Theory "martingale"

Parents     lebesgue   poset

Signature

Constant Type
exhausting_sequence :α algebra -> (num -> α -> bool) -> bool
fcp_sigma :α[β] algebra -> α[γ] algebra -> α[β + γ] algebra
filtered_measure_space :α m_space -> (num -> α algebra) -> bool
filtration :α algebra -> (num -> α algebra) -> bool
general_filtered_measure_space :(α -> bool) # (α -> α -> bool) -> β m_space -> (α -> β algebra) -> bool
general_filtration :(α -> bool) # (α -> α -> bool) -> β algebra -> (α -> β algebra) -> bool
general_martingale :(α -> bool) # (α -> α -> bool) -> β m_space -> (α -> β algebra) -> (α -> β -> extreal) -> bool
general_sigma :(α -> β -> γ) -> α algebra -> β algebra -> γ algebra
has_exhausting_sequence :α algebra -> bool
infty_sigma_algebra :(α -> bool) -> (num -> α algebra) -> α algebra
lborel_2d :(real # real) m_space
martingale :α m_space -> (num -> α algebra) -> (num -> α -> extreal) -> bool
prod_measure :α m_space -> β m_space -> (α # β) m_space
sigma_finite_filtered_measure_space :α m_space -> (num -> α algebra) -> bool
sigma_finite_general_filtered_measure_space :(α -> bool) # (α -> α -> bool) -> β m_space -> (α -> β algebra) -> bool
sub_martingale :α m_space -> (num -> α algebra) -> (num -> α -> extreal) -> bool
sub_sigma_algebra :α algebra -> α algebra -> bool
super_martingale :α m_space -> (num -> α algebra) -> (num -> α -> extreal) -> bool
upwards_filtering :(α -> bool) # (α -> α -> bool) -> bool

Definitions

exhausting_sequence_def
⊢ ∀a f.
    exhausting_sequence a f ⇔
    f ∈ (𝕌(:num) → subsets a) ∧ (∀n. f n ⊆ f (SUC n)) ∧
    (BIGUNION (IMAGE f 𝕌(:num)) = space a)
fcp_sigma_def
⊢ ∀a b.
    fcp_sigma a b =
    sigma (fcp_cross (space a) (space b)) (fcp_prod (subsets a) (subsets b))
filtered_measure_space_def
⊢ ∀sp sts m a.
    filtered_measure_space (sp,sts,m) a ⇔
    measure_space (sp,sts,m) ∧ filtration (sp,sts) a
filtration_def
⊢ ∀A a.
    filtration A a ⇔
    (∀n. sub_sigma_algebra (a n) A) ∧
    ∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
general_filtered_measure_space_def
⊢ ∀J R sp sts m a.
    filtered_measure_space (J,R) (sp,sts,m) a ⇔
    measure_space (sp,sts,m) ∧ filtration (J,R) (sp,sts) a
general_filtration_def
⊢ ∀J R A a.
    filtration (J,R) A a ⇔
    poset (J,R) ∧ (∀n. n ∈ J ⇒ sub_sigma_algebra (a n) A) ∧
    ∀i j. i ∈ J ∧ j ∈ J ∧ R i j ⇒ subsets (a i) ⊆ subsets (a j)
general_martingale_def
⊢ ∀J R m a u.
    martingale (J,R) m a u ⇔
    sigma_finite_filtered_measure_space (J,R) m a ∧
    (∀n. n ∈ J ⇒ integrable m (u n)) ∧
    ∀i j s.
      i ∈ J ∧ j ∈ J ∧ R i j ∧ s ∈ subsets (a i) ⇒
      (∫ m (λx. u i x * 𝟙 s x) = ∫ m (λx. u j x * 𝟙 s x))
general_sigma_def
⊢ ∀cons A B.
    general_sigma cons A B =
    sigma (general_cross cons (space A) (space B))
      (general_prod cons (subsets A) (subsets B))
has_exhausting_sequence
⊢ ∀a. has_exhausting_sequence a ⇔ ∃f. exhausting_sequence a f
infty_sigma_algebra_def
⊢ ∀sp a.
