- BOREL_INDUCT
-
⊢ ∀f m P.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. 0 ≤ f x) ∧
(∀f g.
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ (f x = g x)) ∧ P f ⇒
P g) ∧ (∀A. A ∈ measurable_sets m ⇒ P (𝟙 A)) ∧
(∀f c.
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧ 0 ≤ c ∧
(∀x. 0 ≤ f x) ∧ P f ⇒
P (λx. c * f x)) ∧
(∀f g.
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ∧ (∀x. 0 ≤ f x) ∧
P f ∧ (∀x. 0 ≤ g x) ∧ P g ⇒
P (λx. f x + g x)) ∧
(∀u. (∀i. u i ∈ Borel_measurable (m_space m,measurable_sets m)) ∧
(∀i x. 0 ≤ u i x) ∧ (∀x. mono_increasing (λi. u i x)) ∧ (∀i. P (u i)) ⇒
P (λx. sup (IMAGE (λi. u i x) 𝕌(:num)))) ⇒
P f
- IN_MEASURABLE_BOREL_POS_SIMPLE_FN
-
⊢ ∀m f.
measure_space m ∧ (∃s a x. pos_simple_fn m f s a x) ⇒
f ∈ Borel_measurable (m_space m,measurable_sets m)
- IN_psfis
-
⊢ ∀m r f.
r ∈ psfis m f ⇒
∃s a x. pos_simple_fn m f s a x ∧ (r = pos_simple_fn_integral m s a x)
- IN_psfis_eq
-
⊢ ∀m r f.
r ∈ psfis m f ⇔
∃s a x. pos_simple_fn m f s a x ∧ (r = pos_simple_fn_integral m s a x)
- Radon_Nikodym
-
⊢ ∀m v.
measure_space m ∧ sigma_finite m ∧
measure_space (m_space m,measurable_sets m,v) ∧ v ≪ m ⇒
∃f. f ∈ Borel_measurable (m_space m,measurable_sets m) ∧ (∀x. 0 ≤ f x) ∧
∀s. s ∈ measurable_sets m ⇒ ((f * m) s = v s)
- Radon_Nikodym'
-
⊢ ∀m v.
measure_space m ∧ sigma_finite m ∧
measure_space (m_space m,measurable_sets m,v) ∧ v ≪ m ⇒
∃f. f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧
∀s. s ∈ measurable_sets m ⇒ ((f * m) s = v s)
- Radon_Nikodym_finite
-
⊢ ∀M N.
measure_space M ∧ measure_space N ∧ (m_space M = m_space N) ∧
(measurable_sets M = measurable_sets N) ∧ measure M (m_space M) ≠ +∞ ∧
measure N (m_space N) ≠ +∞ ∧ measure N ≪ M ⇒
∃f. f ∈ Borel_measurable (m_space M,measurable_sets M) ∧ (∀x. 0 ≤ f x) ∧
∀A. A ∈ measurable_sets M ⇒ (∫⁺ M (λx. f x * 𝟙 A x) = measure N A)
- Radon_Nikodym_finite_arbitrary
-
⊢ ∀M N.
measure_space M ∧ measure_space N ∧ (m_space M = m_space N) ∧
(measurable_sets M = measurable_sets N) ∧ measure M (m_space M) ≠ +∞ ∧
measure N ≪ M ⇒
∃f. f ∈ Borel_measurable (m_space M,measurable_sets M) ∧ (∀x. 0 ≤ f x) ∧
∀A. A ∈ measurable_sets M ⇒ (∫⁺ M (λx. f x * 𝟙 A x) = measure N A)
- Radon_Nikodym_sigma_finite
-
⊢ ∀M N.
measure_space M ∧ measure_space N ∧ (m_space M = m_space N) ∧
(measurable_sets M = measurable_sets N) ∧ sigma_finite M ∧ measure N ≪ M ⇒
∃f. f ∈ Borel_measurable (m_space M,measurable_sets M) ∧ (∀x. 0 ≤ f x) ∧
∀A. A ∈ measurable_sets M ⇒ (∫⁺ M (λx. f x * 𝟙 A x) = measure N A)
- density_fn_plus
-
⊢ ∀M f.
density M f⁺ =
(m_space M,measurable_sets M,(λA. ∫⁺ M (λx. max 0 (f x * 𝟙 A x))))
- ext_suminf_cmult_indicator
-
⊢ ∀A f x i.
disjoint_family A ∧ x ∈ A i ∧ (∀i. 0 ≤ f i) ⇒
(suminf (λn. f n * 𝟙 (A n) x) = f i)
- finite_integrable_function_exists
-
⊢ ∀m. measure_space m ∧ sigma_finite m ⇒
∃h. h ∈ Borel_measurable (m_space m,measurable_sets m) ∧ ∫⁺ m h ≠ +∞ ∧
(∀x. x ∈ m_space m ⇒ 0 < h x ∧ h x < +∞) ∧ ∀x. 0 ≤ h x
- finite_space_POW_integral_reduce
-
⊢ ∀m f.
