Theory "probability"

Parents     martingale

Signature

Type Arity
convergence_mode 1
Constant Type
PDF :α m_space -> (α -> real) -> real -> extreal
absolute_moment :α m_space -> (α -> extreal) -> extreal -> num -> extreal
almost_everywhere :α m_space -> α convergence_mode
central_moment :α m_space -> (α -> extreal) -> num -> extreal
cond_prob :α m_space -> (α -> bool) -> α measure
conditional_distribution :α m_space -> (α -> β) -> (α -> γ) -> (β -> bool) -> γ measure
conditional_expectation :α m_space -> (α -> extreal) -> ((α -> bool) -> bool) -> α -> extreal
conditional_prob :α m_space -> (α -> bool) -> ((α -> bool) -> bool) -> α -> extreal
converge :(num -> α -> extreal) -> (α -> extreal) -> α convergence_mode -> bool
convergence_mode_CASE :α convergence_mode -> (α m_space -> β) -> (α m_space -> β) -> (extreal -> α m_space -> β) -> β
convergence_mode_size :(α -> num) -> α convergence_mode -> num
covariance :α m_space -> (α -> extreal) -> (α -> extreal) -> extreal
distribution :α m_space -> (α -> β) -> β measure
distribution_function :α m_space -> (α -> extreal) -> extreal -> extreal
equivalent :α m_space -> (num -> α -> extreal) -> (num -> α -> extreal) -> bool
events :α m_space -> (α -> bool) -> bool
expectation :α m_space -> (α -> extreal) -> extreal
finite_second_moments :α m_space -> (α -> extreal) -> bool
identical_distribution :α m_space -> ('index -> α -> β) -> β algebra -> ('index -> bool) -> bool
in_lebesgue :extreal -> α m_space -> α convergence_mode
in_probability :α m_space -> α convergence_mode
indep :α m_space -> (α -> bool) -> (α -> bool) -> bool
indep_events :α m_space -> ('index -> α -> bool) -> ('index -> bool) -> bool
indep_families :α m_space -> ((α -> bool) -> bool) -> ((α -> bool) -> bool) -> bool
indep_function :α m_space -> (α -> β # α) -> bool
indep_rv :α m_space -> (α -> β) -> (α -> β) -> β algebra -> β algebra -> bool
indep_sets :α m_space -> ('index -> (α -> bool) -> bool) -> ('index -> bool) -> bool
indep_vars :α m_space -> ('index -> α -> β) -> ('index -> β algebra) -> ('index -> bool) -> bool
joint_distribution :α m_space -> (α -> β) -> (α -> γ) -> (β # γ) measure
joint_distribution3 :α m_space -> (α -> β) -> (α -> γ) -> (α -> δ) -> (β # γ # δ) measure
moment :α m_space -> (α -> extreal) -> extreal -> num -> extreal
orthogonal :α m_space -> (α -> extreal) -> (α -> extreal) -> bool
orthogonal_vars :α m_space -> (β -> α -> extreal) -> (β -> bool) -> bool
p_space :α m_space -> α -> bool
pairwise_indep_events :α m_space -> ('index -> α -> bool) -> ('index -> bool) -> bool
pairwise_indep_sets :α m_space -> ('index -> (α -> bool) -> bool) -> ('index -> bool) -> bool
pairwise_indep_vars :α m_space -> ('index -> α -> β) -> ('index -> β algebra) -> ('index -> bool) -> bool
pdf :α m_space -> (α -> extreal) -> extreal -> extreal
possibly :α m_space -> (α -> bool) -> bool
prob :α m_space -> α measure
prob_space :α m_space -> bool
probably :α m_space -> (α -> bool) -> bool
random_variable :(α -> β) -> α m_space -> β algebra -> bool
real_random_variable :(α -> extreal) -> α m_space -> bool
rv_conditional_expectation :α m_space -> β algebra -> (α -> extreal) -> (α -> β) -> α -> extreal
second_moment :α m_space -> (α -> extreal) -> extreal -> extreal
standard_deviation :α m_space -> (α -> extreal) -> extreal
tail_algebra :α m_space -> (num -> α -> bool) -> α algebra
tail_algebra_of_rv :α m_space -> (num -> α -> β) -> (num -> β algebra) -> α algebra
uncorrelated :α m_space -> (α -> extreal) -> (α -> extreal) -> bool
uncorrelated_vars :α m_space -> (β -> α -> extreal) -> (β -> bool) -> bool
uniform_distribution :α algebra -> α measure
variance :α m_space -> (α -> extreal) -> extreal

Definitions

PDF_def
⊢ ∀p X. PDF p X = distribution p X / lborel
absolute_moment_def
⊢ ∀p X a r. absolute_moment p X a r = expectation p (λx. abs (X x − a) pow r)
central_moment_def
⊢ ∀p X r. central_moment p X r = moment p X (expectation p X) r
cond_prob_def
⊢ ∀p e1 e2. cond_prob p e1 e2 = prob p (e1 ∩ e2) / prob p e2
conditional_distribution_def
⊢ ∀p X Y a b.
    conditional_distribution p X Y a b =
    joint_distribution p X Y (a × b) / distribution p Y b
conditional_expectation_def
⊢ ∀p X s.
    conditional_expectation p X s =
    @f. real_random_variable f p ∧
        ∀g. g ∈ s ⇒
            (expectation p (λx. f x * 𝟙 g x) = expectation p (λx. X x * 𝟙 g x))
conditional_prob_def
⊢ ∀p e1 e2. conditional_prob p e1 e2 = conditional_expectation p (𝟙 e1) e2
covariance_def
⊢ ∀p X Y.
    covariance p X Y =
    expectation p (λx. (X x − expectation p X) * (Y x − expectation p Y))
distribution_def
⊢ ∀p X. distribution p X = (λs. prob p (PREIMAGE X s ∩ p_space p))
distribution_function_def
⊢ ∀p X. distribution_function p X = (λx. prob p ({w | X w ≤ x} ∩ p_space p))
equivalent_def
⊢ ∀p X Y.
    equivalent p X Y ⇔
    suminf (λn. prob p {x | x ∈ p_space p ∧ X n x ≠ Y n x}) < +∞
events_def
⊢ events = measurable_sets
expectation_def
⊢ expectation = ∫
finite_second_moments_def
⊢ ∀p X. finite_second_moments p X ⇔ ∃a. second_moment p X a < +∞
identical_distribution_def
⊢ ∀p X E J.
    identical_distribution p X E J ⇔
    ∀i j s.
      s ∈ subsets E ∧ i ∈ J ∧ i ∈ J ⇒
      (distribution p (X i) s = distribution p (X j) s)
indep_def
⊢ ∀p a b.
    indep p a b ⇔
    a ∈ events p ∧ b ∈ events p ∧ (prob p (a ∩ b) = prob p a * prob p b)
indep_events_def
⊢ ∀p E J.
    indep_events p E J ⇔
    ∀N. N ⊆ J ∧ N ≠ ∅ ∧ FINITE N ⇒
        (prob p (BIGINTER (IMAGE E N)) = ∏ (prob p ∘ E) N)
indep_families_def
⊢ ∀p q r. indep_sets p q r ⇔ ∀s t. s ∈ q ∧ t ∈ r ⇒ indep p s t
indep_function_def
⊢ ∀p. indep_function p =
      {f |
       indep_sets p (IMAGE (PREIMAGE (FST ∘ f)) 𝕌(:β -> bool))
         (IMAGE (PREIMAGE (SND ∘ f)) (events p))}
indep_rv_def
⊢ ∀p X Y s t.
