- EXISTENCE_OF_PROD_MEASURE
-
⊢ ∀X Y A B u v m0.
sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (s × t) = u s * v t)) ⇒
(∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
(∀x. x ∈ X ⇒ (λy. 𝟙 s (x,y)) ∈ Borel_measurable (Y,B)) ∧
(∀y. y ∈ Y ⇒ (λx. 𝟙 s (x,y)) ∈ Borel_measurable (X,A)) ∧
(λy. ∫⁺ (X,A,u) (λx. 𝟙 s (x,y))) ∈ Borel_measurable (Y,B) ∧
(λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (x,y))) ∈ Borel_measurable (X,A)) ∧
∃m. sigma_finite_measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
(∀s. s ∈ prod_sets A B ⇒ (m s = m0 s)) ∧
∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
(m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (x,y)))) ∧
(m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (x,y))))
- EXISTENCE_OF_PROD_MEASURE'
-
⊢ ∀X Y A B u v m0.
sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (s × t) = u s * v t)) ⇒
(∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
(∀x. x ∈ X ⇒ (λy. 𝟙 s (x,y)) ∈ Borel_measurable (Y,B)) ∧
(∀y. y ∈ Y ⇒ (λx. 𝟙 s (x,y)) ∈ Borel_measurable (X,A)) ∧
(λy. ∫ (X,A,u) (λx. 𝟙 s (x,y))) ∈ Borel_measurable (Y,B) ∧
(λx. ∫ (Y,B,v) (λy. 𝟙 s (x,y))) ∈ Borel_measurable (X,A)) ∧
∃m. sigma_finite_measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
(∀s. s ∈ prod_sets A B ⇒ (m s = m0 s)) ∧
∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
(m s = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. 𝟙 s (x,y)))) ∧
(m s = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. 𝟙 s (x,y))))
- FILTRATION
-
⊢ ∀A a.
filtration A a ⇔
(∀n. sub_sigma_algebra (a n) A) ∧ (∀n. subsets (a n) ⊆ subsets A) ∧
∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
- FILTRATION_BOUNDED
-
⊢ ∀A a. filtration A a ⇒ ∀n. sub_sigma_algebra (a n) A
- FILTRATION_MONO
-
⊢ ∀A a. filtration A a ⇒ ∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
- FILTRATION_SUBSETS
-
⊢ ∀A a. filtration A a ⇒ ∀n. subsets (a n) ⊆ subsets A
- FUBINI
-
⊢ ∀X Y A B u v f.
sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
f ∈ Borel_measurable ((X,A) × (Y,B)) ∧
(∫⁺ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∨
∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
∫⁺ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∧
∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
integrable ((X,A,u) × (Y,B,v)) f ∧
(AE y::(Y,B,v). integrable (X,A,u) (λx. f (x,y))) ∧
(AE x::(X,A,u). integrable (Y,B,v) (λy. f (x,y))) ∧
integrable (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))) ∧
integrable (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
(∫ ((X,A,u) × (Y,B,v)) f = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y)))) ∧
(∫ ((X,A,u) × (Y,B,v)) f = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))))
- FUBINI'
-
⊢ ∀X Y A B u v f.
sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
f ∈ Borel_measurable ((X,A) × (Y,B)) ∧
(∫ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∨
∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
∫ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∧
∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
integrable ((X,A,u) × (Y,B,v)) f ∧
(AE y::(Y,B,v). integrable (X,A,u) (λx. f (x,y))) ∧
(AE x::(X,A,u). integrable (Y,B,v) (λy. f (x,y))) ∧
integrable (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))) ∧
integrable (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
(∫ ((X,A,u) × (Y,B,v)) f = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y)))) ∧
(∫ ((X,A,u) × (Y,B,v)) f = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))))
- Fubini
-
⊢ ∀m1 m2 f.
sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ∧
f ∈
Borel_measurable
((m_space m1,measurable_sets m1) × (m_space m2,measurable_sets m2)) ∧
(∫⁺ (m1 × m2) (abs ∘ f) ≠ +∞ ∨
∫⁺ m2 (λy. ∫⁺ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
∫⁺ m1 (λx. ∫⁺ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
∫⁺ (m1 × m2) (abs ∘ f) ≠ +∞ ∧
∫⁺ m2 (λy. ∫⁺ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
∫⁺ m1 (λx. ∫⁺ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧ integrable (m1 × m2) f ∧
(AE y::m2. integrable m1 (λx. f (x,y))) ∧
(AE x::m1. integrable m2 (λy. f (x,y))) ∧
integrable m1 (λx. ∫ m2 (λy. f (x,y))) ∧
integrable m2 (λy. ∫ m1 (λx. f (x,y))) ∧
(∫ (m1 × m2) f = ∫ m2 (λy. ∫ m1 (λx. f (x,y)))) ∧
(∫ (m1 × m2) f = ∫ m1 (λx. ∫ m2 (λy. f (x,y))))
- Fubini'
-
⊢ ∀m1 m2 f.
sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ∧
f ∈
Borel_measurable
((m_space m1,measurable_sets m1) × (m_space m2,measurable_sets m2)) ∧
(∫ (m1 × m2) (abs ∘ f) ≠ +∞ ∨ ∫ m2 (λy. ∫ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
∫ m1 (λx. ∫ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
∫ (m1 × m2) (abs ∘ f) ≠ +∞ ∧ ∫ m2 (λy. ∫ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
∫ m1 (λx. ∫ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧ integrable (m1 × m2) f ∧
(AE y::m2. integrable m1 (λx. f (x,y))) ∧
(AE x::m1. integrable m2 (λy. f (x,y))) ∧
integrable m1 (λx. ∫ m2 (λy. f (x,y))) ∧
integrable m2 (λy. ∫ m1 (λx. f (x,y))) ∧
(∫ (m1 × m2) f = ∫ m2 (λy. ∫ m1 (λx. f (x,y)))) ∧
(∫ (m1 × m2) f = ∫ m1 (λx. ∫ m2 (λy. f (x,y))))
- INFTY_SIGMA_ALGEBRA_BOUNDED
-
⊢ ∀A a. filtration A a ⇒ sub_sigma_algebra (infty_sigma_algebra (space A) a) A
- INFTY_SIGMA_ALGEBRA_MAXIMAL
-
⊢ ∀A a.
filtration A a ⇒
∀n. sub_sigma_algebra (a n) (infty_sigma_algebra (space A) a)
- IN_MEASURABLE_BOREL_FROM_PROD_SIGMA
-
⊢ ∀X Y A B f.
sigma_algebra (X,A) ∧ sigma_algebra (Y,B) ∧
f ∈ Borel_measurable ((X,A) × (Y,B)) ⇒
(∀y. y ∈ Y ⇒ (λx. f (x,y)) ∈ Borel_measurable (X,A)) ∧
∀x. x ∈ X ⇒ (λy. f (x,y)) ∈ Borel_measurable (Y,B)
- MARTINGALE_BOTH_SUB_SUPER
-
⊢ ∀m a u. martingale m a u ⇔ sub_martingale m a u ∧ super_martingale m a u
- POSET_NUM_LE
-
⊢ poset (𝕌(:num),$<=)
- PROD_SIGMA_OF_GENERATOR
-
⊢ ∀X Y E G.
subset_class X E ∧ subset_class Y G ∧ has_exhausting_sequence (X,E) ∧
has_exhausting_sequence (Y,G) ⇒
((X,E) × (Y,G) = sigma X E × sigma Y G)
- SIGMA_FINITE_FILTERED_MEASURE_SPACE_I
-
⊢ ∀sp sts a m.
sigma_finite_filtered_measure_space (sp,sts,m) a ⇒
∀n. sigma_finite (sp,subsets (a n),m)
- SUB_SIGMA_ALGEBRA_ANTISYM
-
⊢ ∀a b. sub_sigma_algebra a b ∧ sub_sigma_algebra b a ⇒ (a = b)
- SUB_SIGMA_ALGEBRA_MEASURE_SPACE
-
⊢ ∀m a.