measure_space m ∧ (POW (m_space m) = measurable_sets m) ∧
FINITE (m_space m) ∧ (∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ f x ≠ +∞) ∧
measure m (m_space m) < +∞ ⇒
(∫ m f = ∑ (λx. f x * measure m {x}) (m_space m))
- finite_space_integral_reduce
-
⊢ ∀m f.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ f x ≠ +∞) ∧ FINITE (m_space m) ∧
measure m (m_space m) < +∞ ∧ integrable m f ⇒
(∫ m f = finite_space_integral m f)
- finite_support_integral_reduce
-
⊢ ∀m f.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ f x ≠ +∞) ∧ FINITE (IMAGE f (m_space m)) ∧
integrable m f ∧ measure m (m_space m) < +∞ ⇒
(∫ m f = finite_space_integral m f)
- integrable_AE_normal
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ AE x::m. f x < +∞
- integrable_abs
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ integrable m (abs ∘ f)
- integrable_abs_bound_exists
-
⊢ ∀m u.
measure_space m ∧ integrable m (abs ∘ u) ⇒
∃w. integrable m w ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ w x) ∧
∀x. x ∈ m_space m ⇒ abs (u x) ≤ w x
- integrable_add
-
⊢ ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ∧
(∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞) ⇒
integrable m (λx. f x + g x)
- integrable_add_lemma
-
⊢ ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ⇒
integrable m (λx. f⁺ x + g⁺ x) ∧ integrable m (λx. f⁻ x + g⁻ x)
- integrable_add_pos
-
⊢ ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ g x) ⇒
integrable m (λx. f x + g x)
- integrable_bound_exists
-
⊢ ∀m u.
measure_space m ∧ integrable m u ⇒
∃w. integrable m w ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ w x) ∧
∀x. x ∈ m_space m ⇒ abs (u x) ≤ w x
- integrable_bounded
-
⊢ ∀m f g.
measure_space m ∧ integrable m f ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ abs (g x) ≤ f x) ⇒
integrable m g
- integrable_cmul
-
⊢ ∀m f c. measure_space m ∧ integrable m f ⇒ integrable m (λx. Normal c * f x)
- integrable_const
-
⊢ ∀m c.
measure_space m ∧ measure m (m_space m) < +∞ ⇒ integrable m (λx. Normal c)
- integrable_eq
-
⊢ ∀m f g.
measure_space m ∧ integrable m f ∧ (∀x. x ∈ m_space m ⇒ (f x = g x)) ⇒
integrable m g
- integrable_eq_AE
-
⊢ ∀m f g.
complete_measure_space m ∧ integrable m f ∧ (AE x::m. f x = g x) ⇒
integrable m g
- integrable_finite_integral
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ ∫ m f ≠ +∞ ∧ ∫ m f ≠ −∞
- integrable_fn_minus
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ integrable m f⁻
- integrable_fn_plus
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ integrable m f⁺
- integrable_from_abs
-
⊢ ∀m u.
measure_space m ∧ u ∈ Borel_measurable (m_space m,measurable_sets m) ∧
integrable m (abs ∘ u) ⇒
integrable m u
- integrable_from_bound_exists
-
⊢ ∀m u.
measure_space m ∧ u ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∃w. integrable m w ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ w x) ∧
∀x. x ∈ m_space m ⇒ abs (u x) ≤ w x) ⇒
integrable m u
- integrable_indicator
-
⊢ ∀m s.
measure_space m ∧ s ∈ measurable_sets m ∧ measure m s < +∞ ⇒
integrable m (𝟙 s)
- integrable_indicator_pow
-
⊢ ∀m s n.
measure_space m ∧ s ∈ measurable_sets m ∧ measure m s < +∞ ∧ 0 < n ⇒
integrable m (λx. 𝟙 s x pow n)
- integrable_infty
-
⊢ ∀m f s.
measure_space m ∧ integrable m f ∧ s ∈ measurable_sets m ∧
(∀x. x ∈ s ⇒ (f x = +∞)) ⇒
(measure m s = 0)
- integrable_infty_null
-
⊢ ∀m f.
measure_space m ∧ integrable m f ⇒
null_set m {x | x ∈ m_space m ∧ (f x = +∞)}
- integrable_mul_indicator
-
⊢ ∀m s f.
measure_space m ∧ s ∈ measurable_sets m ∧ measure m s < +∞ ∧
(∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ f x ≠ +∞) ∧ integrable m f ⇒
integrable m (λx. f x * 𝟙 s x)
- integrable_normal_integral
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ ∃r. ∫ m f = Normal r
- integrable_not_infty
-
⊢ ∀m f.
measure_space m ∧ integrable m f ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒
∃g. integrable m g ∧ (∀x. 0 ≤ g x) ∧ (∀x. g x ≠ +∞) ∧ (∫ m f = ∫ m g)
- integrable_not_infty_alt
-
⊢ ∀m f.
measure_space m ∧ integrable m f ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒
integrable m (λx. if f x = +∞ then 0 else f x) ∧
(∫ m f = ∫ m (λx. if f x = +∞ then 0 else f x))
- integrable_not_infty_alt2
-
⊢ ∀m f.
measure_space m ∧ integrable m f ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒
integrable m (λx. if f x = +∞ then 0 else f x) ∧
(∫⁺ m f = ∫⁺ m (λx. if f x = +∞ then 0 else f x))
- integrable_not_infty_alt3
-
⊢ ∀m f.
