- ABS_1_MINUS_PROB
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ∧ prob p s ≠ 0 ⇒ abs (1 − prob p s) < 1
- ABS_PROB
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (abs (prob p s) = prob p s)
- ADDITIVE_PROB
-
⊢ ∀p. additive p ⇔
∀s t.
s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧ s ∪ t ∈ events p ⇒
(prob p (s ∪ t) = prob p s + prob p t)
- BAYES_RULE
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A ≠ 0 ∧ prob p B ≠ 0 ⇒
(cond_prob p B A = cond_prob p A B * prob p B / prob p A)
- BAYES_RULE_GENERAL_SIGMA
-
⊢ ∀p A B s k.
prob_space p ∧ A ∈ events p ∧ prob p A ≠ 0 ∧ FINITE s ∧
(∀x. x ∈ s ⇒ B x ∈ events p ∧ prob p (B x) ≠ 0) ∧ k ∈ s ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
(BIGUNION (IMAGE B s) = p_space p) ⇒
(cond_prob p (B k) A =
cond_prob p A (B k) * prob p (B k) /
∑ (λi. prob p (B i) * cond_prob p A (B i)) s)
- Borel_0_1_Law
-
⊢ ∀p E.
prob_space p ∧ (∀n. E n ∈ events p) ∧ pairwise_indep_events p E 𝕌(:num) ⇒
(prob p (limsup E) = 0) ∨ (prob p (limsup E) = 1)
- Borel_Cantelli_Lemma1
-
⊢ ∀p E.
prob_space p ∧ (∀n. E n ∈ events p) ∧ suminf (prob p ∘ E) < +∞ ⇒
(prob p (limsup E) = 0)
- Borel_Cantelli_Lemma2
-
⊢ ∀p E.
prob_space p ∧ (∀n. E n ∈ events p) ∧ indep_events p E 𝕌(:num) ∧
(suminf (prob p ∘ E) = +∞) ⇒
(prob p (limsup E) = 1)
- Borel_Cantelli_Lemma2p
-
⊢ ∀p E.
prob_space p ∧ (∀n. E n ∈ events p) ∧ pairwise_indep_events p E 𝕌(:num) ∧
(suminf (prob p ∘ E) = +∞) ⇒
(prob p (limsup E) = 1)
- COND_PROB_ADDITIVE
-
⊢ ∀p A B s.
prob_space p ∧ FINITE s ∧ B ∈ events p ∧ (∀x. x ∈ s ⇒ A x ∈ events p) ∧
prob p B ≠ 0 ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (A x) (A y)) ∧
(BIGUNION (IMAGE A s) = p_space p) ⇒
(∑ (λi. cond_prob p (A i) B) s = 1)
- COND_PROB_BOUNDS
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
0 ≤ cond_prob p A B ∧ cond_prob p A B ≤ 1
- COND_PROB_COMPL
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ COMPL A ∈ events p ∧ B ∈ events p ∧
prob p B ≠ 0 ⇒
(cond_prob p (COMPL A) B = 1 − cond_prob p A B)
- COND_PROB_DIFF
-
⊢ ∀p A1 A2 B.
prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
(cond_prob p (A1 DIFF A2) B = cond_prob p A1 B − cond_prob p (A1 ∩ A2) B)
- COND_PROB_FINITE
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
cond_prob p A B ≠ +∞ ∧ cond_prob p A B ≠ −∞
- COND_PROB_FINITE_ADDITIVE
-
⊢ ∀p A B n s.
prob_space p ∧ B ∈ events p ∧ A ∈ (count n → events p) ∧
(s = BIGUNION (IMAGE A (count n))) ∧ prob p B ≠ 0 ∧
(∀a b. a ≠ b ⇒ DISJOINT (A a) (A b)) ⇒
(cond_prob p s B = ∑ (λi. cond_prob p (A i) B) (count n))
- COND_PROB_INCREASING
-
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧ prob p C ≠ 0 ⇒
cond_prob p (A ∩ B) C ≤ cond_prob p A C
- COND_PROB_INTER_SPLIT
-
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧
prob p (B ∩ C) ≠ 0 ⇒
(cond_prob p (A ∩ B) C = cond_prob p A (B ∩ C) * cond_prob p B C)
- COND_PROB_ITSELF
-
⊢ ∀p B. prob_space p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒ (cond_prob p B B = 1)
- COND_PROB_MUL_EQ
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A ≠ 0 ∧ prob p B ≠ 0 ⇒
(cond_prob p A B * prob p B = cond_prob p B A * prob p A)
- COND_PROB_MUL_RULE
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
(prob p (A ∩ B) = prob p B * cond_prob p A B)
- COND_PROB_POS_IMP_PROB_NZ
-
⊢ ∀A B p.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ 0 < cond_prob p A B ∧
prob p B ≠ 0 ⇒
prob p (A ∩ B) ≠ 0
- COND_PROB_SWAP
-
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧
prob p (B ∩ C) ≠ 0 ∧ prob p (A ∩ C) ≠ 0 ⇒
(cond_prob p A (B ∩ C) * cond_prob p B C =
cond_prob p B (A ∩ C) * cond_prob p A C)
- COND_PROB_UNION
-
⊢ ∀p A1 A2 B.
prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ B ∈ events p ∧ prob p B ≠ 0 ⇒
(cond_prob p (A1 ∪ A2) B =
cond_prob p A1 B + cond_prob p A2 B − cond_prob p (A1 ∩ A2) B)
- COND_PROB_ZERO
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p A = 0) ∧ prob p B ≠ 0 ⇒
(cond_prob p A B = 0)
- COND_PROB_ZERO_INTER
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p (A ∩ B) = 0) ∧
prob p B ≠ 0 ⇒
(cond_prob p A B = 0)
- COUNTABLY_ADDITIVE_PROB
-
⊢ ∀p. countably_additive p ⇔
∀f. f ∈ (𝕌(:num) → events p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
BIGUNION (IMAGE f 𝕌(:num)) ∈ events p ⇒
(prob p (BIGUNION (IMAGE f 𝕌(:num))) = suminf (prob p ∘ f))
- EVENTS
-
⊢ ∀a b c. events (a,b,c) = b
- EVENTS_ALGEBRA
-
⊢ ∀p. prob_space p ⇒ algebra (p_space p,events p)
- EVENTS_BIGINTER_FN
-
⊢ ∀p A J.
