- RN_deriv_def
-
⊢ ∀m v.
RN_deriv m v =
@f. measure_space m ∧ measure_space (m_space m,measurable_sets m,v) ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
∀a. a ∈ measurable_sets m ⇒ (integral m (λx. f x * 𝟙 a x) = v a)
- countable_space_integral_def
-
⊢ ∀m f.
countable_space_integral m f =
(let
e = enumerate (IMAGE f (m_space m))
in
suminf ((λr. r * measure m (PREIMAGE f {r} ∩ m_space m)) ∘ e))
- finite_space_integral_def
-
⊢ ∀m f.
finite_space_integral m f =
∑ (λr. r * measure m (PREIMAGE f {r} ∩ m_space m)) (IMAGE f (m_space m))
- fn_minus_def
-
⊢ ∀f. f⁻ = (λx. if 0 ≤ f x then 0 else -f x)
- fn_plus_def
-
⊢ ∀f. fn_plus f = (λx. if 0 ≤ f x then f x else 0)
- integrable_def
-
⊢ ∀m f.
integrable m f ⇔
measure_space m ∧ (∃x. x ∈ nnfis m (fn_plus f)) ∧ ∃y. y ∈ nnfis m f⁻
- integral_def
-
⊢ ∀m f. integral m f = (@i. i ∈ nnfis m (fn_plus f)) − @j. j ∈ nnfis m f⁻
- mon_upclose_def
-
⊢ ∀u m. mon_upclose u m = mon_upclose_help m u m
- mon_upclose_help_def
-
⊢ (∀u m. mon_upclose_help 0 u m = u m 0) ∧
∀n u m.
mon_upclose_help (SUC n) u m =
upclose (u m (SUC n)) (mon_upclose_help n u m)
- mono_increasing_def
-
⊢ ∀f. mono_increasing f ⇔ ∀m n. m ≤ n ⇒ f m ≤ f n
- nnfis_def
-
⊢ ∀m f.
nnfis m f =
{y |
∃u x. mono_convergent u f (m_space m) ∧ (∀n. x n ∈ psfis m (u n)) ∧ x ⟶ y}
- nonneg_def
-
⊢ ∀f. nonneg f ⇔ ∀x. 0 ≤ f x
- pos_fn_integral_def
-
⊢ ∀m f. pos_fn_integral m f = sup {r | (∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x)}
- pos_simple_fn_def
-
⊢ ∀m f s a x.
pos_simple_fn m f s a x ⇔
(∀t. 0 ≤ f t) ∧ (∀t. t ∈ m_space m ⇒ (f t = ∑ (λi. x i * 𝟙 (a i) t) s)) ∧
(∀i. i ∈ s ⇒ a i ∈ measurable_sets m) ∧ (∀i. 0 ≤ x i) ∧ FINITE s ∧
(∀i j. i ∈ s ∧ j ∈ s ∧ i ≠ j ⇒ DISJOINT (a i) (a j)) ∧
(BIGUNION (IMAGE a s) = m_space m)
- pos_simple_fn_integral_def
-
⊢ ∀m s a x. pos_simple_fn_integral m s a x = ∑ (λi. x i * measure m (a i)) s
- prod_measure_def
-
⊢ ∀m0 m1.
prod_measure m0 m1 =
(λa. integral m0 (λs0. measure m1 (PREIMAGE (λs1. (s0,s1)) a)))
- prod_measure_space_def
-
⊢ ∀m0 m1.
prod_measure_space m0 m1 =
(m_space m0 × m_space m1,
subsets
(sigma (m_space m0 × m_space m1)
(prod_sets (measurable_sets m0) (measurable_sets m1))),
prod_measure m0 m1)
- psfis_def
-
⊢ ∀m f.
psfis m f = IMAGE (λ(s,a,x). pos_simple_fn_integral m s a x) (psfs m f)
- psfs_def
-
⊢ ∀m f. psfs m f = {(s,a,x) | pos_simple_fn m f s a x}
- upclose_def
-
⊢ ∀f g. upclose f g = (λt. max (f t) (g t))
- IN_psfis
-
⊢ ∀m r f.
r ∈ psfis m f ⇒
∃s a x. pos_simple_fn m f s a x ∧ (r = pos_simple_fn_integral m s a x)
- borel_measurable_mon_conv_psfis
-
⊢ ∀m f.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
(∀t. t ∈ m_space m ⇒ 0 ≤ f t) ⇒
∃u x. mono_convergent u f (m_space m) ∧ ∀n. x n ∈ psfis m (u n)
- countable_space_integral_reduce
-
⊢ ∀m f p n.