measure_space m ∧ sub_sigma_algebra a (m_space m,measurable_sets m) ⇒
measure_space (m_space m,subsets a,measure m)
- SUB_SIGMA_ALGEBRA_ORDER
-
⊢ Order sub_sigma_algebra
- SUB_SIGMA_ALGEBRA_REFL
-
⊢ ∀a. sigma_algebra a ⇒ sub_sigma_algebra a a
- SUB_SIGMA_ALGEBRA_TRANS
-
⊢ ∀a b c.
sub_sigma_algebra a b ∧ sub_sigma_algebra b c ⇒ sub_sigma_algebra a c
- TONELLI
-
⊢ ∀X Y A B u v f.
sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
f ∈ Borel_measurable ((X,A) × (Y,B)) ∧ (∀s. s ∈ X × Y ⇒ 0 ≤ f s) ⇒
(∀y. y ∈ Y ⇒ (λx. f (x,y)) ∈ Borel_measurable (X,A)) ∧
(∀x. x ∈ X ⇒ (λy. f (x,y)) ∈ Borel_measurable (Y,B)) ∧
(λx. ∫⁺ (Y,B,v) (λy. f (x,y))) ∈ Borel_measurable (X,A) ∧
(λy. ∫⁺ (X,A,u) (λx. f (x,y))) ∈ Borel_measurable (Y,B) ∧
(∫⁺ ((X,A,u) × (Y,B,v)) f = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. f (x,y)))) ∧
(∫⁺ ((X,A,u) × (Y,B,v)) f = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. f (x,y))))
- UNIQUENESS_OF_PROD_MEASURE
-
⊢ ∀X Y E G A B u v m m'.
subset_class X E ∧ subset_class Y G ∧ sigma_finite (X,E,u) ∧
sigma_finite (Y,G,v) ∧ (∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧
(∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧ (A = sigma X E) ∧ (B = sigma Y G) ∧
measure_space (X,subsets A,u) ∧ measure_space (Y,subsets B,v) ∧
measure_space (X × Y,subsets (A × B),m) ∧
measure_space (X × Y,subsets (A × B),m') ∧
(∀s t. s ∈ E ∧ t ∈ G ⇒ (m (s × t) = u s * v t)) ∧
(∀s t. s ∈ E ∧ t ∈ G ⇒ (m' (s × t) = u s * v t)) ⇒
∀x. x ∈ subsets (A × B) ⇒ (m x = m' x)
- UNIQUENESS_OF_PROD_MEASURE'
-
⊢ ∀X Y A B u v m m'.
sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
measure_space (X × Y,subsets ((X,A) × (Y,B)),m') ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m (s × t) = u s * v t)) ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m' (s × t) = u s * v t)) ⇒
∀x. x ∈ subsets ((X,A) × (Y,B)) ⇒ (m x = m' x)
- exhausting_sequence_CROSS
-
⊢ ∀X Y A B f g.
exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
exhausting_sequence (X × Y,prod_sets A B) (λn. f n × g n)
- exhausting_sequence_alt
-
⊢ ∀a f.
exhausting_sequence a f ⇔
f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≤ n ⇒ f m ⊆ f n) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = space a)
- exhausting_sequence_cross
-
⊢ ∀X Y A B f g.
exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
exhausting_sequence (fcp_cross X Y,fcp_prod A B)
(λn. fcp_cross (f n) (g n))
- exhausting_sequence_general_cross
-
⊢ ∀cons X Y A B f g.
exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
exhausting_sequence (general_cross cons X Y,general_prod cons A B)
(λn. general_cross cons (f n) (g n))
- existence_of_prod_measure
-
⊢ ∀X Y A B u v m0.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ sigma_finite_measure_space (X,A,u) ∧
sigma_finite_measure_space (Y,B,v) ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (fcp_cross s t) = u s * v t)) ⇒
(∀s. s ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒
(∀x. x ∈ X ⇒ (λy. 𝟙 s (FCP_CONCAT x y)) ∈ Borel_measurable (Y,B)) ∧
(∀y. y ∈ Y ⇒ (λx. 𝟙 s (FCP_CONCAT x y)) ∈ Borel_measurable (X,A)) ∧
(λy. ∫⁺ (X,A,u) (λx. 𝟙 s (FCP_CONCAT x y))) ∈ Borel_measurable (Y,B) ∧
(λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (FCP_CONCAT x y))) ∈ Borel_measurable (X,A)) ∧
∃m. sigma_finite_measure_space
(fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) ∧
(∀s. s ∈ fcp_prod A B ⇒ (m s = m0 s)) ∧
∀s. s ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒
(m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (FCP_CONCAT x y)))) ∧
(m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (FCP_CONCAT x y))))
- existence_of_prod_measure_general
-
⊢ ∀cons car cdr X Y A B u v m0.
pair_operation cons car cdr ∧ sigma_finite_measure_space (X,A,u) ∧
sigma_finite_measure_space (Y,B,v) ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (general_cross cons s t) = u s * v t)) ⇒
(∀s. s ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒
(∀x. x ∈ X ⇒ (λy. 𝟙 s (cons x y)) ∈ Borel_measurable (Y,B)) ∧
(∀y. y ∈ Y ⇒ (λx. 𝟙 s (cons x y)) ∈ Borel_measurable (X,A)) ∧
(λy. ∫⁺ (X,A,u) (λx. 𝟙 s (cons x y))) ∈ Borel_measurable (Y,B) ∧
(λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (cons x y))) ∈ Borel_measurable (X,A)) ∧
∃m. sigma_finite_measure_space
(general_cross cons X Y,subsets (general_sigma cons (X,A) (Y,B)),m) ∧
(∀s. s ∈ general_prod cons A B ⇒ (m s = m0 s)) ∧
∀s. s ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒
(m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (cons x y)))) ∧
(m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (cons x y))))
- fcp_sigma_alt
-
⊢ ∀A B. fcp_sigma A B = general_sigma FCP_CONCAT A B
- filtered_measure_space_alt
-
⊢ ∀m a.
filtered_measure_space m a ⇔
measure_space m ∧ filtration (m_space m,measurable_sets m) a
- filtration_alt
-
⊢ ∀A a. filtration A a ⇔ filtration (𝕌(:num),$<=) A a
- general_filtered_measure_space_alt
-
⊢ ∀sp sts m a.
filtered_measure_space (sp,sts,m) a ⇔
filtered_measure_space (𝕌(:num),$<=) (sp,sts,m) a
- general_sigma_of_generator
-
⊢ ∀cons car cdr X Y E G.
pair_operation cons car cdr ∧ subset_class X E ∧ subset_class Y G ∧
has_exhausting_sequence (X,E) ∧ has_exhausting_sequence (Y,G) ⇒
(general_sigma cons (X,E) (Y,G) =
general_sigma cons (sigma X E) (sigma Y G))
- has_exhausting_sequence_alt
-
⊢ ∀a. has_exhausting_sequence a ⇔
∃f. f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≤ n ⇒ f m ⊆ f n) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = space a)
- has_exhausting_sequence_def
-
⊢ ∀a. has_exhausting_sequence a ⇔
∃f. f ∈ (𝕌(:num) → subsets a) ∧ (∀n. f n ⊆ f (SUC n)) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = space a)
- integrable_cong_measure
-
⊢ ∀sp sts u v f.
measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
(∀s. s ∈ sts ⇒ (u s = v s)) ⇒
(integrable (sp,sts,u) f ⇔ integrable (sp,sts,v) f)
- integrable_cong_measure'
-
⊢ ∀m1 m2 f.