prob_space p ∧ IMAGE A J ⊆ events p ∧ COUNTABLE J ∧ J ≠ ∅ ⇒
BIGINTER (IMAGE A J) ∈ events p
- EVENTS_BIGUNION
-
⊢ ∀p f n.
prob_space p ∧ f ∈ (count n → events p) ⇒
BIGUNION (IMAGE f (count n)) ∈ events p
- EVENTS_COMPL
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p DIFF s ∈ events p
- EVENTS_COUNTABLE_INTER
-
⊢ ∀p c.
prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ∧ c ≠ ∅ ⇒ BIGINTER c ∈ events p
- EVENTS_COUNTABLE_UNION
-
⊢ ∀p c. prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ⇒ BIGUNION c ∈ events p
- EVENTS_DIFF
-
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s DIFF t ∈ events p
- EVENTS_EMPTY
-
⊢ ∀p. prob_space p ⇒ ∅ ∈ events p
- EVENTS_INTER
-
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∩ t ∈ events p
- EVENTS_LIMINF
-
⊢ ∀p E. prob_space p ∧ (∀n. E n ∈ events p) ⇒ liminf E ∈ events p
- EVENTS_LIMSUP
-
⊢ ∀p E. prob_space p ∧ (∀n. E n ∈ events p) ⇒ limsup E ∈ events p
- EVENTS_SIGMA_ALGEBRA
-
⊢ ∀p. prob_space p ⇒ sigma_algebra (p_space p,events p)
- EVENTS_SPACE
-
⊢ ∀p. prob_space p ⇒ p_space p ∈ events p
- EVENTS_UNION
-
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∪ t ∈ events p
- EXPECTATION_PDF_1
-
⊢ ∀p X.
prob_space p ∧ random_variable X p borel ∧ distribution p X ≪ lborel ⇒
(expectation lborel (PDF p X) = 1)
- INCREASING_PROB
-
⊢ ∀p. increasing p ⇔
∀s t. s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
- INDEP_COMPL
-
⊢ ∀p s t. prob_space p ∧ indep p s t ⇒ indep p s (p_space p DIFF t)
- INDEP_COMPL2
-
⊢ ∀p s t.
prob_space p ∧ indep p s t ⇒ indep p (p_space p DIFF s) (p_space p DIFF t)
- INDEP_EMPTY
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p ∅ s
- INDEP_FAMILIES_SIGMA
-
⊢ ∀p A M N.
prob_space p ∧ IMAGE A (M ∪ N) ⊆ events p ∧ indep_events p A (M ∪ N) ∧
DISJOINT M N ∧ M ≠ ∅ ∧ N ≠ ∅ ⇒
indep_sets p (subsets (sigma (p_space p) (IMAGE A M)))
(subsets (sigma (p_space p) (IMAGE A N)))
- INDEP_FAMILIES_SYM
-
⊢ ∀p q r. indep_sets p q r ⇒ indep_sets p r q
- INDEP_REFL
-
⊢ ∀p a.
prob_space p ∧ a ∈ events p ⇒
(indep p a a ⇔ (prob p a = 0)) ∨ (prob p a = 1)
- INDEP_SPACE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p (p_space p) s
- INDEP_SYM
-
⊢ ∀p a b. indep p a b ⇒ indep p b a
- INDEP_SYM_EQ
-
⊢ ∀p a b. indep p a b ⇔ indep p b a
- INDICATOR_FN_REAL_RV
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ real_random_variable (𝟙 s) p
- INTER_PSPACE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (p_space p ∩ s = s)
- Kolmogorov_0_1_Law
-
⊢ ∀p E.
prob_space p ∧ (∀n. E n ∈ events p) ∧ indep_events p E 𝕌(:num) ⇒
∀e. e ∈ subsets (tail_algebra p E) ⇒ (prob p e = 0) ∨ (prob p e = 1)
- PDF_LE_POS
-
⊢ ∀p X.
prob_space p ∧ random_variable X p borel ∧ distribution p X ≪ lborel ⇒
∀x. 0 ≤ PDF p X x
- POSITIVE_PROB
-
⊢ ∀p. positive p ⇔ (prob p ∅ = 0) ∧ ∀s. s ∈ events p ⇒ 0 ≤ prob p s
- PROB
-
⊢ ∀a b c. prob (a,b,c) = c
- PROB_ADDITIVE
-
⊢ ∀p s t u.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧ (u = s ∪ t) ⇒
(prob p u = prob p s + prob p t)
- PROB_COMPL
-
⊢ ∀p s.
prob_space p ∧ s ∈ events p ⇒ (prob p (p_space p DIFF s) = 1 − prob p s)
- PROB_COMPL_LE1
-
⊢ ∀p s r.
prob_space p ∧ s ∈ events p ⇒
(prob p (p_space p DIFF s) ≤ r ⇔ 1 − r ≤ prob p s)
- PROB_COUNTABLY_ADDITIVE
-
⊢ ∀p s f.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
(prob p s = suminf (prob p ∘ f))
- PROB_COUNTABLY_SUBADDITIVE
-
⊢ ∀p f.
prob_space p ∧ IMAGE f 𝕌(:num) ⊆ events p ⇒
prob p (BIGUNION (IMAGE f 𝕌(:num))) ≤ suminf (prob p ∘ f)
- PROB_COUNTABLY_ZERO
-
⊢ ∀p c.