measure_space m ∧ integrable m f ⇒
integrable m (λx. if (f x = −∞) ∨ (f x = +∞) then 0 else f x) ∧
(∫ m f = ∫ m (λx. if (f x = −∞) ∨ (f x = +∞) then 0 else f x))
- integrable_plus_minus
-
⊢ ∀m f.
measure_space m ⇒
(integrable m f ⇔
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧ integrable m f⁺ ∧
integrable m f⁻)
- integrable_pos
-
⊢ ∀m f.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒
(integrable m f ⇔
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧ ∫⁺ m f ≠ +∞)
- integrable_sub
-
⊢ ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ∧
(∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ g x ≠ +∞) ⇒
integrable m (λx. f x − g x)
- integrable_sum
-
⊢ ∀m f s.
FINITE s ∧ measure_space m ∧ (∀i. i ∈ s ⇒ integrable m (f i)) ∧
(∀i x. i ∈ s ∧ x ∈ m_space m ⇒ f i x ≠ +∞ ∧ f i x ≠ −∞) ⇒
integrable m (λx. ∑ (λi. f i x) s)
- integrable_zero
-
⊢ ∀m c. measure_space m ⇒ integrable m (λx. 0)
- integral_abs_eq_0
-
⊢ ∀m f.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
((∫ m (abs ∘ f) = 0) ⇔ AE x::m. (abs ∘ f) x = 0) ∧
((AE x::m. (abs ∘ f) x = 0) ⇔
(measure m {x | x ∈ m_space m ∧ f x ≠ 0} = 0))
- integral_abs_imp_integrable
-
⊢ ∀m f.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∫ m (abs ∘ f) = 0) ⇒
integrable m f
- integral_abs_pos_fn
-
⊢ ∀m f. measure_space m ⇒ (∫ m (abs ∘ f) = ∫⁺ m (abs ∘ f))
- integral_add
-
⊢ ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ∧
(∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞) ⇒
(∫ m (λx. f x + g x) = ∫ m f + ∫ m g)
- integral_add_lemma
-
⊢ ∀m f f1 f2.
measure_space m ∧ integrable m f ∧ integrable m f1 ∧ integrable m f2 ∧
(∀x. x ∈ m_space m ⇒ (f x = f1 x − f2 x)) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ f1 x) ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f2 x) ∧
(∀x. x ∈ m_space m ⇒ f1 x ≠ +∞ ∨ f2 x ≠ +∞) ⇒
(∫ m f = ∫⁺ m f1 − ∫⁺ m f2)
- integral_add_lemma'
-
⊢ ∀m f f1 f2.
measure_space m ∧ integrable m f ∧ integrable m f1 ∧ integrable m f2 ∧
(∀x. x ∈ m_space m ⇒ (f x = f1 x − f2 x)) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ f1 x) ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f2 x) ⇒
(∫ m f = ∫⁺ m f1 − ∫⁺ m f2)
- integral_cmul
-
⊢ ∀m f c.
measure_space m ∧ integrable m f ⇒
(∫ m (λx. Normal c * f x) = Normal c * ∫ m f)
- integral_cmul_indicator
-
⊢ ∀m s c.
measure_space m ∧ s ∈ measurable_sets m ∧ measure m s < +∞ ⇒
(∫ m (λx. Normal c * 𝟙 s x) = Normal c * measure m s)
- integral_cmul_infty
-
⊢ ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
(∫ m (λx. +∞ * 𝟙 s x) = +∞ * measure m s)
- integral_cong
-
⊢ ∀m f g.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ (f x = g x)) ⇒ (∫ m f = ∫ m g)
- integral_cong_AE
-
⊢ ∀m f g. measure_space m ∧ (AE x::m. f x = g x) ⇒ (∫ m f = ∫ m g)
- integral_const
-
⊢ ∀m c.
measure_space m ∧ measure m (m_space m) < +∞ ⇒
(∫ m (λx. Normal c) = Normal c * measure m (m_space m))
- integral_eq_0
-
⊢ ∀m f.
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧ measure_space m ∧
(AE x::m. 0 ≤ f x) ⇒
((∫ m f = 0) ⇔ (measure m {x | x ∈ m_space m ∧ f x ≠ 0} = 0))
- integral_indicator
-
⊢ ∀m s. measure_space m ∧ s ∈ measurable_sets m ⇒ (∫ m (𝟙 s) = measure m s)
- integral_indicator_pow
-
⊢ ∀m s n.
measure_space m ∧ s ∈ measurable_sets m ∧ 0 < n ⇒
(∫ m (λx. 𝟙 s x pow n) = measure m s)
- integral_indicator_pow_eq
-
⊢ ∀m s n.
measure_space m ∧ s ∈ measurable_sets m ∧ 0 < n ⇒
(∫ m (λx. 𝟙 s x pow n) = ∫ m (𝟙 s))
- integral_mono
-
⊢ ∀m f1 f2.