    indep_vars p X Y s t ⇔
    ∀a b.
      a ∈ subsets s ∧ b ∈ subsets t ⇒
      indep p (PREIMAGE X a ∩ p_space p) (PREIMAGE Y b ∩ p_space p)
indep_sets_def
⊢ ∀p A J.
    indep_sets p A J ⇔
    ∀N. N ⊆ J ∧ N ≠ ∅ ∧ FINITE N ⇒
        ∀E. E ∈ N ⟶ A ⇒ (prob p (BIGINTER (IMAGE E N)) = ∏ (prob p ∘ E) N)
indep_vars_def
⊢ ∀p X A J.
    indep_vars p X A J ⇔
    ∀E. E ∈ J ⟶ subsets ∘ A ⇒
        indep_events p (λn. PREIMAGE (X n) (E n) ∩ p_space p) J
joint_distribution3_def
⊢ ∀p X Y Z.
    joint_distribution3 p X Y Z =
    (λa. prob p (PREIMAGE (λx. (X x,Y x,Z x)) a ∩ p_space p))
joint_distribution_def
⊢ ∀p X Y.
    joint_distribution p X Y =
    (λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p))
moment_def
⊢ ∀p X a r. moment p X a r = expectation p (λx. (X x − a) pow r)
orthogonal_def
⊢ ∀p X Y.
    orthogonal p X Y ⇔
    finite_second_moments p X ∧ finite_second_moments p Y ∧
    (expectation p (λs. X s * Y s) = 0)
orthogonal_vars_def
⊢ ∀p X J.
    orthogonal_vars p X J ⇔
    ∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ orthogonal p (X i) (X j)
p_space_def
⊢ p_space = m_space
pairwise_indep_events
⊢ ∀p E J. pairwise_indep_events p E J ⇔ pairwise (λi j. indep p (E i) (E j)) J
pairwise_indep_sets
⊢ ∀p A J.
    pairwise_indep_sets p A J ⇔ pairwise (λi j. indep_sets p (A i) (A j)) J
pairwise_indep_vars
⊢ ∀p X A J.
    pairwise_indep_vars p X A J ⇔
    pairwise (λi j. indep_vars p (X i) (X j) (A i) (A j)) J
pdf_def
⊢ ∀p X. pdf p X = distribution p X / ext_lborel
possibly_def
⊢ ∀p e. possibly p e ⇔ e ∈ events p ∧ prob p e ≠ 0
prob_def
⊢ prob = measure
prob_space_def
⊢ ∀p. prob_space p ⇔ measure_space p ∧ (measure p (m_space p) = 1)
probably_def
⊢ ∀p e. probably p e ⇔ e ∈ events p ∧ (prob p e = 1)
random_variable_def
⊢ ∀X p s. random_variable X p s ⇔ X ∈ measurable (p_space p,events p) s
real_random_variable_def
⊢ ∀X p.
    real_random_variable X p ⇔
    random_variable X p Borel ∧ ∀x. X x ≠ −∞ ∧ X x ≠ +∞
rv_conditional_expectation_def
⊢ ∀p s X Y.
    rv_conditional_expectation p s X Y =
    conditional_expectation p X
      (IMAGE (λa. PREIMAGE Y a ∩ p_space p) (subsets s))
second_moment_def
⊢ ∀p X a. second_moment p X a = moment p X a 2
standard_deviation_def
⊢ ∀p X. standard_deviation p X = sqrt (variance p X)
tail_algebra_def
⊢ ∀p E.
    tail_algebra p E =
    (p_space p,
     BIGINTER
       (IMAGE (λn. subsets (sigma (p_space p) (IMAGE E (from n)))) 𝕌(:num)))
tail_algebra_of_rv_def
⊢ ∀p X A.
    tail_algebra p X A =
    (p_space p,
     BIGINTER (IMAGE (λn. subsets (sigma (p_space p) A X (from n))) 𝕌(:num)))
uncorrelated_def
⊢ ∀p X Y.
    uncorrelated p X Y ⇔
    finite_second_moments p X ∧ finite_second_moments p Y ∧
    (expectation p (λs. X s * Y s) = expectation p X * expectation p Y)
uncorrelated_vars_def
⊢ ∀p X J.
    uncorrelated_vars p X J ⇔
    ∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ uncorrelated p (X i) (X j)
uniform_distribution_def
⊢ ∀s. uniform_distribution s = (λa. &CARD a / &CARD (space s))
variance_def
⊢ ∀p X. variance p X = central_moment p X 2


Theorems

ABS_1_MINUS_PROB
⊢ ∀p s. prob_space p ∧ s ∈ events p ∧ prob p s ≠ 0 ⇒ abs (1 − prob p s) < 1
ABS_PROB
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (abs (prob p s) = prob p s)
ADDITIVE_PROB
⊢ ∀p. additive p ⇔
      ∀s t.
        s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧ s ∪ t ∈ events p ⇒
        (prob p (s ∪ t) = prob p s + prob p t)
BAYES_RULE
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A ≠ 0 ∧ prob p B ≠ 0 ⇒
    (cond_prob p B A = cond_prob p A B * prob p B / prob p A)
BAYES_RULE_GENERAL_SIGMA
⊢ ∀p A B s k.
    prob_space p ∧ A ∈ events p ∧ prob p A ≠ 0 ∧ FINITE s ∧
    (∀x. x ∈ s ⇒ B x ∈ events p ∧ prob p (B x) ≠ 0) ∧ k ∈ s ∧
    (∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
    (BIGUNION (IMAGE B s) = p_space p) ⇒
    (cond_prob p (B k) A =
     cond_prob p A (B k) * prob p (B k) /
     ∑ (λi. prob p (B i) * cond_prob p A (B i)) s)
Borel_0_1_Law
⊢ ∀p E.
    prob_space p ∧ (∀n. E n ∈ events p) ∧ pairwise_indep_events p E 𝕌(:num) ⇒
    (prob p (limsup E) = 0) ∨ (prob p (limsup E) = 1)
Borel_Cantelli_Lemma1
⊢ ∀p E.
    prob_space p ∧ (∀n. E n ∈ events p) ∧ suminf (prob p ∘ E) < +∞ ⇒
    (prob p (limsup E) = 0)
Borel_Cantelli_Lemma2
⊢ ∀p E.
    prob_space p ∧ (∀n. E n ∈ events p) ∧ indep_events p E 𝕌(:num) ∧
    (suminf (prob p ∘ E) = +∞) ⇒
    (prob p (limsup E) = 1)
Borel_Cantelli_Lemma2p
⊢ ∀p E.
    prob_space p ∧ (∀n. E n ∈ events p) ∧ pairwise_indep_events p E 𝕌(:num) ∧
    (suminf (prob p ∘ E) = +∞) ⇒
    (prob p (limsup E) = 1)
COND_PROB_ADDITIVE
⊢ ∀p A B s.
    prob_space p ∧ FINITE s ∧ B ∈ events p ∧ (∀x. x ∈ s ⇒ A x ∈ events p) ∧
    prob p B ≠ 0 ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (A x) (A y)) ∧
    (BIGUNION (IMAGE A s) = p_space p) ⇒
    (∑ (λi. cond_prob p (A i) B) s = 1)
COND_PROB_BOUNDS
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
    0 ≤ cond_prob p A B ∧ cond_prob p A B ≤ 1
COND_PROB_COMPL
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ COMPL A ∈ events p ∧ B ∈ events p ∧
    prob p B ≠ 0 ⇒
    (cond_prob p (COMPL A) B = 1 − cond_prob p A B)
COND_PROB_DIFF
⊢ ∀p A1 A2 B.
    prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
    (cond_prob p (A1 DIFF A2) B = cond_prob p A1 B − cond_prob p (A1 ∩ A2) B)
COND_PROB_FINITE
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
    cond_prob p A B ≠ +∞ ∧ cond_prob p A B ≠ −∞
COND_PROB_FINITE_ADDITIVE
⊢ ∀p A B n s.
    prob_space p ∧ B ∈ events p ∧ A ∈ (count n → events p) ∧
    (s = BIGUNION (IMAGE A (count n))) ∧ prob p B ≠ 0 ∧
    (∀a b. a ≠ b ⇒ DISJOINT (A a) (A b)) ⇒
    (cond_prob p s B = ∑ (λi. cond_prob p (A i) B) (count n))
COND_PROB_INCREASING
⊢ ∀p A B C.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧ prob p C ≠ 0 ⇒
    cond_prob p (A ∩ B) C ≤ cond_prob p A C
COND_PROB_INTER_SPLIT
⊢ ∀p A B C.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧
    prob p (B ∩ C) ≠ 0 ⇒
    (cond_prob p (A ∩ B) C = cond_prob p A (B ∩ C) * cond_prob p B C)
COND_PROB_ITSELF
⊢ ∀p B. prob_space p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒ (cond_prob p B B = 1)
COND_PROB_MUL_EQ
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A ≠ 0 ∧ prob p B ≠ 0 ⇒
    (cond_prob p A B * prob p B = cond_prob p B A * prob p A)
COND_PROB_MUL_RULE
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
    (prob p (A ∩ B) = prob p B * cond_prob p A B)
COND_PROB_POS_IMP_PROB_NZ
⊢ ∀A B p.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ 0 < cond_prob p A B ∧
    prob p B ≠ 0 ⇒
    prob p (A ∩ B) ≠ 0
COND_PROB_SWAP
⊢ ∀p A B C.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧
    prob p (B ∩ C) ≠ 0 ∧ prob p (A ∩ C) ≠ 0 ⇒
    (cond_prob p A (B ∩ C) * cond_prob p B C =
     cond_prob p B (A ∩ C) * cond_prob p A C)
COND_PROB_UNION
⊢ ∀p A1 A2 B.
    prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
    (cond_prob p (A1 ∪ A2) B =
     cond_prob p A1 B + cond_prob p A2 B − cond_prob p (A1 ∩ A2) B)
COND_PROB_ZERO
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p A = 0) ∧ prob p B ≠ 0 ⇒
    (cond_prob p A B = 0)
COND_PROB_ZERO_INTER
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p (A ∩ B) = 0) ∧
    prob p B ≠ 0 ⇒
    (cond_prob p A B = 0)
COUNTABLY_ADDITIVE_PROB
⊢ ∀p. countably_additive p ⇔
      ∀f. f ∈ (𝕌(:num) → events p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
          BIGUNION (IMAGE f 𝕌(:num)) ∈ events p ⇒
          (prob p (BIGUNION (IMAGE f 𝕌(:num))) = suminf (prob p ∘ f))
EVENTS
⊢ ∀a b c. events (a,b,c) = b
EVENTS_ALGEBRA
⊢ ∀p. prob_space p ⇒ algebra (p_space p,events p)
EVENTS_BIGINTER_FN
⊢ ∀p A J.
    prob_space p ∧ IMAGE A J ⊆ events p ∧ COUNTABLE J ∧ J ≠ ∅ ⇒
    BIGINTER (IMAGE A J) ∈ events p
EVENTS_BIGUNION
⊢ ∀p f n.
    prob_space p ∧ f ∈ (count n → events p) ⇒
    BIGUNION (IMAGE f (count n)) ∈ events p
EVENTS_COMPL
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p DIFF s ∈ events p
EVENTS_COUNTABLE_INTER
⊢ ∀p c.
    prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ∧ c ≠ ∅ ⇒ BIGINTER c ∈ events p
EVENTS_COUNTABLE_UNION
⊢ ∀p c. prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ⇒ BIGUNION c ∈ events p
EVENTS_DIFF
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s DIFF t ∈ events p
EVENTS_EMPTY
⊢ ∀p. prob_space p ⇒ ∅ ∈ events p
EVENTS_INTER
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∩ t ∈ events p
EVENTS_LIMINF
⊢ ∀p E. prob_space p ∧ (∀n. E n ∈ events p) ⇒ liminf E ∈ events p
EVENTS_LIMSUP
⊢ ∀p E. prob_space p ∧ (∀n. E n ∈ events p) ⇒ limsup E ∈ events p
EVENTS_SIGMA_ALGEBRA
⊢ ∀p. prob_space p ⇒ sigma_algebra (p_space p,events p)
EVENTS_SPACE
⊢ ∀p. prob_space p ⇒ p_space p ∈ events p
EVENTS_UNION
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∪ t ∈ events p
EXPECTATION_PDF_1
⊢ ∀p X.
    prob_space p ∧ random_variable X p borel ∧ distribution p X ≪ lborel ⇒
    (expectation lborel (PDF p X) = 1)
INCREASING_PROB
⊢ ∀p. increasing p ⇔
      ∀s t. s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
INDEP_COMPL
⊢ ∀p s t. prob_space p ∧ indep p s t ⇒ indep p s (p_space p DIFF t)
INDEP_COMPL2
⊢ ∀p s t.
    prob_space p ∧ indep p s t ⇒ indep p (p_space p DIFF s) (p_space p DIFF t)
INDEP_EMPTY
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p ∅ s
INDEP_FAMILIES_SIGMA
⊢ ∀p A M N.
    prob_space p ∧ IMAGE A (M ∪ N) ⊆ events p ∧ indep_events p A (M ∪ N) ∧
    DISJOINT M N ∧ M ≠ ∅ ∧ N ≠ ∅ ⇒
    indep_sets p (subsets (sigma (p_space p) (IMAGE A M)))
      (subsets (sigma (p_space p) (IMAGE A N)))
INDEP_FAMILIES_SYM
⊢ ∀p q r. indep_sets p q r ⇒ indep_sets p r q
INDEP_REFL
⊢ ∀p a.
    prob_space p ∧ a ∈ events p ⇒
    (indep p a a ⇔ (prob p a = 0)) ∨ (prob p a = 1)
INDEP_SPACE
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p (p_space p) s
INDEP_SYM
⊢ ∀p a b. indep p a b ⇒ indep p b a
INDEP_SYM_EQ
⊢ ∀p a b. indep p a b ⇔ indep p b a
INDICATOR_FN_REAL_RV
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ real_random_variable (𝟙 s) p
INTER_PSPACE
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (p_space p ∩ s = s)
Kolmogorov_0_1_Law
⊢ ∀p E.
    prob_space p ∧ (∀n. E n ∈ events p) ∧ indep_events p E 𝕌(:num) ⇒
    ∀e. e ∈ subsets (tail_algebra p E) ⇒ (prob p e = 0) ∨ (prob p e = 1)
PDF_LE_POS
⊢ ∀p X.