prob_space p ∧ COUNTABLE c ∧ c ⊆ events p ∧ (∀x. x ∈ c ⇒ (prob p x = 0)) ⇒
(prob p (BIGUNION c) = 0)
- PROB_DIFF_SUBSET
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ t ⊆ s ⇒
(prob p (s DIFF t) = prob p s − prob p t)
- PROB_DISCRETE_EVENTS
-
⊢ ∀p. prob_space p ∧ FINITE (p_space p) ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
∀s. s ⊆ p_space p ⇒ s ∈ events p
- PROB_DISCRETE_EVENTS_COUNTABLE
-
⊢ ∀p. prob_space p ∧ COUNTABLE (p_space p) ∧
(∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
∀s. s ⊆ p_space p ⇒ s ∈ events p
- PROB_EMPTY
-
⊢ ∀p. prob_space p ⇒ (prob p ∅ = 0)
- PROB_EQUIPROBABLE_FINITE_UNIONS
-
⊢ ∀p s.
prob_space p ∧ FINITE s ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧
(∀x y. x ∈ s ∧ y ∈ s ⇒ (prob p {x} = prob p {y})) ⇒
(prob p s = &CARD s * prob p {CHOICE s})
- PROB_EQ_BIGUNION_IMAGE
-
⊢ ∀p f g.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ g ∈ (𝕌(:num) → events p) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
(∀m n. m ≠ n ⇒ DISJOINT (g m) (g n)) ∧ (∀n. prob p (f n) = prob p (g n)) ⇒
(prob p (BIGUNION (IMAGE f 𝕌(:num))) = prob p (BIGUNION (IMAGE g 𝕌(:num))))
- PROB_EQ_COMPL
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧
(prob p (p_space p DIFF s) = prob p (p_space p DIFF t)) ⇒
(prob p s = prob p t)
- PROB_EXTREAL_SUM_IMAGE
-
⊢ ∀p s.
prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧ FINITE s ⇒
(prob p s = ∑ (λx. prob p {x}) s)
- PROB_EXTREAL_SUM_IMAGE_FN
-
⊢ ∀p f e s.
prob_space p ∧ e ∈ events p ∧ (∀x. x ∈ s ⇒ e ∩ f x ∈ events p) ∧
FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (f x) (f y)) ∧
(BIGUNION (IMAGE f s) ∩ p_space p = p_space p) ⇒
(prob p e = ∑ (λx. prob p (e ∩ f x)) s)
- PROB_EXTREAL_SUM_IMAGE_SPACE
-
⊢ ∀p. prob_space p ∧ FINITE (p_space p) ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
(∑ (λx. prob p {x}) (p_space p) = 1)
- PROB_FINITE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≠ −∞ ∧ prob p s ≠ +∞
- PROB_FINITE_ADDITIVE
-
⊢ ∀p s f t.
prob_space p ∧ FINITE s ∧ (∀x. x ∈ s ⇒ f x ∈ events p) ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
(t = BIGUNION (IMAGE f s)) ⇒
(prob p t = ∑ (prob p ∘ f) s)
- PROB_GSPEC
-
⊢ ∀P p s. prob p {x | x ∈ s ∧ P x} = prob p ({x | P x} ∩ s)
- PROB_INCREASING
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
- PROB_INCREASING_UNION
-
⊢ ∀p f.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
(sup (IMAGE (prob p ∘ f) 𝕌(:num)) = prob p (BIGUNION (IMAGE f 𝕌(:num))))
- PROB_INDEP
-
⊢ ∀p s t u. indep p s t ∧ (u = s ∩ t) ⇒ (prob p u = prob p s * prob p t)
- PROB_INTER_SPLIT
-
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ∧
prob p (B ∩ C) ≠ 0 ⇒
(prob p (A ∩ B ∩ C) = cond_prob p A (B ∩ C) * cond_prob p B C * prob p C)
- PROB_INTER_ZERO
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p B = 0) ⇒
(prob p (A ∩ B) = 0)
- PROB_LE_1
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≤ 1
- PROB_LIMINF
-
⊢ ∀p E.
prob_space p ∧ (∀n. E n ∈ events p) ⇒
(prob p (liminf E) =
sup (IMAGE (λm. prob p (BIGINTER {E n | m ≤ n})) 𝕌(:num)))
- PROB_LIMSUP
-
⊢ ∀p E.
prob_space p ∧ (∀n. E n ∈ events p) ⇒
(prob p (limsup E) =
inf (IMAGE (λm. prob p (BIGUNION {E n | m ≤ n})) 𝕌(:num)))
- PROB_LT_POSINF
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s < +∞
- PROB_ONE_AE
-
⊢ ∀p E. prob_space p ∧ E ∈ events p ∧ (prob p E = 1) ⇒ AE x::p. x ∈ E
- PROB_ONE_INTER
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 1) ⇒
(prob p (s ∩ t) = prob p s)
- PROB_POSITIVE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ 0 ≤ prob p s
- PROB_SPACE
-
⊢ ∀p. prob_space p ⇔
sigma_algebra (p_space p,events p) ∧ positive p ∧ countably_additive p ∧
(prob p (p_space p) = 1)
- PROB_SPACE_ADDITIVE
-
⊢ ∀p. prob_space p ⇒ additive p
- PROB_SPACE_COUNTABLY_ADDITIVE
-
⊢ ∀p. prob_space p ⇒ countably_additive p
- PROB_SPACE_INCREASING
-
⊢ ∀p. prob_space p ⇒ increasing p
- PROB_SPACE_IN_PSPACE
-
⊢ ∀p E. prob_space p ∧ E ∈ events p ⇒ ∀x. x ∈ E ⇒ x ∈ p_space p
- PROB_SPACE_POSITIVE
-
⊢ ∀p. prob_space p ⇒ positive p
- PROB_SPACE_SIGMA_FINITE
-
⊢ ∀p. prob_space p ⇒ sigma_finite p
- PROB_SPACE_SUBSET_PSPACE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ s ⊆ p_space p
- PROB_SUBADDITIVE
-
⊢ ∀p t u.