    infty_sigma_algebra sp a =
    sigma sp (BIGUNION (IMAGE (λi. subsets (a i)) 𝕌(:num)))
lborel_2d_def
⊢ sigma_finite_measure_space lborel_2d ∧
  (m_space lborel_2d = 𝕌(:real) × 𝕌(:real)) ∧
  (measurable_sets lborel_2d =
   subsets ((𝕌(:real),subsets borel) × (𝕌(:real),subsets borel))) ∧
  (∀s t.
     s ∈ subsets borel ∧ t ∈ subsets borel ⇒
     (measure lborel_2d (s × t) = lambda s * lambda t)) ∧
  ∀s. s ∈ measurable_sets lborel_2d ⇒
      (∀x. (λy. 𝟙 s (x,y)) ∈ Borel_measurable borel) ∧
      (∀y. (λx. 𝟙 s (x,y)) ∈ Borel_measurable borel) ∧
      (λy. ∫⁺ lborel (λx. 𝟙 s (x,y))) ∈ Borel_measurable borel ∧
      (λx. ∫⁺ lborel (λy. 𝟙 s (x,y))) ∈ Borel_measurable borel ∧
      (measure lborel_2d s = ∫⁺ lborel (λy. ∫⁺ lborel (λx. 𝟙 s (x,y)))) ∧
      (measure lborel_2d s = ∫⁺ lborel (λx. ∫⁺ lborel (λy. 𝟙 s (x,y))))
martingale_def
⊢ ∀m a u.
    martingale m a u ⇔
    sigma_finite_filtered_measure_space m a ∧ (∀n. integrable m (u n)) ∧
    ∀n s.
      s ∈ subsets (a n) ⇒
      (∫ m (λx. u (SUC n) x * 𝟙 s x) = ∫ m (λx. u n x * 𝟙 s x))
prod_measure_def
⊢ ∀m1 m2.
    m1 × m2 =
    (m_space m1 × m_space m2,
     subsets
       ((m_space m1,measurable_sets m1) × (m_space m2,measurable_sets m2)),
     (λs. ∫⁺ m2 (λy. ∫⁺ m1 (λx. 𝟙 s (x,y)))))
sigma_finite_filtered_measure_space_def
⊢ ∀sp sts m a.
    sigma_finite_filtered_measure_space (sp,sts,m) a ⇔
    filtered_measure_space (sp,sts,m) a ∧ sigma_finite (sp,subsets (a 0),m)
sigma_finite_general_filtered_measure_space_def
⊢ ∀J R sp sts m a.
    sigma_finite_filtered_measure_space (J,R) (sp,sts,m) a ⇔
    filtered_measure_space (J,R) (sp,sts,m) a ∧
    ∀n. n ∈ J ⇒ sigma_finite (sp,subsets (a n),m)
sub_martingale_def
⊢ ∀m a u.
    sub_martingale m a u ⇔
    sigma_finite_filtered_measure_space m a ∧ (∀n. integrable m (u n)) ∧
    ∀n s.
      s ∈ subsets (a n) ⇒
      ∫ m (λx. u n x * 𝟙 s x) ≤ ∫ m (λx. u (SUC n) x * 𝟙 s x)
sub_sigma_algebra_def
⊢ ∀a b.
    sub_sigma_algebra a b ⇔
    sigma_algebra a ∧ sigma_algebra b ∧ (space a = space b) ∧
    subsets a ⊆ subsets b
super_martingale_def
⊢ ∀m a u.
    super_martingale m a u ⇔
    sigma_finite_filtered_measure_space m a ∧ (∀n. integrable m (u n)) ∧
    ∀n s.
      s ∈ subsets (a n) ⇒
      ∫ m (λx. u (SUC n) x * 𝟙 s x) ≤ ∫ m (λx. u n x * 𝟙 s x)
upwards_filtering_def
⊢ ∀J R.