measure_space m ∧ integrable m f1 ∧ integrable m f2 ∧
(∀x. x ∈ m_space m ⇒ f1 x ≤ f2 x) ⇒
∫ m f1 ≤ ∫ m f2
- integral_mspace
-
⊢ ∀m f. measure_space m ⇒ (∫ m f = ∫ m (λx. f x * 𝟙 (m_space m) x))
- integral_null_set
-
⊢ ∀m f N.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
N ∈ null_set m ⇒
integrable m (λx. f x * 𝟙 N x) ∧ (∫ m (λx. f x * 𝟙 N x) = 0)
- integral_pos
-
⊢ ∀m f. measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒ 0 ≤ ∫ m f
- integral_pos_fn
-
⊢ ∀m f. measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒ (∫ m f = ∫⁺ m f)
- integral_posinf
-
⊢ ∀m. measure_space m ∧ 0 < measure m (m_space m) ⇒ (∫ m (λx. +∞) = +∞)
- integral_sequence
-
⊢ ∀m f.
(∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧ measure_space m ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∫⁺ m f = sup (IMAGE (λi. ∫⁺ m (fn_seq m f i)) 𝕌(:num)))
- integral_split
-
⊢ ∀m f s.
measure_space m ∧ s ∈ measurable_sets m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∫ m f = ∫ m (λx. f x * 𝟙 s x) + ∫ m (λx. f x * 𝟙 (m_space m DIFF s) x))
- integral_split'
-
⊢ ∀m f s.
measure_space m ∧ integrable m f ∧ s ∈ measurable_sets m ⇒
(∫ m f = ∫ m (λx. f x * 𝟙 s x) + ∫ m (λx. f x * 𝟙 (m_space m DIFF s) x))
- integral_sum
-
⊢ ∀m f s.
FINITE s ∧ measure_space m ∧ (∀i. i ∈ s ⇒ integrable m (f i)) ∧
(∀x i. i ∈ s ∧ x ∈ m_space m ⇒ f i x ≠ +∞ ∧ f i x ≠ −∞) ⇒
(∫ m (λx. ∑ (λi. f i x) s) = ∑ (λi. ∫ m (f i)) s)
- integral_triangle_ineq
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ abs (∫ m f) ≤ ∫ m (abs ∘ f)
- integral_triangle_ineq'
-
⊢ ∀m f. measure_space m ∧ integrable m f ⇒ abs (∫ m f) ≤ ∫⁺ m (abs ∘ f)
- integral_zero
-
⊢ ∀m. measure_space m ⇒ (∫ m (λx. 0) = 0)
- lebesgue_monotone_convergence
-
⊢ ∀m f fi.
measure_space m ∧
(∀i. fi i ∈ Borel_measurable (m_space m,measurable_sets m)) ∧
(∀i x. x ∈ m_space m ⇒ 0 ≤ fi i x) ∧
(∀x. x ∈ m_space m ⇒ mono_increasing (λi. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. fi i x) 𝕌(:num)) = f x)) ⇒
(∫⁺ m f = sup (IMAGE (λi. ∫⁺ m (fi i)) 𝕌(:num)))
- lebesgue_monotone_convergence_AE
-
⊢ ∀m f fi.
measure_space m ∧
(∀i. fi i ∈ Borel_measurable (m_space m,measurable_sets m)) ∧
(AE x::m. ∀i. fi i x ≤ fi (SUC i) x ∧ 0 ≤ fi i x) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. fi i x) 𝕌(:num)) = f x)) ⇒
(∫⁺ m f⁺ = sup (IMAGE (λi. ∫⁺ m (fi i)⁺) 𝕌(:num)))
- lebesgue_monotone_convergence_decreasing
-
⊢ ∀m f fi.
measure_space m ∧
(∀i. fi i ∈ Borel_measurable (m_space m,measurable_sets m)) ∧
(∀i x. x ∈ m_space m ⇒ 0 ≤ fi i x ∧ fi i x < +∞) ∧
(∀i. ∫⁺ m (fi i) ≠ +∞) ∧
(∀x. x ∈ m_space m ⇒ mono_decreasing (λi. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (inf (IMAGE (λi. fi i x) 𝕌(:num)) = f x)) ⇒
(∫⁺ m f = inf (IMAGE (λi. ∫⁺ m (fi i)) 𝕌(:num)))
- lebesgue_monotone_convergence_subset
-
⊢ ∀m f fi A.
measure_space m ∧
(∀i. fi i ∈ Borel_measurable (m_space m,measurable_sets m)) ∧
(∀i x. x ∈ m_space m ⇒ 0 ≤ fi i x) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. fi i x) 𝕌(:num)) = f x)) ∧
(∀x. x ∈ m_space m ⇒ mono_increasing (λi. fi i x)) ∧ A ∈ measurable_sets m ⇒
(∫⁺ m (λx. f x * 𝟙 A x) =
sup (IMAGE (λi. ∫⁺ m (λx. fi i x * 𝟙 A x)) 𝕌(:num)))
- lemma_fn_seq_measurable
-
⊢ ∀m f n.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
fn_seq m f n ∈ Borel_measurable (m_space m,measurable_sets m)
- lemma_fn_seq_mono_increasing
-
⊢ ∀m f x. 0 ≤ f x ⇒ mono_increasing (λn. fn_seq m f n x)
- lemma_fn_seq_positive
-
⊢ ∀m f n x. 0 ≤ f x ⇒ 0 ≤ fn_seq m f n x
- lemma_fn_seq_sup
-
⊢ ∀m f x.