prob_space p ∧ t ∈ events p ∧ u ∈ events p ⇒
prob p (t ∪ u) ≤ prob p t + prob p u
- PROB_UNDER_UNIV
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (prob p (s ∩ p_space p) = prob p s)
- PROB_UNIV
-
⊢ ∀p. prob_space p ⇒ (prob p (p_space p) = 1)
- PROB_ZERO_AE
-
⊢ ∀p E. prob_space p ∧ E ∈ events p ∧ (prob p E = 0) ⇒ AE x::p. x ∉ E
- PROB_ZERO_INTER
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p A = 0) ⇒
(prob p (A ∩ B) = 0)
- PROB_ZERO_UNION
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 0) ⇒
(prob p (s ∪ t) = prob p s)
- PSPACE
-
⊢ ∀a b c. p_space (a,b,c) = a
- SLLN_uncorrelated
-
⊢ ∀p X S M.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
(∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
(∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
(∀n x. S n x = ∑ (λi. X i x) (count n)) ∧ (∀n. M n = expectation p (S n)) ⇒
((λn x. (S (SUC n) x − M (SUC n)) / &SUC n) ⟶ (λx. 0))
(almost_everywhere p)
- SLLN_uncorrelated'
-
⊢ ∀p X S.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
(∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
(∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
(∀n x. S n x = ∑ (λi. X i x) (count n)) ⇒
((λn x. (S n x − expectation p (S n)) / &n) ⟶ (λx. 0))
(almost_everywhere p)
- TOTAL_PROB_SIGMA
-
⊢ ∀p A B s.
prob_space p ∧ A ∈ events p ∧ FINITE s ∧
(∀x. x ∈ s ⇒ B x ∈ events p ∧ prob p (B x) ≠ 0) ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
(BIGUNION (IMAGE B s) = p_space p) ⇒
(prob p A = ∑ (λi. prob p (B i) * cond_prob p A (B i)) s)
- WLLN_uncorrelated
-
⊢ ∀p X S M.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
(∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
(∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
(∀n x. S n x = ∑ (λi. X i x) (count n)) ∧ (∀n. M n = expectation p (S n)) ⇒
((λn x. (S (SUC n) x − M (SUC n)) / &SUC n) ⟶ (λx. 0)) (in_probability p)
- WLLN_uncorrelated'
-
⊢ ∀p X S.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
(∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
(∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
(∀n x. S n x = ∑ (λi. X i x) (count n)) ⇒
((λn x. (S n x − expectation p (S n)) / &n) ⟶ (λx. 0)) (in_probability p)
- WLLN_uncorrelated_L2
-
⊢ ∀p X S M.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
(∀i j. i ≠ j ⇒ uncorrelated p (X i) (X j)) ∧
(∃c. c ≠ +∞ ∧ ∀n. variance p (X n) ≤ c) ∧
(∀n x. S n x = ∑ (λi. X i x) (count n)) ∧ (∀n. M n = expectation p (S n)) ⇒
((λn x. (S (SUC n) x − M (SUC n)) / &SUC n) ⟶ (λx. 0)) (in_lebesgue 2 p)
- chebyshev_ineq
-
⊢ ∀p X t c.
prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ∧
0 < t ⇒
prob p ({x | t ≤ abs (X x − Normal c)} ∩ p_space p) ≤
t² ⁻¹ * expectation p (λx. (X x − Normal c)²)
- chebyshev_ineq_variance
-
⊢ ∀p X t.
prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ∧
0 < t ⇒
prob p ({x | t ≤ abs (X x − expectation p X)} ∩ p_space p) ≤
t² ⁻¹ * variance p X
- chebyshev_inequality
-
⊢ ∀p X a t c.
prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ∧
0 < t ∧ a ∈ events p ⇒
prob p ({x | t ≤ abs (X x − Normal c)} ∩ a) ≤
t² ⁻¹ * expectation p (λx. (X x − Normal c)² * 𝟙 a x)
- conditional_distribution_le_1
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ∧ distribution p Y b ≠ 0 ⇒
conditional_distribution p X Y a b ≤ 1
- conditional_distribution_pos
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ∧ distribution p Y b ≠ 0 ⇒
0 ≤ conditional_distribution p X Y a b
- converge_AE_alt_inf
-
⊢ ∀p X Y.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (almost_everywhere p) ⇔
∀e. 0 < e ∧ e ≠ +∞ ⇒
(inf
(IMAGE
(λm.
prob p
{x | x ∈ p_space p ∧ ∃n. m ≤ n ∧ e < abs (X n x − Y x)})
𝕌(:num)) = 0))
- converge_AE_alt_liminf
-
⊢ ∀p X Y.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (almost_everywhere p) ⇔
∀e. 0 < e ∧ e ≠ +∞ ⇒
(prob p (liminf (λn. {x | x ∈ p_space p ∧ abs (X n x − Y x) ≤ e})) =
1))
- converge_AE_alt_limsup
-
⊢ ∀p X Y.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (almost_everywhere p) ⇔
∀e. 0 < e ∧ e ≠ +∞ ⇒
(prob p (limsup (λn. {x | x ∈ p_space p ∧ e < abs (X n x − Y x)})) =
0))
- converge_AE_alt_sup
-
⊢ ∀p X Y.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (almost_everywhere p) ⇔
∀e. 0 < e ∧ e ≠ +∞ ⇒
(sup
(IMAGE
(λm.
prob p
{x | x ∈ p_space p ∧ ∀n. m ≤ n ⇒ abs (X n x − Y x) ≤ e})
𝕌(:num)) = 1))
- converge_AE_def
-
⊢ ∀p X Y.
(X ⟶ Y) (almost_everywhere p) ⇔
AE x::p. ((λn. real (X n x)) ⟶ real (Y x)) sequentially
- converge_AE_imp_PR
-
⊢ ∀p X Y.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
(X ⟶ Y) (almost_everywhere p) ⇒
(X ⟶ Y) (in_probability p)
- converge_AE_imp_PR'
-
⊢ ∀p X.
prob_space p ∧ (∀n. real_random_variable (X n) p) ⇒
(X ⟶ (λx. 0)) (almost_everywhere p) ⇒
(X ⟶ (λx. 0)) (in_probability p)
- converge_AE_shift
-
⊢ ∀p X Y.