    prob_space p ∧ random_variable X p borel ∧ distribution p X ≪ lborel ⇒
    ∀x. 0 ≤ PDF p X x
POSITIVE_PROB
⊢ ∀p. positive p ⇔ (prob p ∅ = 0) ∧ ∀s. s ∈ events p ⇒ 0 ≤ prob p s
PROB
⊢ ∀a b c. prob (a,b,c) = c
PROB_ADDITIVE
⊢ ∀p s t u.
    prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧ (u = s ∪ t) ⇒
    (prob p u = prob p s + prob p t)
PROB_COMPL
⊢ ∀p s.
    prob_space p ∧ s ∈ events p ⇒ (prob p (p_space p DIFF s) = 1 − prob p s)
PROB_COMPL_LE1
⊢ ∀p s r.
    prob_space p ∧ s ∈ events p ⇒
    (prob p (p_space p DIFF s) ≤ r ⇔ 1 − r ≤ prob p s)
PROB_COUNTABLY_ADDITIVE
⊢ ∀p s f.
    prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧
    (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
    (prob p s = suminf (prob p ∘ f))
PROB_COUNTABLY_SUBADDITIVE
⊢ ∀p f.
    prob_space p ∧ IMAGE f 𝕌(:num) ⊆ events p ⇒
    prob p (BIGUNION (IMAGE f 𝕌(:num))) ≤ suminf (prob p ∘ f)
PROB_COUNTABLY_ZERO
⊢ ∀p c.
    prob_space p ∧ COUNTABLE c ∧ c ⊆ events p ∧ (∀x. x ∈ c ⇒ (prob p x = 0)) ⇒
    (prob p (BIGUNION c) = 0)
PROB_DIFF_SUBSET
⊢ ∀p s t.
    prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ t ⊆ s ⇒
    (prob p (s DIFF t) = prob p s − prob p t)
PROB_DISCRETE_EVENTS
⊢ ∀p. prob_space p ∧ FINITE (p_space p) ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
      ∀s. s ⊆ p_space p ⇒ s ∈ events p
PROB_DISCRETE_EVENTS_COUNTABLE
⊢ ∀p. prob_space p ∧ COUNTABLE (p_space p) ∧
      (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
      ∀s. s ⊆ p_space p ⇒ s ∈ events p
PROB_EMPTY
⊢ ∀p. prob_space p ⇒ (prob p ∅ = 0)
PROB_EQUIPROBABLE_FINITE_UNIONS
⊢ ∀p s.
    prob_space p ∧ FINITE s ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧
    (∀x y. x ∈ s ∧ y ∈ s ⇒ (prob p {x} = prob p {y})) ⇒
    (prob p s = &CARD s * prob p {CHOICE s})
PROB_EQ_BIGUNION_IMAGE
⊢ ∀p f g.
    prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ g ∈ (𝕌(:num) → events p) ∧
    (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
    (∀m n. m ≠ n ⇒ DISJOINT (g m) (g n)) ∧ (∀n. prob p (f n) = prob p (g n)) ⇒
    (prob p (BIGUNION (IMAGE f 𝕌(:num))) = prob p (BIGUNION (IMAGE g 𝕌(:num))))
PROB_EQ_COMPL
⊢ ∀p s t.
    prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧
    (prob p (p_space p DIFF s) = prob p (p_space p DIFF t)) ⇒
    (prob p s = prob p t)
PROB_EXTREAL_SUM_IMAGE
⊢ ∀p s.
    prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧ FINITE s ⇒
    (prob p s = ∑ (λx. prob p {x}) s)
PROB_EXTREAL_SUM_IMAGE_FN
⊢ ∀p f e s.
    prob_space p ∧ e ∈ events p ∧ (∀x. x ∈ s ⇒ e ∩ f x ∈ events p) ∧
    FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (f x) (f y)) ∧
    (BIGUNION (IMAGE f s) ∩ p_space p = p_space p) ⇒
    (prob p e = ∑ (λx. prob p (e ∩ f x)) s)
PROB_EXTREAL_SUM_IMAGE_SPACE
⊢ ∀p. prob_space p ∧ FINITE (p_space p) ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
      (∑ (λx. prob p {x}) (p_space p) = 1)
PROB_FINITE
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≠ −∞ ∧ prob p s ≠ +∞
PROB_FINITE_ADDITIVE
⊢ ∀p s f t.
    prob_space p ∧ FINITE s ∧ (∀x. x ∈ s ⇒ f x ∈ events p) ∧
    (∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
    (t = BIGUNION (IMAGE f s)) ⇒
    (prob p t = ∑ (prob p ∘ f) s)
PROB_GSPEC
⊢ ∀P p s. prob p {x | x ∈ s ∧ P x} = prob p ({x | P x} ∩ s)
PROB_INCREASING
⊢ ∀p s t.
    prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
PROB_INCREASING_UNION
⊢ ∀p f.
    prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
    (sup (IMAGE (prob p ∘ f) 𝕌(:num)) = prob p (BIGUNION (IMAGE f 𝕌(:num))))
PROB_INDEP
⊢ ∀p s t u. indep p s t ∧ (u = s ∩ t) ⇒ (prob p u = prob p s * prob p t)
PROB_INTER_SPLIT
⊢ ∀p A B C.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧
    prob p (B ∩ C) ≠ 0 ⇒
    (prob p (A ∩ B ∩ C) = cond_prob p A (B ∩ C) * cond_prob p B C * prob p C)
PROB_INTER_ZERO
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p B = 0) ⇒
    (prob p (A ∩ B) = 0)
PROB_LE_1
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≤ 1
PROB_LIMINF
⊢ ∀p E.
    prob_space p ∧ (∀n. E n ∈ events p) ⇒
    (prob p (liminf E) =
     sup (IMAGE (λm. prob p (BIGINTER {E n | m ≤ n})) 𝕌(:num)))
PROB_LIMSUP
⊢ ∀p E.
    prob_space p ∧ (∀n. E n ∈ events p) ⇒
    (prob p (limsup E) =
     inf (IMAGE (λm. prob p (BIGUNION {E n | m ≤ n})) 𝕌(:num)))
PROB_LT_POSINF
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s < +∞
PROB_ONE_AE
⊢ ∀p E. prob_space p ∧ E ∈ events p ∧ (prob p E = 1) ⇒ AE x::p. x ∈ E
PROB_ONE_INTER
⊢ ∀p s t.
    prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 1) ⇒
    (prob p (s ∩ t) = prob p s)
PROB_POSITIVE
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ 0 ≤ prob p s
PROB_SPACE
⊢ ∀p. prob_space p ⇔
      sigma_algebra (p_space p,events p) ∧ positive p ∧ countably_additive p ∧
      (prob p (p_space p) = 1)
PROB_SPACE_ADDITIVE
⊢ ∀p. prob_space p ⇒ additive p
PROB_SPACE_COUNTABLY_ADDITIVE
⊢ ∀p. prob_space p ⇒ countably_additive p
PROB_SPACE_INCREASING
⊢ ∀p. prob_space p ⇒ increasing p
PROB_SPACE_IN_PSPACE
⊢ ∀p E. prob_space p ∧ E ∈ events p ⇒ ∀x. x ∈ E ⇒ x ∈ p_space p
PROB_SPACE_POSITIVE
⊢ ∀p. prob_space p ⇒ positive p
PROB_SPACE_SIGMA_FINITE
⊢ ∀p. prob_space p ⇒ sigma_finite p
PROB_SPACE_SUBSET_PSPACE
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ s ⊆ p_space p
PROB_SUBADDITIVE
⊢ ∀p t u.