measure_space m1 ∧ measure_space m2 ∧ (m_space m1 = m_space m2) ∧
(measurable_sets m1 = measurable_sets m2) ∧
(∀s. s ∈ measurable_sets m1 ⇒ (measure m1 s = measure m2 s)) ⇒
(integrable m1 f ⇔ integrable m2 f)
- integral_cong_measure
-
⊢ ∀sp sts u v f.
measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
(∀s. s ∈ sts ⇒ (u s = v s)) ⇒
(∫ (sp,sts,u) f = ∫ (sp,sts,v) f)
- integral_cong_measure'
-
⊢ ∀m1 m2 f.
measure_space m1 ∧ measure_space m2 ∧ (m_space m1 = m_space m2) ∧
(measurable_sets m1 = measurable_sets m2) ∧
(∀s. s ∈ measurable_sets m1 ⇒ (measure m1 s = measure m2 s)) ⇒
(∫ m1 f = ∫ m2 f)
- integral_distr
-
⊢ ∀M B f u.
measure_space M ∧ sigma_algebra B ∧
f ∈ measurable (m_space M,measurable_sets M) B ∧ u ∈ Borel_measurable B ⇒
(∫ (space B,subsets B,distr M f) u = ∫ M (u ∘ f)) ∧
(integrable (space B,subsets B,distr M f) u ⇔ integrable M (u ∘ f))
- lborel_2d_prod_measure
-
⊢ ∀s. s ∈ measurable_sets lborel_2d ⇒
(measure lborel_2d s = measure (lborel × lborel) s)
- measure_space_prod_measure
-
⊢ ∀m1 m2.
sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ⇒
measure_space (m1 × m2)
- pos_fn_integral_cong_measure
-
⊢ ∀sp sts u v f.
measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
(∀s. s ∈ sts ⇒ (u s = v s)) ∧ (∀x. x ∈ sp ⇒ 0 ≤ f x) ⇒
(∫⁺ (sp,sts,u) f = ∫⁺ (sp,sts,v) f)
- pos_fn_integral_cong_measure'
-
⊢ ∀m1 m2 f.
measure_space m1 ∧ measure_space m2 ∧ (m_space m1 = m_space m2) ∧
(measurable_sets m1 = measurable_sets m2) ∧
(∀s. s ∈ measurable_sets m1 ⇒ (measure m1 s = measure m2 s)) ∧
(∀x. x ∈ m_space m1 ⇒ 0 ≤ f x) ⇒
(∫⁺ m1 f = ∫⁺ m2 f)
- pos_fn_integral_distr
-
⊢ ∀M B f u.
measure_space M ∧ sigma_algebra B ∧
f ∈ measurable (m_space M,measurable_sets M) B ∧ u ∈ Borel_measurable B ∧
(∀x. x ∈ space B ⇒ 0 ≤ u x) ⇒
(∫⁺ (space B,subsets B,distr M f) u = ∫⁺ M (u ∘ f))
- prod_sigma_alt
-
⊢ ∀A B. A × B = general_sigma $, A B
- prod_sigma_of_generator
-
⊢ ∀X Y E G.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ subset_class X E ∧ subset_class Y G ∧
has_exhausting_sequence (X,E) ∧ has_exhausting_sequence (Y,G) ⇒
(fcp_sigma (X,E) (Y,G) = fcp_sigma (sigma X E) (sigma Y G))
- sigma_algebra_general_sigma
-
⊢ ∀cons A B.
subset_class (space A) (subsets A) ∧ subset_class (space B) (subsets B) ⇒
sigma_algebra (general_sigma cons A B)
- sigma_algebra_prod_sigma
-
⊢ ∀a b.
subset_class (space a) (subsets a) ∧ subset_class (space b) (subsets b) ⇒
sigma_algebra (fcp_sigma a b)
- sigma_algebra_prod_sigma'
-
⊢ ∀X Y A B.
