + x) k)) =
    set_variation s f
SET_VARIATION_TRIANGLE
⊢ ∀f g s.
    f has_bounded_setvariation_on s ∧ g has_bounded_setvariation_on s ⇒
    set_variation s (λx. f x + g x) ≤ set_variation s f + set_variation s g
SET_VARIATION_UBOUND
⊢ ∀f s B.
    f has_bounded_setvariation_on s ∧
    (∀d t. d division_of t ∧ t ⊆ s ⇒ sum d (λk. abs (f k)) ≤ B) ⇒
    set_variation s f ≤ B
SET_VARIATION_UBOUND_ON_INTERVAL
⊢ ∀f a b B.
    f has_bounded_setvariation_on interval [(a,b)] ∧
    (∀d. d division_of interval [(a,b)] ⇒ sum d (λk. abs (f k)) ≤ B) ⇒
    set_variation (interval [(a,b)]) f ≤ B
SET_VARIATION_WORKS_ON_INTERVAL
⊢ ∀f a b d.
    f has_bounded_setvariation_on interval [(a,b)] ∧
    d division_of interval [(a,b)] ⇒
    sum d (λk. abs (f k)) ≤ set_variation (interval [(a,b)]) f
SUBADDITIVE_CONTENT_DIVISION
⊢ ∀d s a b.
    d division_of s ∧ s ⊆ interval [(a,b)] ⇒
    sum d content ≤ content (interval [(a,b)])
SUM_ABS_ALLSUBSETS_BOUND
⊢ ∀f p e.
    FINITE p ∧ (∀q. q ⊆ p ⇒ abs (sum q f) ≤ e) ⇒
    sum p (λx. abs (f x)) ≤ 2 * 1 * e
SUM_CONTENT_AREA_OVER_THIN_DIVISION
⊢ ∀d a b s c.
    d division_of s ∧ s ⊆ interval [(a,b)] ∧ a ≤ c ∧ c ≤ b ∧
    (∀k. k ∈ d ⇒ k ∩ {x | x = c} ≠ ∅) ⇒
    (b − a) *
    sum d (λk. content k / (interval_upperbound k − interval_lowerbound k)) ≤
    2 * content (interval [(a,b)])
SUM_CONTENT_NULL
⊢ ∀f a b p.
    (content (interval [(a,b)]) = 0) ∧ p tagged_division_of interval [(a,b)] ⇒
    (sum p (λ(x,k). content k * f x) = 0)
SUM_NONZERO_IMAGE_LEMMA
⊢ ∀s f g a.
    FINITE s ∧ (g a = 0) ∧
    (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ∧ x ≠ y ⇒ (g (f x) = 0)) ⇒
    (sum {f x | x | x ∈ s ∧ f x ≠ a} g = sum s (g ∘ f))
SUM_OVER_TAGGED_DIVISION_LEMMA
⊢ ∀d p i.
    p tagged_division_of i ∧
    (∀u v.
       interval [(u,v)] ≠ ∅ ∧ (content (interval [(u,v)]) = 0) ⇒
       (d (interval [(u,v)]) = 0)) ⇒
    (sum p (λ(x,k). d k) = sum (IMAGE SND p) d)
SUM_OVER_TAGGED_PARTIAL_DIVISION_LEMMA
⊢ ∀d p i.
    p tagged_partial_division_of i ∧
    (∀u v.
       interval [(u,v)] ≠ ∅ ∧ (content (interval [(u,v)]) = 0) ⇒
       (d (interval [(u,v)]) = 0)) ⇒
    (sum p (λ(x,k). d k) = sum (IMAGE SND p) d)
SUP_FINITE
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ sup s ∈ s ∧ ∀x. x ∈ s ⇒ x ≤ sup s
SUP_FINITE_LEMMA
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ ∃b. b ∈ s ∧ ∀x. x ∈ s ⇒ x ≤ b
TAGGED_DIVISION_BIGUNION
⊢ ∀iset pfn.