    prob_space p ∧ t ∈ events p ∧ u ∈ events p ⇒
    prob p (t ∪ u) ≤ prob p t + prob p u
PROB_UNDER_UNIV
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (prob p (s ∩ p_space p) = prob p s)
PROB_UNIV
⊢ ∀p. prob_space p ⇒ (prob p (p_space p) = 1)
PROB_ZERO_AE
⊢ ∀p E. prob_space p ∧ E ∈ events p ∧ (prob p E = 0) ⇒ AE x::p. x ∉ E
PROB_ZERO_INTER
⊢ ∀p A B.
    prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p A = 0) ⇒
    (prob p (A ∩ B) = 0)
PROB_ZERO_UNION
⊢ ∀p s t.
    prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 0) ⇒
    (prob p (s ∪ t) = prob p s)
PSPACE
⊢ ∀a b c. p_space (a,b,c) = a
SLLN_uncorrelated
⊢ ∀p X S M.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    (∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
    (∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
    (∀n x. S n x = ∑ (λi. X i x) (count n)) ∧ (∀n. M n = expectation p (S n)) ⇒
    ((λn x. (S (SUC n) x − M (SUC n)) / &SUC n) ⟶ (λx. 0))
      (almost_everywhere p)
SLLN_uncorrelated'
⊢ ∀p X S.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    (∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
    (∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
    (∀n x. S n x = ∑ (λi. X i x) (count n)) ⇒
    ((λn x. (S n x − expectation p (S n)) / &n) ⟶ (λx. 0))
      (almost_everywhere p)
TOTAL_PROB_SIGMA
⊢ ∀p A B s.
    prob_space p ∧ A ∈ events p ∧ FINITE s ∧
    (∀x. x ∈ s ⇒ B x ∈ events p ∧ prob p (B x) ≠ 0) ∧
    (∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
    (BIGUNION (IMAGE B s) = p_space p) ⇒
    (prob p A = ∑ (λi. prob p (B i) * cond_prob p A (B i)) s)
WLLN_uncorrelated
⊢ ∀p X S M.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    (∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
    (∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
    (∀n x. S n x = ∑ (λi. X i x) (count n)) ∧ (∀n. M n = expectation p (S n)) ⇒
    ((λn x. (S (SUC n) x − M (SUC n)) / &SUC n) ⟶ (λx. 0)) (in_probability p)
WLLN_uncorrelated'
⊢ ∀p X S.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    (∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
    (∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
    (∀n x. S n x = ∑ (λi. X i x) (count n)) ⇒
    ((λn x. (S n x − expectation p (S n)) / &n) ⟶ (λx. 0)) (in_probability p)
WLLN_uncorrelated_L2
⊢ ∀p X S M.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    (∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
    (∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
    (∀n x. S n x = ∑ (λi. X i x) (count n)) ∧ (∀n. M n = expectation p (S n)) ⇒
    ((λn x. (S (SUC n) x − M (SUC n)) / &SUC n) ⟶ (λx. 0)) (in_lebesgue 2 p)
chebyshev_ineq
⊢ ∀p X t c.
    prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ∧
    0 < t ⇒
    prob p ({x | t ≤ abs (X x − Normal c)} ∩ p_space p) ≤
    t² ⁻¹ * expectation p (λx. (X x − Normal c)²)
chebyshev_ineq_variance
⊢ ∀p X t.
    prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ∧
    0 < t ⇒
    prob p ({x | t ≤ abs (X x − expectation p X)} ∩ p_space p) ≤
    t² ⁻¹ * variance p X
chebyshev_inequality
⊢ ∀p X a t c.
    prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ∧
    0 < t ∧ a ∈ events p ⇒
    prob p ({x | t ≤ abs (X x − Normal c)} ∩ a) ≤
    t² ⁻¹ * expectation p (λx. (X x − Normal c)² * 𝟙 a x)
conditional_distribution_le_1
⊢ ∀p X Y a b.
    prob_space p ∧ (events p = POW (p_space p)) ∧ distribution p Y b ≠ 0 ⇒
    conditional_distribution p X Y a b ≤ 1
conditional_distribution_pos
⊢ ∀p X Y a b.
    prob_space p ∧ (events p = POW (p_space p)) ∧ distribution p Y b ≠ 0 ⇒
    0 ≤ conditional_distribution p X Y a b
converge_AE_alt_inf
⊢ ∀p X Y.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (almost_everywhere p) ⇔
     ∀e. 0 < e ∧ e ≠ +∞ ⇒
         (inf
            (IMAGE
               (λm.
                    prob p
                      {x | x ∈ p_space p ∧ ∃n. m ≤ n ∧ e < abs (X n x − Y x)})
               𝕌(:num)) = 0))
converge_AE_alt_liminf
⊢ ∀p X Y.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (almost_everywhere p) ⇔
     ∀e. 0 < e ∧ e ≠ +∞ ⇒
         (prob p (liminf (λn. {x | x ∈ p_space p ∧ abs (X n x − Y x) ≤ e})) =
          1))
converge_AE_alt_limsup
⊢ ∀p X Y.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (almost_everywhere p) ⇔
     ∀e. 0 < e ∧ e ≠ +∞ ⇒
         (prob p (limsup (λn. {x | x ∈ p_space p ∧ e < abs (X n x − Y x)})) =
          0))
converge_AE_alt_sup
⊢ ∀p X Y.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (almost_everywhere p) ⇔
     ∀e. 0 < e ∧ e ≠ +∞ ⇒
         (sup
            (IMAGE
               (λm.
                    prob p
                      {x | x ∈ p_space p ∧ ∀n. m ≤ n ⇒ abs (X n x − Y x) ≤ e})
               𝕌(:num)) = 1))
converge_AE_def
⊢ ∀p X Y.
    (X ⟶ Y) (almost_everywhere p) ⇔
    AE x::p. ((λn. real (X n x)) ⟶ real (Y x)) sequentially
converge_AE_imp_PR
⊢ ∀p X Y.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    (X ⟶ Y) (almost_everywhere p) ⇒
    (X ⟶ Y) (in_probability p)
converge_AE_imp_PR'
⊢ ∀p X.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ⇒
    (X ⟶ (λx. 0)) (almost_everywhere p) ⇒
    (X ⟶ (λx. 0)) (in_probability p)
converge_AE_shift
⊢ ∀p X Y.
    ((λn. X (SUC n)) ⟶ Y) (almost_everywhere p) ⇒
    ((λn. X n) ⟶ Y) (almost_everywhere p)
converge_AE_to_zero
⊢ ∀p X Y.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (almost_everywhere p) ⇔
     ((λn x. X n x − Y x) ⟶ (λx. 0)) (almost_everywhere p))
converge_AE_to_zero'
⊢ ∀p X Y Z.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ∧ (∀n x. Z n x = X n x − Y x) ⇒
    ((X ⟶ Y) (almost_everywhere p) ⇔ (Z ⟶ (λx. 0)) (almost_everywhere p))
converge_LP_alt_absolute_moment
⊢ ∀p X Y k.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (in_lebesgue (&k) p) ⇔
     0 < k ∧ (∀n. expectation p (λx. abs (X n x) pow k) ≠ +∞) ∧
     expectation p (λx. abs (Y x) pow k) ≠ +∞ ∧
     ((λn. real (absolute_moment p (λx. X n x − Y x) 0 k)) ⟶ 0) sequentially)
converge_LP_alt_pow
⊢ ∀p X Y k.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (in_lebesgue (&k) p) ⇔
     0 < k ∧ (∀n. expectation p (λx. abs (X n x) pow k) ≠ +∞) ∧
     expectation p (λx. abs (Y x) pow k) ≠ +∞ ∧
     ((λn. real (expectation p (λx. abs (X n x − Y x) pow k))) ⟶ 0)
       sequentially)
converge_LP_def
⊢ ∀p X Y r.