x ∈ m_space m ∧ 0 ≤ f x ⇒ (sup (IMAGE (λn. fn_seq m f n x) 𝕌(:num)) = f x)
- markov_ineq
-
⊢ ∀m f c.
measure_space m ∧ integrable m f ∧ 0 < c ⇒
measure m ({x | c ≤ abs (f x)} ∩ m_space m) ≤ c⁻¹ * ∫ m (abs ∘ f)
- markov_inequality
-
⊢ ∀m f a c.
measure_space m ∧ integrable m f ∧ a ∈ measurable_sets m ∧ 0 < c ⇒
measure m ({x | c ≤ abs (f x)} ∩ a) ≤ c⁻¹ * ∫ m (λx. abs (f x) * 𝟙 a x)
- measurable_sequence
-
⊢ ∀m f.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∃fi ri.
(∀x. mono_increasing (λi. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. fi i x) 𝕌(:num)) = f⁺ x)) ∧
(∀i. ri i ∈ psfis m (fi i)) ∧ (∀i x. fi i x ≤ f⁺ x) ∧
(∀i x. 0 ≤ fi i x) ∧ (∫⁺ m f⁺ = sup (IMAGE (λi. ∫⁺ m (fi i)) 𝕌(:num)))) ∧
∃gi vi.
(∀x. mono_increasing (λi. gi i x)) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. gi i x) 𝕌(:num)) = f⁻ x)) ∧
(∀i. vi i ∈ psfis m (gi i)) ∧ (∀i x. gi i x ≤ f⁻ x) ∧
(∀i x. 0 ≤ gi i x) ∧ (∫⁺ m f⁻ = sup (IMAGE (λi. ∫⁺ m (gi i)) 𝕌(:num)))
- measure_density_indicator
-
⊢ ∀m s t.
measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
(measure (density m (𝟙 s)) t = measure m (s ∩ t))
- measure_restricted
-
⊢ ∀m s t.
measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
(measure (m_space m,measurable_sets m,(λA. ∫⁺ m (λx. 𝟙 s x * 𝟙 A x))) t =
measure m (s ∩ t))
- measure_space_density
-
⊢ ∀m f.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒
measure_space (density m f)
- measure_space_density'
-
⊢ ∀M f.
measure_space M ∧ f ∈ Borel_measurable (m_space M,measurable_sets M) ⇒
measure_space (density M f⁺)
- measure_space_distr
-
⊢ ∀M B f.
measure_space M ∧ sigma_algebra B ∧
f ∈ measurable (m_space M,measurable_sets M) B ⇒
measure_space (space B,subsets B,distr M f)
- measure_subadditive_finite
-
⊢ ∀I A M.
measure_space M ∧ FINITE I ∧ IMAGE A I ⊆ measurable_sets M ⇒
measure M (BIGUNION {A i | i ∈ I}) ≤ ∑ (λi. measure M (A i)) I
- pos_fn_integral_add
-
⊢ ∀m f g.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ g x) ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∫⁺ m (λx. f x + g x) = ∫⁺ m f + ∫⁺ m g)
- pos_fn_integral_cmul
-
⊢ ∀m f c.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧ 0 ≤ c ⇒
(∫⁺ m (λx. Normal c * f x) = Normal c * ∫⁺ m f)
- pos_fn_integral_cmul_indicator
-
⊢ ∀m s c.
measure_space m ∧ s ∈ measurable_sets m ∧ 0 ≤ c ⇒
(∫⁺ m (λx. Normal c * 𝟙 s x) = Normal c * measure m s)
- pos_fn_integral_cmul_infty
-
⊢ ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
(∫⁺ m (λx. +∞ * 𝟙 s x) = +∞ * measure m s)
- pos_fn_integral_cmult
-
⊢ ∀f c m.
measure_space m ∧ 0 ≤ c ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∫⁺ m (λx. c * f⁺ x) = c * ∫⁺ m f⁺)
- pos_fn_integral_cmult'
-
⊢ ∀f c m.
measure_space m ∧ 0 ≤ c ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∫⁺ m (λx. max 0 (c * f x)) = c * ∫⁺ m (λx. max 0 (f x)))
- pos_fn_integral_cong
-
⊢ ∀m u v.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ u x) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ v x) ∧ (∀x. x ∈ m_space m ⇒ (u x = v x)) ⇒
(∫⁺ m u = ∫⁺ m v)
- pos_fn_integral_cong_AE
-
⊢ ∀m u v.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ u x) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ v x) ∧ (AE x::m. u x = v x) ⇒
(∫⁺ m u = ∫⁺ m v)
- pos_fn_integral_density
-
⊢ ∀m f g.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ∧ (AE x::m. 0 ≤ f x) ∧
(∀x. 0 ≤ g x) ⇒
(∫⁺ (density m f⁺) g = ∫⁺ m (λx. f⁺ x * g x))
- pos_fn_integral_density'
-
⊢ ∀f g M.