measure_space m ∧ positive m ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
COUNTABLE (IMAGE f (m_space m)) ∧
INFINITE (IMAGE (fn_plus f) (m_space m)) ∧
INFINITE (IMAGE f⁻ (m_space m)) ∧
(λr. r * measure m (PREIMAGE f⁻ {r} ∩ m_space m)) ∘
enumerate (IMAGE f⁻ (m_space m)) sums n ∧
(λr. r * measure m (PREIMAGE (fn_plus f) {r} ∩ m_space m)) ∘
enumerate (IMAGE (fn_plus f) (m_space m)) sums p ⇒
(integral m f = p − n)
- finite_POW_RN_deriv_reduce
-
⊢ ∀m v.
measure_space m ∧ FINITE (m_space m) ∧
measure_space (m_space m,measurable_sets m,v) ∧
(POW (m_space m) = measurable_sets m) ∧
(∀x. (measure m {x} = 0) ⇒ (v {x} = 0)) ⇒
∀x. x ∈ m_space m ∧ measure m {x} ≠ 0 ⇒
(RN_deriv m v x = v {x} / measure m {x})
- finite_POW_prod_measure_reduce
-
⊢ ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ⇒
∀a0 a1.
a0 ∈ measurable_sets m0 ∧ a1 ∈ measurable_sets m1 ⇒
(prod_measure m0 m1 (a0 × a1) = measure m0 a0 * measure m1 a1)
- finite_integral_on_set
-
⊢ ∀m f a.
measure_space m ∧ FINITE (m_space m) ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧ a ∈ measurable_sets m ⇒
(integral m (λx. f x * 𝟙 a x) =
∑ (λr. r * measure m (PREIMAGE f {r} ∩ a)) (IMAGE f a))
- finite_space_POW_integral_reduce
-
⊢ ∀m f.
measure_space m ∧ (POW (m_space m) = measurable_sets m) ∧
FINITE (m_space m) ⇒
(integral m f = ∑ (λx. f x * measure m {x}) (m_space m))
- finite_space_integral_reduce
-
⊢ ∀m f.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
FINITE (m_space m) ⇒
(integral m f = finite_space_integral m f)
- fn_plus_fn_minus_borel_measurable
-
⊢ ∀f m.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ⇒
fn_plus f ∈ borel_measurable (m_space m,measurable_sets m) ∧
f⁻ ∈ borel_measurable (m_space m,measurable_sets m)
- fn_plus_fn_minus_borel_measurable_iff
-
⊢ ∀f m.
measure_space m ⇒
(f ∈ borel_measurable (m_space m,measurable_sets m) ⇔
fn_plus f ∈ borel_measurable (m_space m,measurable_sets m) ∧
f⁻ ∈ borel_measurable (m_space m,measurable_sets m))
- indicator_fn_split
-
⊢ ∀r s b.
FINITE r ∧ (BIGUNION (IMAGE b r) = s) ∧
(∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ⇒
∀a. a ⊆ s ⇒ (𝟙 a = (λx. ∑ (λi. 𝟙 (a ∩ b i) x) r))
- integral_add
-
⊢ ∀m f g.
integrable m f ∧ integrable m g ⇒
integrable m (λt. f t + g t) ∧
(integral m (λt. f t + g t) = integral m f + integral m g)
- integral_borel_measurable
-
⊢ ∀m f. integrable m f ⇒ f ∈ borel_measurable (m_space m,measurable_sets m)
- integral_cmul_indicator
-
⊢ ∀m s c.
measure_space m ∧ s ∈ measurable_sets m ⇒
(integral m (λx. c * 𝟙 s x) = c * measure m s)
- integral_indicator_fn
-
⊢ ∀m a.
measure_space m ∧ a ∈ measurable_sets m ⇒
(integral m (𝟙 a) = measure m a) ∧ integrable m (𝟙 a)
- integral_mono
-
⊢ ∀m f g.
integrable m f ∧ integrable m g ∧ (∀t. t ∈ m_space m ⇒ f t ≤ g t) ⇒
integral m f ≤ integral m g
- integral_times
-
⊢ ∀m f a.
integrable m f ⇒
integrable m (λt. a * f t) ∧ (integral m (λt. a * f t) = a * integral m f)
- integral_zero
-
⊢ ∀m. measure_space m ⇒ (integral m (λx. 0) = 0)
- markov_ineq
-
⊢ ∀m f a n.
integrable m f ∧ 0 < a ∧ integrable m (λx. abs (f x) pow n) ⇒
measure m (PREIMAGE f {y | a ≤ y} ∩ m_space m) ≤
integral m (λx. abs (f x) pow n) / a pow n
- measure_space_finite_prod_measure_POW1
-
⊢ ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ⇒
measure_space (prod_measure_space m0 m1)
- measure_space_finite_prod_measure_POW2
-
⊢ ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ⇒
measure_space
(m_space m0 × m_space m1,POW (m_space m0 × m_space m1),
prod_measure m0 m1)
- measure_split
-
⊢ ∀r b m.