    (X ⟶ Y) (in_lebesgue r p) ⇔
    0 < r ∧ r ≠ +∞ ∧ (∀n. expectation p (λx. abs (X n x) powr r) ≠ +∞) ∧
    expectation p (λx. abs (Y x) powr r) ≠ +∞ ∧
    ((λn. real (expectation p (λx. abs (X n x − Y x) powr r))) ⟶ 0)
      sequentially
converge_LP_imp_PR'
⊢ ∀p X k.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ⇒
    (X ⟶ (λx. 0)) (in_lebesgue (&k) p) ⇒
    (X ⟶ (λx. 0)) (in_probability p)
converge_PR_def
⊢ ∀p X Y.
    (X ⟶ Y) (in_probability p) ⇔
    ∀e. 0 < e ∧ e ≠ +∞ ⇒
        ((λn. real (prob p {x | x ∈ p_space p ∧ e < abs (X n x − Y x)})) ⟶ 0)
          sequentially
converge_PR_shift
⊢ ∀p X Y.
    ((λn. X (SUC n)) ⟶ Y) (in_probability p) ⇒
    ((λn. X n) ⟶ Y) (in_probability p)
converge_PR_to_zero
⊢ ∀p X Y.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ⇒
    ((X ⟶ Y) (in_probability p) ⇔
     ((λn x. X n x − Y x) ⟶ (λx. 0)) (in_probability p))
converge_PR_to_zero'
⊢ ∀p X Y Z.
    prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
    real_random_variable Y p ∧ (∀n x. Z n x = X n x − Y x) ⇒
    ((X ⟶ Y) (in_probability p) ⇔ (Z ⟶ (λx. 0)) (in_probability p))
covariance_self
⊢ ∀p X. covariance p X X = variance p X
distribution_distr
⊢ distribution = distr
distribution_function
⊢ ∀p X t. distribution_function p X t = distribution p X {x | x ≤ t}
distribution_le_1
⊢ ∀p X a. prob_space p ∧ (events p = POW (p_space p)) ⇒ distribution p X a ≤ 1
distribution_lebesgue_thm1
⊢ ∀X p s A.
    prob_space p ∧ random_variable X p s ∧ A ∈ subsets s ⇒
    (distribution p X A = ∫ p (𝟙 (PREIMAGE X A ∩ p_space p)))
distribution_lebesgue_thm2
⊢ ∀X p s A.
    prob_space p ∧ random_variable X p s ∧ A ∈ subsets s ⇒
    (distribution p X A = ∫ (space s,subsets s,distribution p X) (𝟙 A))
distribution_not_infty
⊢ ∀p X a.
    prob_space p ∧ (events p = POW (p_space p)) ⇒
    distribution p X a ≠ −∞ ∧ distribution p X a ≠ +∞
distribution_partition
⊢ ∀p X.
    prob_space p ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ∧ FINITE (p_space p) ∧
    random_variable X p Borel ⇒
    (∑ (λx. distribution p X {x}) (IMAGE X (p_space p)) = 1)
distribution_pos
⊢ ∀p X a. prob_space p ∧ (events p = POW (p_space p)) ⇒ 0 ≤ distribution p X a
distribution_prob_space
⊢ ∀p X s.
    prob_space p ∧ random_variable X p s ⇒
    prob_space (space s,subsets s,distribution p X)
distribution_x_eq_1_imp_distribution_y_eq_0
⊢ ∀X p x.
    prob_space p ∧
    random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
    (distribution p X {x} = 1) ⇒
    ∀y. y ≠ x ⇒ (distribution p X {y} = 0)
equivalent_lemma
⊢ ∀p X Y.
    prob_space p ∧ equivalent p X Y ∧ (∀n. real_random_variable (X n) p) ∧
    (∀n. real_random_variable (Y n) p) ⇒
    ∃N f.
      N ∈ null_set p ∧
      ∀x. x ∈ p_space p DIFF N ⇒ ∀n. f x ≤ n ⇒ (X n x − Y n x = 0)
equivalent_thm1
⊢ ∀p X Y Z.
    prob_space p ∧ equivalent p X Y ∧ (∀n. real_random_variable (X n) p) ∧
    (∀n. real_random_variable (Y n) p) ∧
    (∀n x. Z n x = ∑ (λn. X n x − Y n x) (count n)) ⇒
    ∃W. real_random_variable W p ∧ (Z ⟶ W) (almost_everywhere p)
equivalent_thm2
⊢ ∀p X Y a Z.
    prob_space p ∧ equivalent p X Y ∧ (∀n. real_random_variable (X n) p) ∧
    (∀n. real_random_variable (Y n) p) ∧ mono_increasing a ∧
    (sup (IMAGE a 𝕌(:num)) = +∞) ∧
    (∀n x. Z n x = ∑ (λn. X n x − Y n x) (count n) / a n) ⇒
    (Z ⟶ (λx. 0)) (almost_everywhere p)
expectation_bounds
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)}) ≤
    expectation p (abs ∘ X) ∧
    expectation p (abs ∘ X) ≤
    1 + suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)})
expectation_const
⊢ ∀p c. prob_space p ⇒ (expectation p (λx. Normal c) = Normal c)
expectation_converge
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    (expectation p (abs ∘ X) < +∞ ⇔
     suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)}) < +∞)
expectation_converge'
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    ((expectation p (abs ∘ X) = +∞) ⇔
     (suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)}) = +∞))
expectation_distribution
⊢ ∀p X f.
    prob_space p ∧ random_variable X p Borel ∧ f ∈ Borel_measurable Borel ⇒
    (expectation p (f ∘ X) = ∫ (space Borel,subsets Borel,distribution p X) f) ∧
    (integrable p (f ∘ X) ⇔
     integrable (space Borel,subsets Borel,distribution p X) f)
expectation_finite
⊢ ∀p X.
    prob_space p ∧ integrable p X ⇒
    expectation p X ≠ +∞ ∧ expectation p X ≠ −∞
expectation_indicator
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (expectation p (𝟙 s) = prob p s)
expectation_normal
⊢ ∀p X. prob_space p ∧ integrable p X ⇒ ∃r. expectation p X = Normal r
expectation_pdf_1
⊢ ∀p X.
    prob_space p ∧ random_variable X p Borel ∧ distribution p X ≪ ext_lborel ⇒
    (expectation ext_lborel (pdf p X) = 1)
expectation_posinf
⊢ ∀p. prob_space p ⇒ (expectation p (λx. +∞) = +∞)
expectation_real_affine
⊢ ∀p X c.
    prob_space p ∧ real_random_variable X p ∧ integrable p X ∧ c ≠ +∞ ∧ c ≠ −∞ ⇒
    (expectation p (λx. X x + c) = expectation p X + c)
finite_expectation
⊢ ∀p X.