measure_space M ∧ f ∈ Borel_measurable (m_space M,measurable_sets M) ∧
g ∈ Borel_measurable (m_space M,measurable_sets M) ∧ (AE x::M. 0 ≤ f x) ∧
(∀x. 0 ≤ g x) ⇒
(∫⁺ (m_space M,measurable_sets M,(λA. ∫⁺ M (λx. max 0 (f x * 𝟙 A x))))
(λx. max 0 (g x)) = ∫⁺ M (λx. max 0 (f x * g x)))
- pos_fn_integral_disjoint_sets
-
⊢ ∀m f s t.
measure_space m ∧ DISJOINT s t ∧ s ∈ measurable_sets m ∧
t ∈ measurable_sets m ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒
(∫⁺ m (λx. f x * 𝟙 (s ∪ t) x) =
∫⁺ m (λx. f x * 𝟙 s x) + ∫⁺ m (λx. f x * 𝟙 t x))
- pos_fn_integral_disjoint_sets_sum
-
⊢ ∀m f s a.
FINITE s ∧ measure_space m ∧ (∀i. i ∈ s ⇒ a i ∈ measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧
(∀i j. i ∈ s ∧ j ∈ s ∧ i ≠ j ⇒ DISJOINT (a i) (a j)) ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∫⁺ m (λx. f x * 𝟙 (BIGUNION (IMAGE a s)) x) =
∑ (λi. ∫⁺ m (λx. f x * 𝟙 (a i) x)) s)
- pos_fn_integral_eq_0
-
⊢ ∀m f.
measure_space m ∧ nonneg f ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
((∫⁺ m f = 0) ⇔ (measure m {x | x ∈ m_space m ∧ f x ≠ 0} = 0))
- pos_fn_integral_indicator
-
⊢ ∀m s. measure_space m ∧ s ∈ measurable_sets m ⇒ (∫⁺ m (𝟙 s) = measure m s)
- pos_fn_integral_infty_null
-
⊢ ∀m f.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ∧ ∫⁺ m f ≠ +∞ ⇒
null_set m {x | x ∈ m_space m ∧ (f x = +∞)}
- pos_fn_integral_mono
-
⊢ ∀m f g.
(∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧ (∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
∫⁺ m f ≤ ∫⁺ m g
- pos_fn_integral_mono_AE
-
⊢ ∀m u v.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ u x) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ v x) ∧ (AE x::m. u x ≤ v x) ⇒
∫⁺ m u ≤ ∫⁺ m v
- pos_fn_integral_mspace
-
⊢ ∀m f.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒
(∫⁺ m f = ∫⁺ m (λx. f x * 𝟙 (m_space m) x))
- pos_fn_integral_null_set
-
⊢ ∀m f N.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧ N ∈ null_set m ⇒
(∫⁺ m (λx. f x * 𝟙 N x) = 0)
- pos_fn_integral_pos
-
⊢ ∀m f. measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ⇒ 0 ≤ ∫⁺ m f
- pos_fn_integral_pos_simple_fn
-
⊢ ∀m f s a x.
measure_space m ∧ pos_simple_fn m f s a x ⇒
(∫⁺ m f = pos_simple_fn_integral m s a x)
- pos_fn_integral_split
-
⊢ ∀m f s.
measure_space m ∧ s ∈ measurable_sets m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧
f ∈ Borel_measurable (m_space m,measurable_sets m) ⇒
(∫⁺ m f = ∫⁺ m (λx. f x * 𝟙 s x) + ∫⁺ m (λx. f x * 𝟙 (m_space m DIFF s) x))
- pos_fn_integral_sub
-
⊢ ∀m f g.
measure_space m ∧ f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
g ∈ Borel_measurable (m_space m,measurable_sets m) ∧
(∀x. x ∈ m_space m ⇒ 0 ≤ g x) ∧ (∀x. x ∈ m_space m ⇒ g x ≤ f x) ∧
(∀x. x ∈ m_space m ⇒ g x ≠ +∞) ∧ ∫⁺ m g ≠ +∞ ⇒
(∫⁺ m (λx. f x − g x) = ∫⁺ m f − ∫⁺ m g)
- pos_fn_integral_sum
-
⊢ ∀m f s.
FINITE s ∧ measure_space m ∧ (∀i. i ∈ s ⇒ ∀x. x ∈ m_space m ⇒ 0 ≤ f i x) ∧
(∀i. i ∈ s ⇒ f i ∈ Borel_measurable (m_space m,measurable_sets m)) ⇒
(∫⁺ m (λx. ∑ (λi. f i x) s) = ∑ (λi. ∫⁺ m (f i)) s)
- pos_fn_integral_sum_cmul_indicator
-
⊢ ∀m s a x.
measure_space m ∧ FINITE s ∧ (∀i. i ∈ s ⇒ 0 ≤ x i) ∧
(∀i. i ∈ s ⇒ a i ∈ measurable_sets m) ⇒
(∫⁺ m (λt. ∑ (λi. Normal (x i) * 𝟙 (a i) t) s) =
∑ (λi. Normal (x i) * measure m (a i)) s)
- pos_fn_integral_suminf
-
⊢ ∀m f.