    upwards_filtering (J,R) ⇔ ∀a b. a ∈ J ∧ b ∈ J ⇒ ∃c. c ∈ J ∧ R a c ∧ R b c


Theorems

EXISTENCE_OF_PROD_MEASURE
⊢ ∀X Y A B u v m0.
    sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (s × t) = u s * v t)) ⇒
    (∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
         (∀x. x ∈ X ⇒ (λy. 𝟙 s (x,y)) ∈ Borel_measurable (Y,B)) ∧
         (∀y. y ∈ Y ⇒ (λx. 𝟙 s (x,y)) ∈ Borel_measurable (X,A)) ∧
         (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (x,y))) ∈ Borel_measurable (Y,B) ∧
         (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (x,y))) ∈ Borel_measurable (X,A)) ∧
    ∃m. sigma_finite_measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
        (∀s. s ∈ prod_sets A B ⇒ (m s = m0 s)) ∧
        ∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
            (m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (x,y)))) ∧
            (m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (x,y))))
EXISTENCE_OF_PROD_MEASURE'
⊢ ∀X Y A B u v m0.
    sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (s × t) = u s * v t)) ⇒
    (∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
         (∀x. x ∈ X ⇒ (λy. 𝟙 s (x,y)) ∈ Borel_measurable (Y,B)) ∧
         (∀y. y ∈ Y ⇒ (λx. 𝟙 s (x,y)) ∈ Borel_measurable (X,A)) ∧
         (λy. ∫ (X,A,u) (λx. 𝟙 s (x,y))) ∈ Borel_measurable (Y,B) ∧
         (λx. ∫ (Y,B,v) (λy. 𝟙 s (x,y))) ∈ Borel_measurable (X,A)) ∧
    ∃m. sigma_finite_measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
        (∀s. s ∈ prod_sets A B ⇒ (m s = m0 s)) ∧
        ∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
            (m s = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. 𝟙 s (x,y)))) ∧
            (m s = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. 𝟙 s (x,y))))
FILTRATION
⊢ ∀A a.
    filtration A a ⇔
    (∀n. sub_sigma_algebra (a n) A) ∧ (∀n. subsets (a n) ⊆ subsets A) ∧
    ∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
FILTRATION_BOUNDED
⊢ ∀A a. filtration A a ⇒ ∀n. sub_sigma_algebra (a n) A
FILTRATION_MONO
⊢ ∀A a. filtration A a ⇒ ∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
FILTRATION_SUBSETS
⊢ ∀A a. filtration A a ⇒ ∀n. subsets (a n) ⊆ subsets A
FUBINI
⊢ ∀X Y A B u v f.
    sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
    f ∈ Borel_measurable ((X,A) × (Y,B)) ∧
    (∫⁺ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∨
     ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
     ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
    ∫⁺ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∧
    ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
    ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
    integrable ((X,A,u) × (Y,B,v)) f ∧
    (AE y::(Y,B,v). integrable (X,A,u) (λx. f (x,y))) ∧
    (AE x::(X,A,u). integrable (Y,B,v) (λy. f (x,y))) ∧
    integrable (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))) ∧
    integrable (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
    (∫ ((X,A,u) × (Y,B,v)) f = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y)))) ∧
    (∫ ((X,A,u) × (Y,B,v)) f = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))))
FUBINI'
⊢ ∀X Y A B u v f.
    sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
    f ∈ Borel_measurable ((X,A) × (Y,B)) ∧
    (∫ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∨
     ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
     ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
    ∫ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∧
    ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
    ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
    integrable ((X,A,u) × (Y,B,v)) f ∧
    (AE y::(Y,B,v). integrable (X,A,u) (λx. f (x,y))) ∧
    (AE x::(X,A,u). integrable (Y,B,v) (λy. f (x,y))) ∧
    integrable (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))) ∧
    integrable (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
    (∫ ((X,A,u) × (Y,B,v)) f = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y)))) ∧
    (∫ ((X,A,u) × (Y,B,v)) f = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))))
Fubini
⊢ ∀m1 m2 f.
    sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ∧
    f ∈
    Borel_measurable
      ((m_space m1,measurable_sets m1) × (m_space m2,measurable_sets m2)) ∧
    (∫⁺ (m1 × m2) (abs ∘ f) ≠ +∞ ∨
     ∫⁺ m2 (λy. ∫⁺ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
     ∫⁺ m1 (λx. ∫⁺ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
    ∫⁺ (m1 × m2) (abs ∘ f) ≠ +∞ ∧
    ∫⁺ m2 (λy. ∫⁺ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
    ∫⁺ m1 (λx. ∫⁺ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧ integrable (m1 × m2) f ∧
    (AE y::m2. integrable m1 (λx. f (x,y))) ∧
    (AE x::m1. integrable m2 (λy. f (x,y))) ∧
    integrable m1 (λx. ∫ m2 (λy. f (x,y))) ∧
    integrable m2 (λy. ∫ m1 (λx. f (x,y))) ∧
    (∫ (m1 × m2) f = ∫ m2 (λy. ∫ m1 (λx. f (x,y)))) ∧
    (∫ (m1 × m2) f = ∫ m1 (λx. ∫ m2 (λy. f (x,y))))
Fubini'
⊢ ∀m1 m2 f.
    sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ∧
    f ∈
    Borel_measurable
      ((m_space m1,measurable_sets m1) × (m_space m2,measurable_sets m2)) ∧
    (∫ (m1 × m2) (abs ∘ f) ≠ +∞ ∨ ∫ m2 (λy. ∫ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
     ∫ m1 (λx. ∫ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
    ∫ (m1 × m2) (abs ∘ f) ≠ +∞ ∧ ∫ m2 (λy. ∫ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
    ∫ m1 (λx. ∫ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧ integrable (m1 × m2) f ∧
    (AE y::m2. integrable m1 (λx. f (x,y))) ∧
    (AE x::m1. integrable m2 (λy. f (x,y))) ∧
    integrable m1 (λx. ∫ m2 (λy. f (x,y))) ∧
    integrable m2 (λy. ∫ m1 (λx. f (x,y))) ∧
    (∫ (m1 × m2) f = ∫ m2 (λy. ∫ m1 (λx. f (x,y)))) ∧
    (∫ (m1 × m2) f = ∫ m1 (λx. ∫ m2 (λy. f (x,y))))
INFTY_SIGMA_ALGEBRA_BOUNDED
⊢ ∀A a. filtration A a ⇒ sub_sigma_algebra (infty_sigma_algebra (space A) a) A
INFTY_SIGMA_ALGEBRA_MAXIMAL
⊢ ∀A a.
    filtration A a ⇒
    ∀n. sub_sigma_algebra (a n) (infty_sigma_algebra (space A) a)
IN_MEASURABLE_BOREL_FROM_PROD_SIGMA
⊢ ∀X Y A B f.
    sigma_algebra (X,A) ∧ sigma_algebra (Y,B) ∧
    f ∈ Borel_measurable ((X,A) × (Y,B)) ⇒
    (∀y. y ∈ Y ⇒ (λx. f (x,y)) ∈ Borel_measurable (X,A)) ∧
    ∀x. x ∈ X ⇒ (λy. f (x,y)) ∈ Borel_measurable (Y,B)
MARTINGALE_BOTH_SUB_SUPER
⊢ ∀m a u. martingale m a u ⇔ sub_martingale m a u ∧ super_martingale m a u
POSET_NUM_LE
⊢ poset (𝕌(:num),$<=)
PROD_SIGMA_OF_GENERATOR
⊢ ∀X Y E G.
    subset_class X E ∧ subset_class Y G ∧ has_exhausting_sequence (X,E) ∧
    has_exhausting_sequence (Y,G) ⇒
    ((X,E) × (Y,G) = sigma X E × sigma Y G)
SIGMA_FINITE_FILTERED_MEASURE_SPACE_I
⊢ ∀sp sts a m.
    sigma_finite_filtered_measure_space (sp,sts,m) a ⇒
    ∀n. sigma_finite (sp,subsets (a n),m)
SUB_SIGMA_ALGEBRA_ANTISYM
⊢ ∀a b. sub_sigma_algebra a b ∧ sub_sigma_algebra b a ⇒ (a = b)
SUB_SIGMA_ALGEBRA_MEASURE_SPACE
⊢ ∀m a.