    prob_space p ∧ FINITE (p_space p) ∧ real_random_variable X p ∧
    integrable p X ⇒
    (expectation p X = ∑ (λr. r * distribution p X {r}) (IMAGE X (p_space p)))
finite_expectation1
⊢ ∀p X.
    prob_space p ∧ FINITE (p_space p) ∧ real_random_variable X p ∧
    integrable p X ⇒
    (expectation p X =
     ∑ (λr. r * prob p (PREIMAGE X {r} ∩ p_space p)) (IMAGE X (p_space p)))
finite_expectation2
⊢ ∀p X.
    prob_space p ∧ FINITE (IMAGE X (p_space p)) ∧ real_random_variable X p ∧
    integrable p X ⇒
    (expectation p X =
     ∑ (λr. r * prob p (PREIMAGE X {r} ∩ p_space p)) (IMAGE X (p_space p)))
finite_marginal_product_space_POW
⊢ ∀p X Y.
    prob_space p ∧ FINITE (p_space p) ∧ (POW (p_space p) = events p) ∧
    random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
    random_variable Y p (IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) ⇒
    measure_space
      (IMAGE X (p_space p) × IMAGE Y (p_space p),
       POW (IMAGE X (p_space p) × IMAGE Y (p_space p)),
       (λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p)))
finite_marginal_product_space_POW2
⊢ ∀p s1 s2 X Y.
    prob_space p ∧ FINITE (p_space p) ∧ (POW (p_space p) = events p) ∧
    random_variable X p (s1,POW s1) ∧ random_variable Y p (s2,POW s2) ∧
    FINITE s1 ∧ FINITE s2 ⇒
    measure_space (s1 × s2,POW (s1 × s2),joint_distribution p X Y)
finite_marginal_product_space_POW3
⊢ ∀p s1 s2 s3 X Y Z.
    prob_space p ∧ FINITE (p_space p) ∧ (POW (p_space p) = events p) ∧
    random_variable X p (s1,POW s1) ∧ random_variable Y p (s2,POW s2) ∧
    random_variable Z p (s3,POW s3) ∧ FINITE s1 ∧ FINITE s2 ∧ FINITE s3 ⇒
    measure_space
      (s1 × (s2 × s3),POW (s1 × (s2 × s3)),joint_distribution3 p X Y Z)
finite_second_moments_all
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    (finite_second_moments p X ⇔ ∀r. second_moment p X (Normal r) < +∞)
finite_second_moments_alt
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    (finite_second_moments p X ⇔ second_moment p X 0 < +∞)
finite_second_moments_eq_finite_variance
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    (finite_second_moments p X ⇔ variance p X < +∞)
finite_second_moments_eq_integrable_square
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    (finite_second_moments p X ⇔ integrable p (λx. (X x)²))
finite_second_moments_eq_integrable_squares
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    (finite_second_moments p X ⇔ ∀c. integrable p (λx. (X x − Normal c)²))
finite_second_moments_imp_finite_expectation
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ⇒
    expectation p X ≠ +∞ ∧ expectation p X ≠ −∞
finite_second_moments_imp_integrable
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ⇒
    integrable p X
finite_second_moments_indicator_fn
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ finite_second_moments p (𝟙 s)
finite_second_moments_literally
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ⇒
    (finite_second_moments p X ⇔ expectation p (λx. (X x)²) < +∞)
finite_support_expectation
⊢ ∀p X.
    prob_space p ∧ FINITE (IMAGE X (p_space p)) ∧ real_random_variable X p ∧
    integrable p X ⇒
    (expectation p X = ∑ (λr. r * distribution p X {r}) (IMAGE X (p_space p)))
identical_distribution_expectation
⊢ ∀p X.
    prob_space p ∧ (∀n. random_variable (X n) p Borel) ∧
    identical_distribution p X Borel 𝕌(:num) ⇒
    ∀n. expectation p (X n) = expectation p (X 0)
identical_distribution_expectation_general
⊢ ∀p X J.
    prob_space p ∧ J ≠ ∅ ∧ (∀n. n ∈ J ⇒ random_variable (X n) p Borel) ∧
    identical_distribution p X Borel 𝕌(:'index) ⇒
    ∃e. ∀n. n ∈ J ⇒ (expectation p (X n) = e)
identical_distribution_integrable
⊢ ∀p X.
    prob_space p ∧ (∀n. random_variable (X n) p Borel) ∧
    identical_distribution p X Borel 𝕌(:num) ∧ integrable p (X 0) ⇒
    ∀n. integrable p (X n)
identical_distribution_integrable_general
⊢ ∀p X J.
    prob_space p ∧ (∀n. n ∈ J ⇒ random_variable (X n) p Borel) ∧
    identical_distribution p X Borel 𝕌(:'index) ∧
    (∃i. i ∈ J ∧ integrable p (X i)) ⇒
    ∀n. n ∈ J ⇒ integrable p (X n)
indep_vars_comm
⊢ ∀p X Y s t. indep_vars p X Y s t ⇒ indep_vars p Y X t s
integrable_absolute_moments
⊢ ∀p X n.
    prob_space p ∧ real_random_variable X p ∧
    integrable p (λx. abs (X x) pow n) ⇒
    ∀m. m ≤ n ⇒ integrable p (λx. abs (X x) pow m)
integrable_from_square
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ∧ integrable p (λx. (X x)²) ⇒
    integrable p X
integrable_imp_finite_expectation
⊢ ∀p X.
    prob_space p ∧ integrable p X ⇒
    expectation p X ≠ +∞ ∧ expectation p X ≠ −∞
joint_conditional
⊢ ∀p X Y a b.
    prob_space p ∧ (events p = POW (p_space p)) ⇒
    (joint_distribution p X Y (a × b) =
     conditional_distribution p Y X b a * distribution p X a)
joint_distribution_le
⊢ ∀p X Y a b.
    prob_space p ∧ (events p = POW (p_space p)) ⇒
    joint_distribution p X Y (a × b) ≤ distribution p X a
joint_distribution_le2
⊢ ∀p X Y a b.
    prob_space p ∧ (events p = POW (p_space p)) ⇒
    joint_distribution p X Y (a × b) ≤ distribution p Y b
joint_distribution_le_1
⊢ ∀p X Y a.
    prob_space p ∧ (events p = POW (p_space p)) ⇒
    joint_distribution p X Y a ≤ 1
joint_distribution_not_infty
⊢ ∀p X Y a.
    prob_space p ∧ (events p = POW (p_space p)) ⇒
    joint_distribution p X Y a ≠ −∞ ∧ joint_distribution p X Y a ≠ +∞
joint_distribution_pos
⊢ ∀p X Y a.
    prob_space p ∧ (events p = POW (p_space p)) ⇒
    0 ≤ joint_distribution p X Y a
joint_distribution_sum_mul1
⊢ ∀p X Y f.
    prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ∧
    (∀x. f x ≠ +∞ ∧ f x ≠ −∞) ⇒
    (∑ (λ(x,y). joint_distribution p X Y {(x,y)} * f x)
       (IMAGE X (p_space p) × IMAGE Y (p_space p)) =
     ∑ (λx. distribution p X {x} * f x) (IMAGE X (p_space p)))
joint_distribution_sums_1
⊢ ∀p X Y.
    prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
    (∑ (λ(x,y). joint_distribution p X Y {(x,y)})
       (IMAGE X (p_space p) × IMAGE Y (p_space p)) = 1)
joint_distribution_sym
⊢ ∀p X Y a b.