measure_space m ∧ (∀i x. x ∈ m_space m ⇒ 0 ≤ f i x) ∧
(∀i. f i ∈ Borel_measurable (m_space m,measurable_sets m)) ⇒
(∫⁺ m (λx. suminf (λi. f i x)) = suminf (λi. ∫⁺ m (f i)))
- pos_fn_integral_zero
-
⊢ ∀m. measure_space m ⇒ (∫⁺ m (λx. 0) = 0)
- pos_simple_fn_add
-
⊢ ∀m f g s a x s' a' x'.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' a' x' ⇒
∃s'' a'' x''. pos_simple_fn m (λt. f t + g t) s'' a'' x''
- pos_simple_fn_add_alt
-
⊢ ∀m f g s a x y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s a y ⇒
pos_simple_fn m (λt. f t + g t) s a (λi. x i + y i)
- pos_simple_fn_cmul
-
⊢ ∀m f z s a x.
measure_space m ∧ pos_simple_fn m f s a x ∧ 0 ≤ z ⇒
∃s' a' x'. pos_simple_fn m (λt. Normal z * f t) s' a' x'
- pos_simple_fn_cmul_alt
-
⊢ ∀m f s a x z.
measure_space m ∧ 0 ≤ z ∧ pos_simple_fn m f s a x ⇒
pos_simple_fn m (λt. Normal z * f t) s a (λi. z * x i)
- pos_simple_fn_indicator
-
⊢ ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
∃s a x. pos_simple_fn m (𝟙 A) s a x
- pos_simple_fn_indicator_alt
-
⊢ ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
pos_simple_fn m (𝟙 s) {0; 1} (λi. if i = 0 then m_space m DIFF s else s)
(λi. if i = 0 then 0 else 1)
- pos_simple_fn_integral_add
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ⇒
∃s'' c z.
pos_simple_fn m (λx. f x + g x) s'' c z ∧
(pos_simple_fn_integral m s a x + pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m s'' c z)
- pos_simple_fn_integral_add_alt
-
⊢ ∀m f s a x g y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s a y ⇒
(pos_simple_fn_integral m s a x + pos_simple_fn_integral m s a y =
pos_simple_fn_integral m s a (λi. x i + y i))
- pos_simple_fn_integral_cmul
-
⊢ ∀m f s a x z.
measure_space m ∧ pos_simple_fn m f s a x ∧ 0 ≤ z ⇒
pos_simple_fn m (λx. Normal z * f x) s a (λi. z * x i) ∧
(pos_simple_fn_integral m s a (λi. z * x i) =
Normal z * pos_simple_fn_integral m s a x)
- pos_simple_fn_integral_cmul_alt
-
⊢ ∀m f s a x z.
measure_space m ∧ 0 ≤ z ∧ pos_simple_fn m f s a x ⇒
∃s' a' x'.
pos_simple_fn m (λt. Normal z * f t) s' a' x' ∧
(pos_simple_fn_integral m s' a' x' =
Normal z * pos_simple_fn_integral m s a x)
- pos_simple_fn_integral_indicator
-
⊢ ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
∃s a x.
pos_simple_fn m (𝟙 A) s a x ∧
(pos_simple_fn_integral m s a x = measure m A)
- pos_simple_fn_integral_mono
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ∧
(∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
pos_simple_fn_integral m s a x ≤ pos_simple_fn_integral m s' b y
- pos_simple_fn_integral_not_infty
-
⊢ ∀m f s a x.
measure_space m ∧ pos_simple_fn m f s a x ⇒
pos_simple_fn_integral m s a x ≠ −∞
- pos_simple_fn_integral_present
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ⇒
∃z z' c k.
(∀t. t ∈ m_space m ⇒ (f t = ∑ (λi. Normal (z i) * 𝟙 (c i) t) k)) ∧
(∀t. t ∈ m_space m ⇒ (g t = ∑ (λi. Normal (z' i) * 𝟙 (c i) t) k)) ∧
(pos_simple_fn_integral m s a x = pos_simple_fn_integral m k c z) ∧
(pos_simple_fn_integral m s' b y = pos_simple_fn_integral m k c z') ∧
FINITE k ∧ (∀i. i ∈ k ⇒ 0 ≤ z i) ∧ (∀i. i ∈ k ⇒ 0 ≤ z' i) ∧
(∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
(BIGUNION (IMAGE c k) = m_space m)
- pos_simple_fn_integral_sub
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ measure m (m_space m) ≠ +∞ ∧
(∀x. x ∈ m_space m ⇒ g x ≤ f x) ∧ (∀x. x ∈ m_space m ⇒ g x ≠ +∞) ∧
pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ⇒
∃s'' c z.
pos_simple_fn m (λx. f x − g x) s'' c z ∧
(pos_simple_fn_integral m s a x − pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m s'' c z)
- pos_simple_fn_integral_sum
-
⊢ ∀m f s a x P.
measure_space m ∧ (∀i. i ∈ P ⇒ pos_simple_fn m (f i) s a (x i)) ∧
(∀i t. i ∈ P ⇒ f i t ≠ −∞) ∧ FINITE P ∧ P ≠ ∅ ⇒
pos_simple_fn m (λt. ∑ (λi. f i t) P) s a (λi. ∑ (λj. x j i) P) ∧
(pos_simple_fn_integral m s a (λj. ∑ (λi. x i j) P) =
∑ (λi. pos_simple_fn_integral m s a (x i)) P)
- pos_simple_fn_integral_sum_alt
-
⊢ ∀m f s a x P.