((λn. X (SUC n)) ⟶ Y) (almost_everywhere p) ⇒
((λn. X n) ⟶ Y) (almost_everywhere p)
- converge_AE_to_zero
-
⊢ ∀p X Y.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (almost_everywhere p) ⇔
((λn x. X n x − Y x) ⟶ (λx. 0)) (almost_everywhere p))
- converge_AE_to_zero'
-
⊢ ∀p X Y Z.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ∧ (∀n x. Z n x = X n x − Y x) ⇒
((X ⟶ Y) (almost_everywhere p) ⇔ (Z ⟶ (λx. 0)) (almost_everywhere p))
- converge_LP_alt_absolute_moment
-
⊢ ∀p X Y k.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (in_lebesgue (&k) p) ⇔
0 < k ∧ (∀n. expectation p (λx. abs (X n x) pow k) ≠ +∞) ∧
expectation p (λx. abs (Y x) pow k) ≠ +∞ ∧
((λn. real (absolute_moment p (λx. X n x − Y x) 0 k)) ⟶ 0) sequentially)
- converge_LP_alt_pow
-
⊢ ∀p X Y k.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (in_lebesgue (&k) p) ⇔
0 < k ∧ (∀n. expectation p (λx. abs (X n x) pow k) ≠ +∞) ∧
expectation p (λx. abs (Y x) pow k) ≠ +∞ ∧
((λn. real (expectation p (λx. abs (X n x − Y x) pow k))) ⟶ 0)
sequentially)
- converge_LP_def
-
⊢ ∀p X Y r.
(X ⟶ Y) (in_lebesgue r p) ⇔
0 < r ∧ r ≠ +∞ ∧ (∀n. expectation p (λx. abs (X n x) powr r) ≠ +∞) ∧
expectation p (λx. abs (Y x) powr r) ≠ +∞ ∧
((λn. real (expectation p (λx. abs (X n x − Y x) powr r))) ⟶ 0)
sequentially
- converge_LP_imp_PR'
-
⊢ ∀p X k.
prob_space p ∧ (∀n. real_random_variable (X n) p) ⇒
(X ⟶ (λx. 0)) (in_lebesgue (&k) p) ⇒
(X ⟶ (λx. 0)) (in_probability p)
- converge_PR_def
-
⊢ ∀p X Y.
(X ⟶ Y) (in_probability p) ⇔
∀e. 0 < e ∧ e ≠ +∞ ⇒
((λn. real (prob p {x | x ∈ p_space p ∧ e < abs (X n x − Y x)})) ⟶ 0)
sequentially
- converge_PR_shift
-
⊢ ∀p X Y.
((λn. X (SUC n)) ⟶ Y) (in_probability p) ⇒
((λn. X n) ⟶ Y) (in_probability p)
- converge_PR_to_zero
-
⊢ ∀p X Y.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ⇒
((X ⟶ Y) (in_probability p) ⇔
((λn x. X n x − Y x) ⟶ (λx. 0)) (in_probability p))
- converge_PR_to_zero'
-
⊢ ∀p X Y Z.
prob_space p ∧ (∀n. real_random_variable (X n) p) ∧
real_random_variable Y p ∧ (∀n x. Z n x = X n x − Y x) ⇒
((X ⟶ Y) (in_probability p) ⇔ (Z ⟶ (λx. 0)) (in_probability p))
- covariance_self
-
⊢ ∀p X. covariance p X X = variance p X
- distribution_distr
-
⊢ distribution = distr
- distribution_function
-
⊢ ∀p X t. distribution_function p X t = distribution p X {x | x ≤ t}
- distribution_le_1
-
⊢ ∀p X a. prob_space p ∧ (events p = POW (p_space p)) ⇒ distribution p X a ≤ 1
- distribution_lebesgue_thm1
-
⊢ ∀X p s A.
prob_space p ∧ random_variable X p s ∧ A ∈ subsets s ⇒
(distribution p X A = ∫ p (𝟙 (PREIMAGE X A ∩ p_space p)))
- distribution_lebesgue_thm2
-
⊢ ∀X p s A.
prob_space p ∧ random_variable X p s ∧ A ∈ subsets s ⇒
(distribution p X A = ∫ (space s,subsets s,distribution p X) (𝟙 A))
- distribution_not_infty
-
⊢ ∀p X a.
prob_space p ∧ (events p = POW (p_space p)) ⇒
distribution p X a ≠ −∞ ∧ distribution p X a ≠ +∞
- distribution_partition
-
⊢ ∀p X.
prob_space p ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ∧ FINITE (p_space p) ∧
random_variable X p Borel ⇒
(∑ (λx. distribution p X {x}) (IMAGE X (p_space p)) = 1)
- distribution_pos
-
⊢ ∀p X a. prob_space p ∧ (events p = POW (p_space p)) ⇒ 0 ≤ distribution p X a
- distribution_prob_space
-
⊢ ∀p X s.
prob_space p ∧ random_variable X p s ⇒
prob_space (space s,subsets s,distribution p X)
- distribution_x_eq_1_imp_distribution_y_eq_0
-
⊢ ∀X p x.
prob_space p ∧
random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
(distribution p X {x} = 1) ⇒
∀y. y ≠ x ⇒ (distribution p X {y} = 0)
- equivalent_lemma
-
⊢ ∀p X Y.
prob_space p ∧ equivalent p X Y ∧ (∀n. real_random_variable (X n) p) ∧
(∀n. real_random_variable (Y n) p) ⇒
∃N f.