    measure_space m ∧ sub_sigma_algebra a (m_space m,measurable_sets m) ⇒
    measure_space (m_space m,subsets a,measure m)
SUB_SIGMA_ALGEBRA_ORDER
⊢ Order sub_sigma_algebra
SUB_SIGMA_ALGEBRA_REFL
⊢ ∀a. sigma_algebra a ⇒ sub_sigma_algebra a a
SUB_SIGMA_ALGEBRA_TRANS
⊢ ∀a b c.
    sub_sigma_algebra a b ∧ sub_sigma_algebra b c ⇒ sub_sigma_algebra a c
TONELLI
⊢ ∀X Y A B u v f.
    sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
    f ∈ Borel_measurable ((X,A) × (Y,B)) ∧ (∀s. s ∈ X × Y ⇒ 0 ≤ f s) ⇒
    (∀y. y ∈ Y ⇒ (λx. f (x,y)) ∈ Borel_measurable (X,A)) ∧
    (∀x. x ∈ X ⇒ (λy. f (x,y)) ∈ Borel_measurable (Y,B)) ∧
    (λx. ∫⁺ (Y,B,v) (λy. f (x,y))) ∈ Borel_measurable (X,A) ∧
    (λy. ∫⁺ (X,A,u) (λx. f (x,y))) ∈ Borel_measurable (Y,B) ∧
    (∫⁺ ((X,A,u) × (Y,B,v)) f = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. f (x,y)))) ∧
    (∫⁺ ((X,A,u) × (Y,B,v)) f = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. f (x,y))))
UNIQUENESS_OF_PROD_MEASURE
⊢ ∀X Y E G A B u v m m'.
    subset_class X E ∧ subset_class Y G ∧ sigma_finite (X,E,u) ∧
    sigma_finite (Y,G,v) ∧ (∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧
    (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧ (A = sigma X E) ∧ (B = sigma Y G) ∧
    measure_space (X,subsets A,u) ∧ measure_space (Y,subsets B,v) ∧
    measure_space (X × Y,subsets (A × B),m) ∧
    measure_space (X × Y,subsets (A × B),m') ∧
    (∀s t. s ∈ E ∧ t ∈ G ⇒ (m (s × t) = u s * v t)) ∧
    (∀s t. s ∈ E ∧ t ∈ G ⇒ (m' (s × t) = u s * v t)) ⇒
    ∀x. x ∈ subsets (A × B) ⇒ (m x = m' x)
UNIQUENESS_OF_PROD_MEASURE'
⊢ ∀X Y A B u v m m'.
    sigma_finite_measure_space (X,A,u) ∧ sigma_finite_measure_space (Y,B,v) ∧
    measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
    measure_space (X × Y,subsets ((X,A) × (Y,B)),m') ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m (s × t) = u s * v t)) ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m' (s × t) = u s * v t)) ⇒
    ∀x. x ∈ subsets ((X,A) × (Y,B)) ⇒ (m x = m' x)
exhausting_sequence_CROSS
⊢ ∀X Y A B f g.
    exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
    exhausting_sequence (X × Y,prod_sets A B) (λn. f n × g n)
exhausting_sequence_alt
⊢ ∀a f.
    exhausting_sequence a f ⇔
    f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≤ n ⇒ f m ⊆ f n) ∧
    (BIGUNION (IMAGE f 𝕌(:num)) = space a)
exhausting_sequence_cross
⊢ ∀X Y A B f g.
    exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
    exhausting_sequence (fcp_cross X Y,fcp_prod A B)
      (λn. fcp_cross (f n) (g n))
exhausting_sequence_general_cross
⊢ ∀cons X Y A B f g.
    exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
    exhausting_sequence (general_cross cons X Y,general_prod cons A B)
      (λn. general_cross cons (f n) (g n))
existence_of_prod_measure
⊢ ∀X Y A B u v m0.
    FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ sigma_finite_measure_space (X,A,u) ∧
    sigma_finite_measure_space (Y,B,v) ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (fcp_cross s t) = u s * v t)) ⇒
    (∀s. s ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒
         (∀x. x ∈ X ⇒ (λy. 𝟙 s (FCP_CONCAT x y)) ∈ Borel_measurable (Y,B)) ∧
         (∀y. y ∈ Y ⇒ (λx. 𝟙 s (FCP_CONCAT x y)) ∈ Borel_measurable (X,A)) ∧
         (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (FCP_CONCAT x y))) ∈ Borel_measurable (Y,B) ∧
         (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (FCP_CONCAT x y))) ∈ Borel_measurable (X,A)) ∧
    ∃m. sigma_finite_measure_space
          (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) ∧
        (∀s. s ∈ fcp_prod A B ⇒ (m s = m0 s)) ∧
        ∀s. s ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒
            (m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (FCP_CONCAT x y)))) ∧
            (m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (FCP_CONCAT x y))))
existence_of_prod_measure_general
⊢ ∀cons car cdr X Y A B u v m0.
    pair_operation cons car cdr ∧ sigma_finite_measure_space (X,A,u) ∧
    sigma_finite_measure_space (Y,B,v) ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m0 (general_cross cons s t) = u s * v t)) ⇒
    (∀s. s ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒
         (∀x. x ∈ X ⇒ (λy. 𝟙 s (cons x y)) ∈ Borel_measurable (Y,B)) ∧
         (∀y. y ∈ Y ⇒ (λx. 𝟙 s (cons x y)) ∈ Borel_measurable (X,A)) ∧
         (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (cons x y))) ∈ Borel_measurable (Y,B) ∧
         (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (cons x y))) ∈ Borel_measurable (X,A)) ∧
    ∃m. sigma_finite_measure_space
          (general_cross cons X Y,subsets (general_sigma cons (X,A) (Y,B)),m) ∧
        (∀s. s ∈ general_prod cons A B ⇒ (m s = m0 s)) ∧
        ∀s. s ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒
            (m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (cons x y)))) ∧
            (m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (cons x y))))
fcp_sigma_alt
⊢ ∀A B. fcp_sigma A B = general_sigma FCP_CONCAT A B
filtered_measure_space_alt
⊢ ∀m a.
    filtered_measure_space m a ⇔
    measure_space m ∧ filtration (m_space m,measurable_sets m) a
filtration_alt
⊢ ∀A a. filtration A a ⇔ filtration (𝕌(:num),$<=) A a
general_filtered_measure_space_alt
⊢ ∀sp sts m a.
    filtered_measure_space (sp,sts,m) a ⇔
    filtered_measure_space (𝕌(:num),$<=) (sp,sts,m) a
general_sigma_of_generator
⊢ ∀cons car cdr X Y E G.
    pair_operation cons car cdr ∧ subset_class X E ∧ subset_class Y G ∧
    has_exhausting_sequence (X,E) ∧ has_exhausting_sequence (Y,G) ⇒
    (general_sigma cons (X,E) (Y,G) =
     general_sigma cons (sigma X E) (sigma Y G))
has_exhausting_sequence_alt
⊢ ∀a. has_exhausting_sequence a ⇔
      ∃f. f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≤ n ⇒ f m ⊆ f n) ∧
          (BIGUNION (IMAGE f 𝕌(:num)) = space a)
has_exhausting_sequence_def
⊢ ∀a. has_exhausting_sequence a ⇔
      ∃f. f ∈ (𝕌(:num) → subsets a) ∧ (∀n. f n ⊆ f (SUC n)) ∧
          (BIGUNION (IMAGE f 𝕌(:num)) = space a)
integrable_cong_measure
⊢ ∀sp sts u v f.
    measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
    (∀s. s ∈ sts ⇒ (u s = v s)) ⇒
    (integrable (sp,sts,u) f ⇔ integrable (sp,sts,v) f)
integrable_cong_measure'
⊢ ∀m1 m2 f.