measure_space m ∧ (∀i. i ∈ P ⇒ pos_simple_fn m (f i) (s i) (a i) (x i)) ∧
(∀i t. i ∈ P ⇒ f i t ≠ −∞) ∧ FINITE P ∧ P ≠ ∅ ⇒
∃c k z.
pos_simple_fn m (λt. ∑ (λi. f i t) P) k c z ∧
(pos_simple_fn_integral m k c z =
∑ (λi. pos_simple_fn_integral m (s i) (a i) (x i)) P)
- pos_simple_fn_integral_unique
-
⊢ ∀m f s a x s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m f s' b y ⇒
(pos_simple_fn_integral m s a x = pos_simple_fn_integral m s' b y)
- pos_simple_fn_integral_zero
-
⊢ ∀m s a x.
measure_space m ∧ pos_simple_fn m (λt. 0) s a x ⇒
(pos_simple_fn_integral m s a x = 0)
- pos_simple_fn_integral_zero_alt
-
⊢ ∀m g s a x.
measure_space m ∧ pos_simple_fn m g s a x ∧
(∀x. x ∈ m_space m ⇒ (g x = 0)) ⇒
(pos_simple_fn_integral m s a x = 0)
- pos_simple_fn_le
-
⊢ ∀m f g s a x x' i.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s a x' ∧
(∀x. x ∈ m_space m ⇒ g x ≤ f x) ∧ i ∈ s ∧ a i ≠ ∅ ⇒
Normal (x' i) ≤ Normal (x i)
- pos_simple_fn_max
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ⇒
∃s'' a'' x''. pos_simple_fn m (λx. max (f x) (g x)) s'' a'' x''
- pos_simple_fn_not_infty
-
⊢ ∀m f s a x.
pos_simple_fn m f s a x ⇒ ∀x. x ∈ m_space m ⇒ f x ≠ −∞ ∧ f x ≠ +∞
- pos_simple_fn_thm1
-
⊢ ∀m f s a x i y.
measure_space m ∧ pos_simple_fn m f s a x ∧ i ∈ s ∧ y ∈ a i ⇒
(f y = Normal (x i))
- psfis_add
-
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
a + b ∈ psfis m (λx. f x + g x)
- psfis_cmul
-
⊢ ∀m f a z.
measure_space m ∧ a ∈ psfis m f ∧ 0 ≤ z ⇒
Normal z * a ∈ psfis m (λx. Normal z * f x)
- psfis_indicator
-
⊢ ∀m A. measure_space m ∧ A ∈ measurable_sets m ⇒ measure m A ∈ psfis m (𝟙 A)
- psfis_intro
-
⊢ ∀m a x P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ measurable_sets m) ∧
(∀i. i ∈ P ⇒ 0 ≤ x i) ∧ FINITE P ⇒
∑ (λi. Normal (x i) * measure m (a i)) P ∈
psfis m (λt. ∑ (λi. Normal (x i) * 𝟙 (a i) t) P)
- psfis_mono
-
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ∧
(∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
a ≤ b
- psfis_not_infty
-
⊢ ∀m f a. measure_space m ∧ a ∈ psfis m f ⇒ a ≠ −∞
- psfis_pos
-
⊢ ∀m f a. measure_space m ∧ a ∈ psfis m f ⇒ ∀x. x ∈ m_space m ⇒ 0 ≤ f x
- psfis_present
-
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
∃z z' c k.
(∀t. t ∈ m_space m ⇒ (f t = ∑ (λi. Normal (z i) * 𝟙 (c i) t) k)) ∧
(∀t. t ∈ m_space m ⇒ (g t = ∑ (λi. Normal (z' i) * 𝟙 (c i) t) k)) ∧
(a = pos_simple_fn_integral m k c z) ∧
(b = pos_simple_fn_integral m k c z') ∧ FINITE k ∧
(∀i. i ∈ k ⇒ 0 ≤ z i) ∧ (∀i. i ∈ k ⇒ 0 ≤ z' i) ∧
(∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
(BIGUNION (IMAGE c k) = m_space m)
- psfis_sub
-
⊢ ∀m f g a b.
measure_space m ∧ measure m (m_space m) ≠ +∞ ∧
(∀x. x ∈ m_space m ⇒ g x ≤ f x) ∧ (∀x. x ∈ m_space m ⇒ g x ≠ +∞) ∧
a ∈ psfis m f ∧ b ∈ psfis m g ⇒
a − b ∈ psfis m (λx. f x − g x)
- psfis_sum
-
⊢ ∀m f a P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ psfis m (f i)) ∧
(∀i t. i ∈ P ⇒ f i t ≠ −∞) ∧ FINITE P ⇒
∑ a P ∈ psfis m (λt. ∑ (λi. f i t) P)
- psfis_unique
-
⊢ ∀m f a b. measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m f ⇒ (a = b)
- psfis_zero
-
⊢ ∀m a. measure_space m ⇒ (a ∈ psfis m (λx. 0) ⇔ (a = 0))