    FINITE iset ∧ (∀i. i ∈ iset ⇒ pfn i tagged_division_of i) ∧
    (∀i1 i2. i1 ∈ iset ∧ i2 ∈ iset ∧ i1 ≠ i2 ⇒ (interior i1 ∩ interior i2 = ∅)) ⇒
    BIGUNION (IMAGE pfn iset) tagged_division_of BIGUNION iset
TAGGED_DIVISION_BIGUNION_EXISTS
⊢ ∀d iset i.
    FINITE iset ∧ (∀i. i ∈ iset ⇒ ∃p. p tagged_division_of i ∧ d FINE p) ∧
    (∀i1 i2. i1 ∈ iset ∧ i2 ∈ iset ∧ i1 ≠ i2 ⇒ (interior i1 ∩ interior i2 = ∅)) ∧
    (BIGUNION iset = i) ⇒
    ∃p. p tagged_division_of i ∧ d FINE p
TAGGED_DIVISION_FINER
⊢ ∀p a b d.
    p tagged_division_of interval [(a,b)] ∧ gauge d ⇒
    ∃q. q tagged_division_of interval [(a,b)] ∧ d FINE q ∧
        ∀x k. (x,k) ∈ p ∧ k ⊆ d x ⇒ (x,k) ∈ q
TAGGED_DIVISION_OF
⊢ ∀s i.
    s tagged_division_of i ⇔
    FINITE s ∧
    (∀x k. (x,k) ∈ s ⇒ x ∈ k ∧ k ⊆ i ∧ ∃a b. k = interval [(a,b)]) ∧
    (∀x1 k1 x2 k2.
       (x1,k1) ∈ s ∧ (x2,k2) ∈ s ∧ (x1,k1) ≠ (x2,k2) ⇒
       (interior k1 ∩ interior k2 = ∅)) ∧ (BIGUNION {k | (∃x. (x,k) ∈ s)} = i)
TAGGED_DIVISION_OF_ALT
⊢ ∀p s.
    p tagged_division_of s ⇔
    p tagged_partial_division_of s ∧ ∀x. x ∈ s ⇒ ∃t k. (t,k) ∈ p ∧ x ∈ k
TAGGED_DIVISION_OF_ANOTHER
⊢ ∀p s s'.
    p tagged_partial_division_of s' ∧ (∀t k. (t,k) ∈ p ⇒ k ⊆ s) ∧
    (∀x. x ∈ s ⇒ ∃t k. (t,k) ∈ p ∧ x ∈ k) ⇒
    p tagged_division_of s
TAGGED_DIVISION_OF_EMPTY
⊢ ∅ tagged_division_of ∅
TAGGED_DIVISION_OF_FINITE
⊢ ∀s i. s tagged_division_of i ⇒ FINITE s
TAGGED_DIVISION_OF_NONTRIVIAL
⊢ ∀s a b.
    s tagged_division_of interval [(a,b)] ∧ content (interval [(a,b)]) ≠ 0 ⇒
    {(x,k) | (x,k) ∈ s ∧ content k ≠ 0} tagged_division_of interval [(a,b)]
TAGGED_DIVISION_OF_SELF
⊢ ∀x a b.
    x ∈ interval [(a,b)] ⇒
    {(x,interval [(a,b)])} tagged_division_of interval [(a,b)]
TAGGED_DIVISION_OF_TRIVIAL
⊢ ∀p. p tagged_division_of ∅ ⇔ (p = ∅)
TAGGED_DIVISION_OF_UNION_SELF
⊢ ∀p s. p tagged_division_of s ⇒ p tagged_division_of BIGUNION (IMAGE SND p)
TAGGED_DIVISION_SPLIT_LEFT_INJ
⊢ ∀d i x1 k1 x2 k2 c.