    measure_space m1 ∧ measure_space m2 ∧ (m_space m1 = m_space m2) ∧
    (measurable_sets m1 = measurable_sets m2) ∧
    (∀s. s ∈ measurable_sets m1 ⇒ (measure m1 s = measure m2 s)) ⇒
    (integrable m1 f ⇔ integrable m2 f)
integral_cong_measure
⊢ ∀sp sts u v f.
    measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
    (∀s. s ∈ sts ⇒ (u s = v s)) ⇒
    (∫ (sp,sts,u) f = ∫ (sp,sts,v) f)
integral_cong_measure'
⊢ ∀m1 m2 f.
    measure_space m1 ∧ measure_space m2 ∧ (m_space m1 = m_space m2) ∧
    (measurable_sets m1 = measurable_sets m2) ∧
    (∀s. s ∈ measurable_sets m1 ⇒ (measure m1 s = measure m2 s)) ⇒
    (∫ m1 f = ∫ m2 f)
integral_distr
⊢ ∀M B f u.
    measure_space M ∧ sigma_algebra B ∧
    f ∈ measurable (m_space M,measurable_sets M) B ∧ u ∈ Borel_measurable B ⇒
    (∫ (space B,subsets B,distr M f) u = ∫ M (u ∘ f)) ∧
    (integrable (space B,subsets B,distr M f) u ⇔ integrable M (u ∘ f))
lborel_2d_prod_measure
⊢ ∀s. s ∈ measurable_sets lborel_2d ⇒
      (measure lborel_2d s = measure (lborel × lborel) s)
measure_space_prod_measure
⊢ ∀m1 m2.
    sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ⇒
    measure_space (m1 × m2)
pos_fn_integral_cong_measure
⊢ ∀sp sts u v f.
    measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
    (∀s. s ∈ sts ⇒ (u s = v s)) ∧ (∀x. x ∈ sp ⇒ 0 ≤ f x) ⇒
    (∫⁺ (sp,sts,u) f = ∫⁺ (sp,sts,v) f)
pos_fn_integral_cong_measure'
⊢ ∀m1 m2 f.
    measure_space m1 ∧ measure_space m2 ∧ (m_space m1 = m_space m2) ∧
    (measurable_sets m1 = measurable_sets m2) ∧
    (∀s. s ∈ measurable_sets m1 ⇒ (measure m1 s = measure m2 s)) ∧
    (∀x. x ∈ m_space m1 ⇒ 0 ≤ f x) ⇒
    (∫⁺ m1 f = ∫⁺ m2 f)
pos_fn_integral_distr
⊢ ∀M B f u.
    measure_space M ∧ sigma_algebra B ∧
    f ∈ measurable (m_space M,measurable_sets M) B ∧ u ∈ Borel_measurable B ∧
    (∀x. x ∈ space B ⇒ 0 ≤ u x) ⇒
    (∫⁺ (space B,subsets B,distr M f) u = ∫⁺ M (u ∘ f))
prod_sigma_alt
⊢ ∀A B. A × B = general_sigma $, A B
prod_sigma_of_generator
⊢ ∀X Y E G.
    FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ subset_class X E ∧ subset_class Y G ∧
    has_exhausting_sequence (X,E) ∧ has_exhausting_sequence (Y,G) ⇒
    (fcp_sigma (X,E) (Y,G) = fcp_sigma (sigma X E) (sigma Y G))
sigma_algebra_general_sigma
⊢ ∀cons A B.
    subset_class (space A) (subsets A) ∧ subset_class (space B) (subsets B) ⇒
    sigma_algebra (general_sigma cons A B)
sigma_algebra_prod_sigma
⊢ ∀a b.
    subset_class (space a) (subsets a) ∧ subset_class (space b) (subsets b) ⇒
    sigma_algebra (fcp_sigma a b)
sigma_algebra_prod_sigma'
⊢ ∀X Y A B.