N ∈ null_set p ∧
∀x. x ∈ p_space p DIFF N ⇒ ∀n. f x ≤ n ⇒ (X n x − Y n x = 0)
- equivalent_thm1
-
⊢ ∀p X Y Z.
prob_space p ∧ equivalent p X Y ∧ (∀n. real_random_variable (X n) p) ∧
(∀n. real_random_variable (Y n) p) ∧
(∀n x. Z n x = ∑ (λn. X n x − Y n x) (count n)) ⇒
∃W. real_random_variable W p ∧ (Z ⟶ W) (almost_everywhere p)
- equivalent_thm2
-
⊢ ∀p X Y a Z.
prob_space p ∧ equivalent p X Y ∧ (∀n. real_random_variable (X n) p) ∧
(∀n. real_random_variable (Y n) p) ∧ mono_increasing a ∧
(sup (IMAGE a 𝕌(:num)) = +∞) ∧
(∀n x. Z n x = ∑ (λn. X n x − Y n x) (count n) / a n) ⇒
(Z ⟶ (λx. 0)) (almost_everywhere p)
- expectation_bounds
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)}) ≤
expectation p (abs ∘ X) ∧
expectation p (abs ∘ X) ≤
1 + suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)})
- expectation_const
-
⊢ ∀p c. prob_space p ⇒ (expectation p (λx. Normal c) = Normal c)
- expectation_converge
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
(expectation p (abs ∘ X) < +∞ ⇔
suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)}) < +∞)
- expectation_converge'
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
((expectation p (abs ∘ X) = +∞) ⇔
(suminf (λn. prob p {x | x ∈ p_space p ∧ &SUC n ≤ abs (X x)}) = +∞))
- expectation_distribution
-
⊢ ∀p X f.
prob_space p ∧ random_variable X p Borel ∧ f ∈ Borel_measurable Borel ⇒
(expectation p (f ∘ X) = ∫ (space Borel,subsets Borel,distribution p X) f) ∧
(integrable p (f ∘ X) ⇔
integrable (space Borel,subsets Borel,distribution p X) f)
- expectation_finite
-
⊢ ∀p X.
prob_space p ∧ integrable p X ⇒
expectation p X ≠ +∞ ∧ expectation p X ≠ −∞
- expectation_indicator
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (expectation p (𝟙 s) = prob p s)
- expectation_normal
-
⊢ ∀p X. prob_space p ∧ integrable p X ⇒ ∃r. expectation p X = Normal r
- expectation_pdf_1
-
⊢ ∀p X.
prob_space p ∧ random_variable X p Borel ∧ distribution p X ≪ ext_lborel ⇒
(expectation ext_lborel (pdf p X) = 1)
- expectation_posinf
-
⊢ ∀p. prob_space p ⇒ (expectation p (λx. +∞) = +∞)
- expectation_real_affine
-
⊢ ∀p X c.
prob_space p ∧ real_random_variable X p ∧ integrable p X ∧ c ≠ +∞ ∧ c ≠ −∞ ⇒
(expectation p (λx. X x + c) = expectation p X + c)
- finite_expectation
-
⊢ ∀p X.
prob_space p ∧ FINITE (p_space p) ∧ real_random_variable X p ∧
integrable p X ⇒
(expectation p X = ∑ (λr. r * distribution p X {r}) (IMAGE X (p_space p)))
- finite_expectation1
-
⊢ ∀p X.
prob_space p ∧ FINITE (p_space p) ∧ real_random_variable X p ∧
integrable p X ⇒
(expectation p X =
∑ (λr. r * prob p (PREIMAGE X {r} ∩ p_space p)) (IMAGE X (p_space p)))
- finite_expectation2
-
⊢ ∀p X.
prob_space p ∧ FINITE (IMAGE X (p_space p)) ∧ real_random_variable X p ∧
integrable p X ⇒
(expectation p X =
∑ (λr. r * prob p (PREIMAGE X {r} ∩ p_space p)) (IMAGE X (p_space p)))
- finite_marginal_product_space_POW
-
⊢ ∀p X Y.
prob_space p ∧ FINITE (p_space p) ∧ (POW (p_space p) = events p) ∧
random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
random_variable Y p (IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) ⇒
measure_space
(IMAGE X (p_space p) × IMAGE Y (p_space p),
POW (IMAGE X (p_space p) × IMAGE Y (p_space p)),
(λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p)))
- finite_marginal_product_space_POW2
-
⊢ ∀p s1 s2 X Y.
prob_space p ∧ FINITE (p_space p) ∧ (POW (p_space p) = events p) ∧
random_variable X p (s1,POW s1) ∧ random_variable Y p (s2,POW s2) ∧
FINITE s1 ∧ FINITE s2 ⇒
measure_space (s1 × s2,POW (s1 × s2),joint_distribution p X Y)
- finite_marginal_product_space_POW3
-
⊢ ∀p s1 s2 s3 X Y Z.
prob_space p ∧ FINITE (p_space p) ∧ (POW (p_space p) = events p) ∧
random_variable X p (s1,POW s1) ∧ random_variable Y p (s2,POW s2) ∧
random_variable Z p (s3,POW s3) ∧ FINITE s1 ∧ FINITE s2 ∧ FINITE s3 ⇒
measure_space
(s1 × (s2 × s3),POW (s1 × (s2 × s3)),joint_distribution3 p X Y Z)
- finite_second_moments_all
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
(finite_second_moments p X ⇔ ∀r. second_moment p X (Normal r) < +∞)
- finite_second_moments_alt
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
(finite_second_moments p X ⇔ second_moment p X 0 < +∞)
- finite_second_moments_eq_finite_variance
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
(finite_second_moments p X ⇔ variance p X < +∞)
- finite_second_moments_eq_integrable_square
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
(finite_second_moments p X ⇔ integrable p (λx. (X x)²))
- finite_second_moments_eq_integrable_squares
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
(finite_second_moments p X ⇔ ∀c. integrable p (λx. (X x − Normal c)²))
- finite_second_moments_imp_finite_expectation
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ⇒
expectation p X ≠ +∞ ∧ expectation p X ≠ −∞
- finite_second_moments_imp_integrable
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ∧ finite_second_moments p X ⇒
integrable p X
- finite_second_moments_indicator_fn
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ finite_second_moments p (𝟙 s)
- finite_second_moments_literally
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ⇒
(finite_second_moments p X ⇔ expectation p (λx. (X x)²) < +∞)
- finite_support_expectation
-
⊢ ∀p X.
