- HK_thm2
-
⊢ Qt R Abs Rep Tf ∧ (f = Abs t) ∧ R t t ⇒ Tf t f
- Qt_EQ
-
⊢ Qt R Abs Rep Tf ⇒ (Tf |==> Tf |==> $<=>) R $=
- Qt_alt
-
⊢ Qt R Abs Rep Tf ⇔
(∀a. Abs (Rep a) = a) ∧ (∀a. R (Rep a) (Rep a)) ∧
(∀c1 c2. R c1 c2 ⇔ R c1 c1 ∧ R c2 c2 ∧ (Abs c1 = Abs c2)) ∧
(Tf = (λc a. R c c ∧ (Abs c = a)))
- Qt_alt_def2
-
⊢ Qt R Abs Rep Tf ⇔
(∀c a. Tf c a ⇒ (Abs c = a)) ∧ (∀a. Tf (Rep a) a) ∧
∀c1 c2. R c1 c2 ⇔ Tf c1 (Abs c2) ∧ Tf c2 (Abs c1)
- Qt_right_unique
-
⊢ Qt R Abs Rep Tf ⇒ right_unique Tf
- Qt_surj
-
⊢ Qt R Abs Rep Tf ⇒ surj Tf
- R_repabs
-
⊢ Qt R Abs Rep Tf ⇒ ∀x. R x x ⇒ R (Rep (Abs x)) x
- funQ
-
⊢ Qt D AbsD RepD TfD ∧ Qt R AbsR RepR TfR ⇒
Qt (D |==> R) (RepD ---> AbsR) (AbsD ---> RepR) (TfD |==> TfR)
- idQ
-
⊢ Qt $= I I $=
- listQ
-
⊢ Qt R Abs Rep Tf ⇒ Qt (LIST_REL R) (MAP Abs) (MAP Rep) (LIST_REL Tf)
- map_fun_I
-
⊢ (f ---> I = flip $o f) ∧ (I ---> g = $o g)
- map_fun_id
-
⊢ I ---> I = I
- map_fun_o
-
⊢ f1 ∘ f2 ---> g1 ∘ g2 = (f2 ---> g1) ∘ (f1 ---> g2)
- map_fun_thm
-
⊢ (f ---> g) h x = g (h (f x))
- pairQ
-
⊢ Qt R1 Abs1 Rep1 Tf1 ∧ Qt R2 Abs2 Rep2 Tf2 ⇒
Qt (R1 ### R2) (Abs1 ## Abs2) (Rep1 ## Rep2) (Tf1 ### Tf2)
- setQ
-
⊢ Qt R Abs Rep Tf ⇒
Qt (R |==> $<=>) (PREIMAGE Rep) (PREIMAGE Abs) (Tf |==> $<=>)