    subset_class X A ∧ subset_class Y B ⇒
    sigma_algebra (fcp_sigma (X,A) (Y,B))
sigma_finite_alt
⊢ ∀m. sigma_finite m ⇔
      ∃f. (f ∈ (𝕌(:num) → measurable_sets m) ∧ (∀m n. m ≤ n ⇒ f m ⊆ f n) ∧
           (BIGUNION (IMAGE f 𝕌(:num)) = m_space m)) ∧
          ∀n. measure m (f n) < +∞
sigma_finite_alt_exhausting_sequence
⊢ ∀m. sigma_finite m ⇔
      ∃f. exhausting_sequence (m_space m,measurable_sets m) f ∧
          ∀n. measure m (f n) < +∞
sigma_finite_filtered_measure_space_alt
⊢ ∀sp sts m a.
    sigma_finite_filtered_measure_space (sp,sts,m) a ⇔
    sigma_finite_filtered_measure_space (𝕌(:num),$<=) (sp,sts,m) a
sigma_finite_has_exhausting_sequence
⊢ ∀sp sts u. sigma_finite (sp,sts,u) ⇒ has_exhausting_sequence (sp,sts)
uniqueness_of_prod_measure
⊢ ∀X Y E G A B u v m m'.
    FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ subset_class X E ∧ subset_class Y G ∧
    sigma_finite (X,E,u) ∧ sigma_finite (Y,G,v) ∧
    (∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧ (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧
    (A = sigma X E) ∧ (B = sigma Y G) ∧ measure_space (X,subsets A,u) ∧
    measure_space (Y,subsets B,v) ∧
    measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m) ∧
    measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m') ∧
    (∀s t. s ∈ E ∧ t ∈ G ⇒ (m (fcp_cross s t) = u s * v t)) ∧
    (∀s t. s ∈ E ∧ t ∈ G ⇒ (m' (fcp_cross s t) = u s * v t)) ⇒
    ∀x. x ∈ subsets (fcp_sigma A B) ⇒ (m x = m' x)
uniqueness_of_prod_measure'
⊢ ∀X Y A B u v m m'.
    FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ sigma_finite_measure_space (X,A,u) ∧
    sigma_finite_measure_space (Y,B,v) ∧
    measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) ∧
    measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m') ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m (fcp_cross s t) = u s * v t)) ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m' (fcp_cross s t) = u s * v t)) ⇒
    ∀x. x ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒ (m x = m' x)
uniqueness_of_prod_measure_general
⊢ ∀cons car cdr X Y E G A B u v m m'.
    pair_operation cons car cdr ∧ subset_class X E ∧ subset_class Y G ∧
    sigma_finite (X,E,u) ∧ sigma_finite (Y,G,v) ∧
    (∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧ (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧
    (A = sigma X E) ∧ (B = sigma Y G) ∧ measure_space (X,subsets A,u) ∧
    measure_space (Y,subsets B,v) ∧
    measure_space (general_cross cons X Y,subsets (general_sigma cons A B),m) ∧
    measure_space (general_cross cons X Y,subsets (general_sigma cons A B),m') ∧
    (∀s t. s ∈ E ∧ t ∈ G ⇒ (m (general_cross cons s t) = u s * v t)) ∧
    (∀s t. s ∈ E ∧ t ∈ G ⇒ (m' (general_cross cons s t) = u s * v t)) ⇒
    ∀x. x ∈ subsets (general_sigma cons A B) ⇒ (m x = m' x)
uniqueness_of_prod_measure_general'
⊢ ∀cons car cdr X Y A B u v m m'.
    pair_operation cons car cdr ∧ sigma_finite_measure_space (X,A,u) ∧
    sigma_finite_measure_space (Y,B,v) ∧
    measure_space
      (general_cross cons X Y,subsets (general_sigma cons (X,A) (Y,B)),m) ∧
    measure_space
      (general_cross cons X Y,subsets (general_sigma cons (X,A) (Y,B)),m') ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m (general_cross cons s t) = u s * v t)) ∧
    (∀s t. s ∈ A ∧ t ∈ B ⇒ (m' (general_cross cons s t) = u s * v t)) ⇒
    ∀x. x ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒ (m x = m' x)