subset_class X A ∧ subset_class Y B ⇒
sigma_algebra (fcp_sigma (X,A) (Y,B))
- sigma_finite_alt
-
⊢ ∀m. sigma_finite m ⇔
∃f. (f ∈ (𝕌(:num) → measurable_sets m) ∧ (∀m n. m ≤ n ⇒ f m ⊆ f n) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = m_space m)) ∧
∀n. measure m (f n) < +∞
- sigma_finite_alt_exhausting_sequence
-
⊢ ∀m. sigma_finite m ⇔
∃f. exhausting_sequence (m_space m,measurable_sets m) f ∧
∀n. measure m (f n) < +∞
- sigma_finite_filtered_measure_space_alt
-
⊢ ∀sp sts m a.
sigma_finite_filtered_measure_space (sp,sts,m) a ⇔
sigma_finite_filtered_measure_space (𝕌(:num),$<=) (sp,sts,m) a
- sigma_finite_has_exhausting_sequence
-
⊢ ∀sp sts u. sigma_finite (sp,sts,u) ⇒ has_exhausting_sequence (sp,sts)
- uniqueness_of_prod_measure
-
⊢ ∀X Y E G A B u v m m'.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ subset_class X E ∧ subset_class Y G ∧
sigma_finite (X,E,u) ∧ sigma_finite (Y,G,v) ∧
(∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧ (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧
(A = sigma X E) ∧ (B = sigma Y G) ∧ measure_space (X,subsets A,u) ∧
measure_space (Y,subsets B,v) ∧
measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m) ∧
measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m') ∧
(∀s t. s ∈ E ∧ t ∈ G ⇒ (m (fcp_cross s t) = u s * v t)) ∧
(∀s t. s ∈ E ∧ t ∈ G ⇒ (m' (fcp_cross s t) = u s * v t)) ⇒
∀x. x ∈ subsets (fcp_sigma A B) ⇒ (m x = m' x)
- uniqueness_of_prod_measure'
-
⊢ ∀X Y A B u v m m'.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ sigma_finite_measure_space (X,A,u) ∧
sigma_finite_measure_space (Y,B,v) ∧
measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) ∧
measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m') ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m (fcp_cross s t) = u s * v t)) ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m' (fcp_cross s t) = u s * v t)) ⇒
∀x. x ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒ (m x = m' x)
- uniqueness_of_prod_measure_general
-
⊢ ∀cons car cdr X Y E G A B u v m m'.
pair_operation cons car cdr ∧ subset_class X E ∧ subset_class Y G ∧
sigma_finite (X,E,u) ∧ sigma_finite (Y,G,v) ∧
(∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧ (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧
(A = sigma X E) ∧ (B = sigma Y G) ∧ measure_space (X,subsets A,u) ∧
measure_space (Y,subsets B,v) ∧
measure_space (general_cross cons X Y,subsets (general_sigma cons A B),m) ∧
measure_space (general_cross cons X Y,subsets (general_sigma cons A B),m') ∧
(∀s t. s ∈ E ∧ t ∈ G ⇒ (m (general_cross cons s t) = u s * v t)) ∧
(∀s t. s ∈ E ∧ t ∈ G ⇒ (m' (general_cross cons s t) = u s * v t)) ⇒
∀x. x ∈ subsets (general_sigma cons A B) ⇒ (m x = m' x)
- uniqueness_of_prod_measure_general'
-
⊢ ∀cons car cdr X Y A B u v m m'.
pair_operation cons car cdr ∧ sigma_finite_measure_space (X,A,u) ∧
sigma_finite_measure_space (Y,B,v) ∧
measure_space
(general_cross cons X Y,subsets (general_sigma cons (X,A) (Y,B)),m) ∧
measure_space
(general_cross cons X Y,subsets (general_sigma cons (X,A) (Y,B)),m') ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m (general_cross cons s t) = u s * v t)) ∧
(∀s t. s ∈ A ∧ t ∈ B ⇒ (m' (general_cross cons s t) = u s * v t)) ⇒
∀x. x ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒ (m x = m' x)