    d tagged_division_of i ∧ (x1,k1) ∈ d ∧ (x2,k2) ∈ d ∧ k1 ≠ k2 ∧
    (k1 ∩ {x | x ≤ c} = k2 ∩ {x | x ≤ c}) ⇒
    (content (k1 ∩ {x | x ≤ c}) = 0)
TAGGED_DIVISION_SPLIT_RIGHT_INJ
⊢ ∀d i x1 k1 x2 k2 c.
    d tagged_division_of i ∧ (x1,k1) ∈ d ∧ (x2,k2) ∈ d ∧ k1 ≠ k2 ∧
    (k1 ∩ {x | x ≥ c} = k2 ∩ {x | x ≥ c}) ⇒
    (content (k1 ∩ {x | x ≥ c}) = 0)
TAGGED_DIVISION_UNION
⊢ ∀s1 s2 p1 p2.
    p1 tagged_division_of s1 ∧ p2 tagged_division_of s2 ∧
    (interior s1 ∩ interior s2 = ∅) ⇒
    p1 ∪ p2 tagged_division_of s1 ∪ s2
TAGGED_DIVISION_UNION_IMAGE_SND
⊢ ∀p s. p tagged_division_of s ⇒ (s = BIGUNION (IMAGE SND p))
TAGGED_DIVISION_UNION_INTERVAL
⊢ ∀a b p1 p2 c.
    p1 tagged_division_of interval [(a,b)] ∩ {x | x ≤ c} ∧
    p2 tagged_division_of interval [(a,b)] ∩ {x | x ≥ c} ⇒
    p1 ∪ p2 tagged_division_of interval [(a,b)]
TAGGED_PARTIAL_DIVISION_COMMON_POINT_BOUND
⊢ ∀p s y.
    p tagged_partial_division_of s ⇒
    CARD {(x,k) | (x,k) ∈ p ∧ y ∈ k ∧ content k ≠ 0} ≤ 2 ** 1
TAGGED_PARTIAL_DIVISION_COMMON_TAGS
⊢ ∀p s x.
    p tagged_partial_division_of s ⇒
    CARD {(x,k) | k | (x,k) ∈ p ∧ content k ≠ 0} ≤ 2 ** 1
TAGGED_PARTIAL_DIVISION_OF_SUBSET
⊢ ∀p s t.
    p tagged_partial_division_of s ∧ s ⊆ t ⇒ p tagged_partial_division_of t
TAGGED_PARTIAL_DIVISION_OF_TRIVIAL
⊢ ∀p. p tagged_partial_division_of ∅ ⇔ (p = ∅)
TAGGED_PARTIAL_DIVISION_OF_UNION_SELF
⊢ ∀p s.
    p tagged_partial_division_of s ⇒
    p tagged_division_of BIGUNION (IMAGE SND p)
TAGGED_PARTIAL_DIVISION_SUBSET
⊢ ∀s t i.
    s tagged_partial_division_of i ∧ t ⊆ s ⇒ t tagged_partial_division_of i
TAG_IN_INTERVAL
⊢ ∀p i k. p tagged_division_of i ∧ (x,k) ∈ p ⇒ x ∈ i
VARIATION_EQUAL_LEMMA
⊢ ∀ms ms'.
    (∀s. (ms' (ms s) = s) ∧ (ms (ms' s) = s)) ∧
    (∀d t.
       d division_of t ⇒
       IMAGE (IMAGE ms) d division_of IMAGE ms t ∧
       IMAGE (IMAGE ms') d division_of IMAGE ms' t) ∧
    (∀a b.
       interval [(a,b)] ≠ ∅ ⇒
       (IMAGE ms' (interval [(a,b)]) = interval [(ms' a,ms' b)]) ∨
       (IMAGE ms' (interval [(a,b)]) = interval [(ms' b,ms' a)])) ⇒
    (∀f s.