prob_space p ∧ FINITE (IMAGE X (p_space p)) ∧ real_random_variable X p ∧
integrable p X ⇒
(expectation p X = ∑ (λr. r * distribution p X {r}) (IMAGE X (p_space p)))
- identical_distribution_expectation
-
⊢ ∀p X.
prob_space p ∧ (∀n. random_variable (X n) p Borel) ∧
identical_distribution p X Borel 𝕌(:num) ⇒
∀n. expectation p (X n) = expectation p (X 0)
- identical_distribution_expectation_general
-
⊢ ∀p X J.
prob_space p ∧ J ≠ ∅ ∧ (∀n. n ∈ J ⇒ random_variable (X n) p Borel) ∧
identical_distribution p X Borel 𝕌(:'index) ⇒
∃e. ∀n. n ∈ J ⇒ (expectation p (X n) = e)
- identical_distribution_integrable
-
⊢ ∀p X.
prob_space p ∧ (∀n. random_variable (X n) p Borel) ∧
identical_distribution p X Borel 𝕌(:num) ∧ integrable p (X 0) ⇒
∀n. integrable p (X n)
- identical_distribution_integrable_general
-
⊢ ∀p X J.
prob_space p ∧ (∀n. n ∈ J ⇒ random_variable (X n) p Borel) ∧
identical_distribution p X Borel 𝕌(:'index) ∧
(∃i. i ∈ J ∧ integrable p (X i)) ⇒
∀n. n ∈ J ⇒ integrable p (X n)
- indep_vars_comm
-
⊢ ∀p X Y s t. indep_vars p X Y s t ⇒ indep_vars p Y X t s
- integrable_absolute_moments
-
⊢ ∀p X n.
prob_space p ∧ real_random_variable X p ∧
integrable p (λx. abs (X x) pow n) ⇒
∀m. m ≤ n ⇒ integrable p (λx. abs (X x) pow m)
- integrable_from_square
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ∧ integrable p (λx. (X x)²) ⇒
integrable p X
- integrable_imp_finite_expectation
-
⊢ ∀p X.
prob_space p ∧ integrable p X ⇒
expectation p X ≠ +∞ ∧ expectation p X ≠ −∞
- joint_conditional
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
(joint_distribution p X Y (a × b) =
conditional_distribution p Y X b a * distribution p X a)
- joint_distribution_le
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
joint_distribution p X Y (a × b) ≤ distribution p X a
- joint_distribution_le2
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
joint_distribution p X Y (a × b) ≤ distribution p Y b
- joint_distribution_le_1
-
⊢ ∀p X Y a.
prob_space p ∧ (events p = POW (p_space p)) ⇒
joint_distribution p X Y a ≤ 1
- joint_distribution_not_infty
-
⊢ ∀p X Y a.
prob_space p ∧ (events p = POW (p_space p)) ⇒
joint_distribution p X Y a ≠ −∞ ∧ joint_distribution p X Y a ≠ +∞
- joint_distribution_pos
-
⊢ ∀p X Y a.
prob_space p ∧ (events p = POW (p_space p)) ⇒
0 ≤ joint_distribution p X Y a
- joint_distribution_sum_mul1
-
⊢ ∀p X Y f.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ∧
(∀x. f x ≠ +∞ ∧ f x ≠ −∞) ⇒
(∑ (λ(x,y). joint_distribution p X Y {(x,y)} * f x)
(IMAGE X (p_space p) × IMAGE Y (p_space p)) =
∑ (λx. distribution p X {x} * f x) (IMAGE X (p_space p)))
- joint_distribution_sums_1
-
⊢ ∀p X Y.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
(∑ (λ(x,y). joint_distribution p X Y {(x,y)})
(IMAGE X (p_space p) × IMAGE Y (p_space p)) = 1)
- joint_distribution_sym
-
⊢ ∀p X Y a b.
prob_space p ⇒
(joint_distribution p X Y (a × b) = joint_distribution p Y X (b × a))
- marginal_distribution1
-
⊢ ∀p X Y a.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
(distribution p X a =
∑ (λx. joint_distribution p X Y (a × {x})) (IMAGE Y (p_space p)))
- marginal_distribution2
-
⊢ ∀p X Y b.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
(distribution p Y b =
∑ (λx. joint_distribution p X Y ({x} × b)) (IMAGE X (p_space p)))
- marginal_joint_zero
-
⊢ ∀p X Y s t.
prob_space p ∧ (events p = POW (p_space p)) ∧
((distribution p X s = 0) ∨ (distribution p Y t = 0)) ⇒
(joint_distribution p X Y (s × t) = 0)
- marginal_joint_zero3
-
⊢ ∀p X Y Z s t u.
prob_space p ∧ (events p = POW (p_space p)) ∧
((distribution p X s = 0) ∨ (distribution p Y t = 0) ∨
(distribution p Z u = 0)) ⇒
(joint_distribution3 p X Y Z (s × (t × u)) = 0)
- pairwise_indep_events_def
-
⊢ ∀p E J.
pairwise_indep_events p E J ⇔
∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ indep p (E i) (E j)
- pairwise_indep_sets_def
-
⊢ ∀p A J.
pairwise_indep_sets p A J ⇔
∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ indep_sets p (A i) (A j)
- pairwise_indep_vars_def
-
⊢ ∀p X A J.
pairwise_indep_vars p X A J ⇔
∀i j. i ∈ J ∧ j ∈ J ∧ i ≠ j ⇒ indep_vars p (X i) (X j) (A i) (A j)
- pdf_le_pos
-
⊢ ∀p X x.