    prob_space p ⇒
    (joint_distribution p X Y (a × b) = joint_distribution p Y X (b × a))
marginal_distribution1
⊢ ∀p X Y a.
    prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
    (distribution p X a =
     ∑ (λx. joint_distribution p X Y (a × {x})) (IMAGE Y (p_space p)))
marginal_distribution2
⊢ ∀p X Y b.
    prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
    (distribution p Y b =
     ∑ (λx. joint_distribution p X Y ({x} × b)) (IMAGE X (p_space p)))
marginal_joint_zero
⊢ ∀p X Y s t.
    prob_space p ∧ (events p = POW (p_space p)) ∧
    ((distribution p X s = 0) ∨ (distribution p Y t = 0)) ⇒
    (joint_distribution p X Y (s × t) = 0)
marginal_joint_zero3
⊢ ∀p X Y Z s t u.
    prob_space p ∧ (events p = POW (p_space p)) ∧
    ((distribution p X s = 0) ∨ (distribution p Y t = 0) ∨
     (distribution p Z u = 0)) ⇒
    (joint_distribution3 p X Y Z (s × (t × u)) = 0)
pairwise_indep_events_def
⊢ ∀p E J.
    pairwise_indep_events p E J ⇔
    ∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ indep p (E i) (E j)
pairwise_indep_sets_def
⊢ ∀p A J.
    pairwise_indep_sets p A J ⇔
    ∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ indep_sets p (A i) (A j)
pairwise_indep_vars_def
⊢ ∀p X A J.
    pairwise_indep_vars p X A J ⇔
    ∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ indep_vars p (X i) (X j) (A i) (A j)
pdf_le_pos
⊢ ∀p X x.
    prob_space p ∧ random_variable X p Borel ∧ distribution p X ≪ ext_lborel ⇒
    0 ≤ pdf p X x
prob_markov_ineq
⊢ ∀p X c.
    prob_space p ∧ integrable p X ∧ 0 < c ⇒
    prob p ({x | c ≤ abs (X x)} ∩ p_space p) ≤ c⁻¹ * expectation p (abs ∘ X)
prob_markov_inequality
⊢ ∀p X a c.
    prob_space p ∧ integrable p X ∧ 0 < c ∧ a ∈ events p ⇒
    prob p ({x | c ≤ abs (X x)} ∩ a) ≤
    c⁻¹ * expectation p (λx. abs (X x) * 𝟙 a x)
prob_x_eq_1_imp_prob_y_eq_0
⊢ ∀p x.
    prob_space p ∧ {x} ∈ events p ∧ (prob p {x} = 1) ⇒
    ∀y. {y} ∈ events p ∧ y ≠ x ⇒ (prob p {y} = 0)
random_variable_compose
⊢ ∀p X f.
    prob_space p ∧ random_variable X p Borel ∧ f ∈ Borel_measurable Borel ⇒
    random_variable (f ∘ X) p Borel
random_variable_functional
⊢ ∀p X Y f.
    prob_space p ∧ random_variable X p Borel ∧ random_variable Y p Borel ∧
    f ∈ Borel_measurable (Borel × Borel) ⇒
    random_variable (λx. f (X x,Y x)) p Borel
real_random_variable
⊢ ∀X p.
    real_random_variable X p ⇔
    X ∈ Borel_measurable (p_space p,events p) ∧ ∀x. X x ≠ −∞ ∧ X x ≠ +∞
real_random_variable_sub
⊢ ∀p X Y.
    prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ⇒
    real_random_variable (λx. X x − Y x) p
real_random_variable_zero
⊢ ∀p. prob_space p ⇒ real_random_variable (λx. 0) p
second_moment_alt
⊢ ∀p X. second_moment p X 0 = expectation p (λx. (X x)²)
second_moment_pos
⊢ ∀p X a. prob_space p ⇒ 0 ≤ second_moment p X a
total_imp_pairwise_indep_events
⊢ ∀p E J.
    (∀n. n ∈ J ⇒ E n ∈ events p) ∧ indep_events p E J ⇒
    pairwise_indep_events p E J
total_imp_pairwise_indep_sets
⊢ ∀p A J.
    (∀n. n ∈ J ⇒ A n ⊆ events p) ∧ indep_sets p A J ⇒
    pairwise_indep_sets p A J
total_imp_pairwise_indep_vars
⊢ ∀p X A J.
    (∀i. i ∈ J ⇒ random_variable (X i) p (A i)) ∧ indep_vars p X A J ⇒
    pairwise_indep_vars p X A J
uncorrelated_covariance
⊢ ∀p X Y.
    prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ∧
    uncorrelated p X Y ⇒
    (covariance p X Y = 0)
uncorrelated_orthogonal
⊢ ∀p X Y.
    prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ∧
    (expectation p X = 0) ∧ (expectation p Y = 0) ⇒
    (uncorrelated p X Y ⇔ orthogonal p X Y)
uncorrelated_thm
⊢ ∀p X Y.
    prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ∧
    uncorrelated p X Y ⇒
    (expectation p (λs. (X s − expectation p X) * (Y s − expectation p Y)) = 0)
uniform_distribution_prob_space
⊢ ∀X p s.
    prob_space p ∧ FINITE (p_space p) ∧ FINITE (space s) ∧
    random_variable X p s ⇒
    prob_space (space s,subsets s,uniform_distribution s)
variance_alt
⊢ ∀p X. variance p X = expectation p (λx. (X x − expectation p X)²)
variance_eq
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ∧ integrable p (λx. (X x)²) ⇒
    (variance p X = expectation p (λx. (X x)²) − (expectation p X)²)
variance_eq_indicator_fn
⊢ ∀p s.
    prob_space p ∧ s ∈ events p ⇒
    (variance p (𝟙 s) = expectation p (𝟙 s) − (expectation p (𝟙 s))²)
variance_le
⊢ ∀p X.
    prob_space p ∧ real_random_variable X p ∧ integrable p (λx. (X x)²) ⇒
    variance p X ≤ expectation p (λx. (X x)²)
variance_le_indicator_fn
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ variance p (𝟙 s) ≤ expectation p (𝟙 s)
variance_pos
⊢ ∀p X. prob_space p ⇒ 0 ≤ variance p X
variance_real_affine
⊢ ∀p X c.
    prob_space p ∧ real_random_variable X p ∧ integrable p X ∧ c ≠ +∞ ∧ c ≠ −∞ ⇒
    (variance p (λx. X x + c) = variance p X)
variance_real_affine'
⊢ ∀p X c.
    prob_space p ∧ real_random_variable X p ∧ integrable p X ∧ c ≠ +∞ ∧ c ≠ −∞ ⇒
    (variance p (λx. X x − c) = variance p X)
variance_sum
⊢ ∀p X J.
    prob_space p ∧ FINITE J ∧ (∀i. i ∈ J ⇒ real_random_variable (X i) p) ∧
    uncorrelated_vars p X J ⇒
    (variance p (λx. ∑ (λn. X n x) J) = ∑ (λn. variance p (X n)) J)
variance_sum_indicator_fn
⊢ ∀p E J.
    prob_space p ∧ (∀n. n ∈ J ⇒ E n ∈ events p) ∧
    pairwise_indep_events p E J ∧ FINITE J ⇒
    (variance p (λx. ∑ (λn. (𝟙 ∘ E) n x) J) = ∑ (λn. variance p ((𝟙 ∘ E) n)) J)