       (λx. f (ms' x)) has_bounded_variation_on IMAGE ms s ⇔
       f has_bounded_variation_on s) ∧
    ∀f s. vector_variation (IMAGE ms s) (λx. f (ms' x)) = vector_variation s f
VECTOR_VARIATION_ABS
⊢ ∀f s.
    (λx. f x) has_bounded_variation_on s ⇒
    vector_variation s (λx. abs (f x)) ≤ vector_variation s (λx. f x)
VECTOR_VARIATION_AFFINITY
⊢ ∀m c f s.
    vector_variation s (λx. f (m * x + c)) =
    if m = 0 then 0 else vector_variation (IMAGE (λx. m * x + c) s) f
VECTOR_VARIATION_AFFINITY2
⊢ ∀m c f s.
    vector_variation (IMAGE (λx. m⁻¹ * x + -(m⁻¹ * c)) s) (λx. f (m * x + c)) =
    if m = 0 then 0 else vector_variation s f
VECTOR_VARIATION_COMBINE
⊢ ∀f a b c.
    a ≤ c ∧ c ≤ b ∧ f has_bounded_variation_on interval [(a,b)] ⇒
    (vector_variation (interval [(a,c)]) f +
     vector_variation (interval [(c,b)]) f =
     vector_variation (interval [(a,b)]) f)
VECTOR_VARIATION_COMPARISON
⊢ ∀f g s.
    f has_bounded_variation_on s ∧
    (∀x y. x ∈ s ∧ y ∈ s ∧ x < y ⇒ dist (g x,g y) ≤ dist (f x,f y)) ⇒
    vector_variation s g ≤ vector_variation s f
VECTOR_VARIATION_CONST
⊢ ∀s c. vector_variation s (λx. c) = 0
VECTOR_VARIATION_CONST_EQ
⊢ ∀f s.
    is_interval s ∧ f has_bounded_variation_on s ⇒
    ((vector_variation s f = 0) ⇔ ∃c. ∀x. x ∈ s ⇒ (f x = c))
VECTOR_VARIATION_CONTINUOUS
⊢ ∀f a b c.
    f has_bounded_variation_on interval [(a,b)] ∧ c ∈ interval [(a,b)] ⇒
    ((λx. vector_variation (interval [(a,x)]) f) continuous
     (at c within interval [(a,b)]) ⇔
     f continuous (at c within interval [(a,b)]))
VECTOR_VARIATION_CONTINUOUS_LEFT
⊢ ∀f a b c.
    f has_bounded_variation_on interval [(a,b)] ∧ c ∈ interval [(a,b)] ⇒
    ((λx. vector_variation (interval [(a,x)]) f) continuous
     (at c within interval [(a,c)]) ⇔
     f continuous (at c within interval [(a,c)]))
VECTOR_VARIATION_CONTINUOUS_RIGHT
⊢ ∀f a b c.
    f has_bounded_variation_on interval [(a,b)] ∧ c ∈ interval [(a,b)] ⇒
    ((λx. vector_variation (interval [(a,x)]) f) continuous
     (at c within interval [(c,b)]) ⇔
     f continuous (at c within interval [(c,b)]))
VECTOR_VARIATION_EQ
⊢ ∀f g s.
    (∀x. x ∈ s ⇒ (f x = g x)) ⇒ (vector_variation s f = vector_variation s g)
VECTOR_VARIATION_GE_ABS_FUNCTION
⊢ ∀f s a b.
    f has_bounded_variation_on s ∧ segment [(a,b)] ⊆ s ⇒
    abs (f b − f a) ≤ vector_variation s f
VECTOR_VARIATION_GE_FUNCTION
⊢ ∀f s a b.
    f has_bounded_variation_on s ∧ segment [(a,b)] ⊆ s ⇒
    f b − f a ≤ vector_variation s f
VECTOR_VARIATION_MINUS_FUNCTION_MONOTONE
⊢ ∀f a b c d.