prob_space p ∧ random_variable X p Borel ∧ distribution p X ≪ ext_lborel ⇒
0 ≤ pdf p X x
- prob_markov_ineq
-
⊢ ∀p X c.
prob_space p ∧ integrable p X ∧ 0 < c ⇒
prob p ({x | c ≤ abs (X x)} ∩ p_space p) ≤ c⁻¹ * expectation p (abs ∘ X)
- prob_markov_inequality
-
⊢ ∀p X a c.
prob_space p ∧ integrable p X ∧ 0 < c ∧ a ∈ events p ⇒
prob p ({x | c ≤ abs (X x)} ∩ a) ≤
c⁻¹ * expectation p (λx. abs (X x) * 𝟙 a x)
- prob_x_eq_1_imp_prob_y_eq_0
-
⊢ ∀p x.
prob_space p ∧ {x} ∈ events p ∧ (prob p {x} = 1) ⇒
∀y. {y} ∈ events p ∧ y ≠ x ⇒ (prob p {y} = 0)
- random_variable_compose
-
⊢ ∀p X f.
prob_space p ∧ random_variable X p Borel ∧ f ∈ Borel_measurable Borel ⇒
random_variable (f ∘ X) p Borel
- random_variable_functional
-
⊢ ∀p X Y f.
prob_space p ∧ random_variable X p Borel ∧ random_variable Y p Borel ∧
f ∈ Borel_measurable (Borel × Borel) ⇒
random_variable (λx. f (X x,Y x)) p Borel
- real_random_variable
-
⊢ ∀X p.
real_random_variable X p ⇔
X ∈ Borel_measurable (p_space p,events p) ∧ ∀x. X x ≠ −∞ ∧ X x ≠ +∞
- real_random_variable_sub
-
⊢ ∀p X Y.
prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ⇒
real_random_variable (λx. X x − Y x) p
- real_random_variable_zero
-
⊢ ∀p. prob_space p ⇒ real_random_variable (λx. 0) p
- second_moment_alt
-
⊢ ∀p X. second_moment p X 0 = expectation p (λx. (X x)²)
- second_moment_pos
-
⊢ ∀p X a. prob_space p ⇒ 0 ≤ second_moment p X a
- total_imp_pairwise_indep_events
-
⊢ ∀p E J.
(∀n. n ∈ J ⇒ E n ∈ events p) ∧ indep_events p E J ⇒
pairwise_indep_events p E J
- total_imp_pairwise_indep_sets
-
⊢ ∀p A J.
(∀n. n ∈ J ⇒ A n ⊆ events p) ∧ indep_sets p A J ⇒
pairwise_indep_sets p A J
- total_imp_pairwise_indep_vars
-
⊢ ∀p X A J.
(∀i. i ∈ J ⇒ random_variable (X i) p (A i)) ∧ indep_vars p X A J ⇒
pairwise_indep_vars p X A J
- uncorrelated_covariance
-
⊢ ∀p X Y.
prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ∧
uncorrelated p X Y ⇒
(covariance p X Y = 0)
- uncorrelated_orthogonal
-
⊢ ∀p X Y.
prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ∧
(expectation p X = 0) ∧ (expectation p Y = 0) ⇒
(uncorrelated p X Y ⇔ orthogonal p X Y)
- uncorrelated_thm
-
⊢ ∀p X Y.
prob_space p ∧ real_random_variable X p ∧ real_random_variable Y p ∧
uncorrelated p X Y ⇒
(expectation p (λs. (X s − expectation p X) * (Y s − expectation p Y)) = 0)
- uniform_distribution_prob_space
-
⊢ ∀X p s.
prob_space p ∧ FINITE (p_space p) ∧ FINITE (space s) ∧
random_variable X p s ⇒
prob_space (space s,subsets s,uniform_distribution s)
- variance_alt
-
⊢ ∀p X. variance p X = expectation p (λx. (X x − expectation p X)²)
- variance_eq
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ∧ integrable p (λx. (X x)²) ⇒
(variance p X = expectation p (λx. (X x)²) − (expectation p X)²)
- variance_eq_indicator_fn
-
⊢ ∀p s.
prob_space p ∧ s ∈ events p ⇒
(variance p (𝟙 s) = expectation p (𝟙 s) − (expectation p (𝟙 s))²)
- variance_le
-
⊢ ∀p X.
prob_space p ∧ real_random_variable X p ∧ integrable p (λx. (X x)²) ⇒
variance p X ≤ expectation p (λx. (X x)²)
- variance_le_indicator_fn
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ variance p (𝟙 s) ≤ expectation p (𝟙 s)
- variance_pos
-
⊢ ∀p X. prob_space p ⇒ 0 ≤ variance p X
- variance_real_affine
-
⊢ ∀p X c.
prob_space p ∧ real_random_variable X p ∧ integrable p X ∧ c ≠ +∞ ∧ c ≠ −∞ ⇒
(variance p (λx. X x + c) = variance p X)
- variance_real_affine'
-
⊢ ∀p X c.
prob_space p ∧ real_random_variable X p ∧ integrable p X ∧ c ≠ +∞ ∧ c ≠ −∞ ⇒
(variance p (λx. X x − c) = variance p X)
- variance_sum
-
⊢ ∀p X J.
prob_space p ∧ FINITE J ∧ (∀i. i ∈ J ⇒ real_random_variable (X i) p) ∧
uncorrelated_vars p X J ⇒
(variance p (λx. ∑ (λn. X n x) J) = ∑ (λn. variance p (X n)) J)
- variance_sum_indicator_fn
-
⊢ ∀p E J.
prob_space p ∧ (∀n. n ∈ J ⇒ E n ∈ events p) ∧
pairwise_indep_events p E J ∧ FINITE J ⇒
(variance p (λx. ∑ (λn. (𝟙 ∘ E) n x) J) = ∑ (λn. variance p ((𝟙 ∘ E) n)) J)