    f has_bounded_variation_on interval [(a,b)] ∧
    interval [(c,d)] ⊆ interval [(a,b)] ∧ interval [(c,d)] ≠ ∅ ⇒
    vector_variation (interval [(c,d)]) f − (f d − f c) ≤
    vector_variation (interval [(a,b)]) f − (f b − f a)
VECTOR_VARIATION_MONOTONE
⊢ ∀f s t.
    f has_bounded_variation_on s ∧ t ⊆ s ⇒
    vector_variation t f ≤ vector_variation s f
VECTOR_VARIATION_NEG
⊢ ∀f s. vector_variation s (λx. -f x) = vector_variation s f
VECTOR_VARIATION_ON_DIVISION
⊢ ∀f a b d.
    d division_of interval [(a,b)] ∧
    f has_bounded_variation_on interval [(a,b)] ⇒
    (sum d (λk. vector_variation k f) = vector_variation (interval [(a,b)]) f)
VECTOR_VARIATION_ON_NULL
⊢ ∀f s. (content s = 0) ∧ bounded s ⇒ (vector_variation s f = 0)
VECTOR_VARIATION_POS_LE
⊢ ∀f s. f has_bounded_variation_on s ⇒ 0 ≤ vector_variation s f
VECTOR_VARIATION_REFLECT
⊢ ∀f s.
    vector_variation s (λx. f (-x)) = vector_variation (IMAGE (λx. -x) s) f
VECTOR_VARIATION_REFLECT2
⊢ ∀f s.
    vector_variation (IMAGE (λx. -x) s) (λx. f (-x)) = vector_variation s f
VECTOR_VARIATION_REFLECT_INTERVAL
⊢ ∀f a b.
    vector_variation (interval [(a,b)]) (λx. f (-x)) =
    vector_variation (interval [(-b,-a)]) f
VECTOR_VARIATION_TRANSLATION
⊢ ∀a f s.
    vector_variation s (λx. f (a + x)) =
    vector_variation (IMAGE (λx. a + x) s) f
VECTOR_VARIATION_TRANSLATION2
⊢ ∀a f s.
    vector_variation (IMAGE (λx. -a + x) s) (λx. f (a + x)) =
    vector_variation s f
VECTOR_VARIATION_TRANSLATION_INTERVAL
⊢ ∀a f u v.
    vector_variation (interval [(u,v)]) (λx. f (a + x)) =
    vector_variation (interval [(a + u,a + v)]) f
VECTOR_VARIATION_TRIANGLE
⊢ ∀f g s.
    f has_bounded_variation_on s ∧ g has_bounded_variation_on s ⇒
    vector_variation s (λx. f x + g x) ≤
    vector_variation s f + vector_variation s g
has_integral
⊢ (f has_integral y) (interval [(a,b)]) ⇔
  ∀e. 0 < e ⇒
      ∃d. gauge d ∧
          ∀p. p tagged_division_of interval [(a,b)] ∧ d FINE p ⇒
              abs (sum p (λ(x,k). content k * f x) − y) < e
has_integral_alt
⊢ (f has_integral y) i ⇔
  if ∃a b. i = interval [(a,b)] then (f has_integral y) i
  else
    ∀e. 0 < e ⇒
        ∃B. 0 < B ∧
            ∀a b.
              ball (0,B) ⊆ interval [(a,b)] ⇒
              ∃z. ((λx. if x ∈ i then f x else 0) has_integral z)
                    (interval [(a,b)]) ∧ abs (z − y) < e
lifted_def
⊢ (lifted op NONE v0 = NONE) ∧ (lifted op (SOME v5) NONE = NONE) ∧
  (lifted op (SOME x) (SOME y) = SOME (op x y))
lifted_ind
⊢ ∀P. (∀op v0. P op NONE v0) ∧ (∀op v5. P op (SOME v5) NONE) ∧
      (∀op x y. P op (SOME x) (SOME y)) ⇒
      ∀v v1 v2. P v v1 v2