measure_space m ∧ FINITE r ∧ (BIGUNION (IMAGE b r) = m_space m) ∧
(∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ∧
(∀i. i ∈ r ⇒ b i ∈ measurable_sets m) ⇒
∀a. a ∈ measurable_sets m ⇒ (measure m a = ∑ (λi. measure m (a ∩ b i)) r)
- mon_upclose_help_compute
-
⊢ (∀u m. mon_upclose_help 0 u m = u m 0) ∧
(∀n u m.
mon_upclose_help (NUMERAL (BIT1 n)) u m =
upclose (u m (NUMERAL (BIT1 n)))
(mon_upclose_help (NUMERAL (BIT1 n) − 1) u m)) ∧
∀n u m.
mon_upclose_help (NUMERAL (BIT2 n)) u m =
upclose (u m (NUMERAL (BIT2 n))) (mon_upclose_help (NUMERAL (BIT1 n)) u m)
- mon_upclose_psfis
-
⊢ ∀m u.
measure_space m ∧ (∀n n'. ∃a. a ∈ psfis m (u n n')) ⇒
∃c. ∀n. c n ∈ psfis m (mon_upclose u n)
- mono_increasing_converges_to_sup
-
⊢ ∀f r.
(∀i. 0 ≤ f i) ∧ mono_increasing f ∧ f ⟶ r ⇒ (r = sup (IMAGE f 𝕌(:num)))
- nnfis_add
-
⊢ ∀f g m a b.
measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m g ⇒
a + b ∈ nnfis m (λw. f w + g w)
- nnfis_borel_measurable
-
⊢ ∀m f a.
measure_space m ∧ a ∈ nnfis m f ⇒
f ∈ borel_measurable (m_space m,measurable_sets m)
- nnfis_dom_conv
-
⊢ ∀m f g b.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
b ∈ nnfis m g ∧ (∀t. t ∈ m_space m ⇒ f t ≤ g t) ∧
(∀t. t ∈ m_space m ⇒ 0 ≤ f t) ⇒
∃a. a ∈ nnfis m f ∧ a ≤ b
- nnfis_integral
-
⊢ ∀m f a.
measure_space m ∧ a ∈ nnfis m f ⇒ integrable m f ∧ (integral m f = a)
- nnfis_minus_nnfis_integral
-
⊢ ∀m f g a b.
measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m g ⇒
integrable m (λt. f t − g t) ∧ (integral m (λt. f t − g t) = a − b)
- nnfis_mon_conv
-
⊢ ∀f m h x y.
measure_space m ∧ mono_convergent f h (m_space m) ∧
(∀n. x n ∈ nnfis m (f n)) ∧ x ⟶ y ⇒
y ∈ nnfis m h
- nnfis_mono
-
⊢ ∀f g m a b.
measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m g ∧
(∀w. w ∈ m_space m ⇒ f w ≤ g w) ⇒
a ≤ b
- nnfis_pos_on_mspace
-
⊢ ∀f m a. measure_space m ∧ a ∈ nnfis m f ⇒ ∀x. x ∈ m_space m ⇒ 0 ≤ f x
- nnfis_times
-
⊢ ∀f m a z.
measure_space m ∧ a ∈ nnfis m f ∧ 0 ≤ z ⇒ z * a ∈ nnfis m (λw. z * f w)
- nnfis_unique
-
⊢ ∀f m a b. measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m f ⇒ (a = b)
- pos_psfis
-
⊢ ∀r m f. measure_space m ∧ r ∈ psfis m f ⇒ 0 ≤ r
- pos_simple_fn_integral_REAL_SUM_IMAGE
-
⊢ ∀m f s a x P.
measure_space m ∧ (∀i. i ∈ P ⇒ pos_simple_fn m (f i) (s i) (a i) (x i)) ∧
FINITE P ⇒
∃s' a' x'.
pos_simple_fn m (λt. ∑ (λi. f i t) P) s' a' x' ∧
(pos_simple_fn_integral m s' a' x' =
∑ (λi. pos_simple_fn_integral m (s i) (a i) (x i)) P)
- pos_simple_fn_integral_add
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ⇒
∃s'' c z.
pos_simple_fn m (λx. f x + g x) s'' c z ∧
(pos_simple_fn_integral m s a x + pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m s'' c z)
- pos_simple_fn_integral_indicator
-
⊢ ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
∃s a x.
pos_simple_fn m (𝟙 A) s a x ∧
(pos_simple_fn_integral m s a x = measure m A)
- pos_simple_fn_integral_mono
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ∧
(∀x. f x ≤ g x) ⇒
pos_simple_fn_integral m s a x ≤ pos_simple_fn_integral m s' b y
- pos_simple_fn_integral_mono_on_mspace
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ∧
(∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
pos_simple_fn_integral m s a x ≤ pos_simple_fn_integral m s' b y
- pos_simple_fn_integral_mult
-
⊢ ∀m f s a x.
measure_space m ∧ pos_simple_fn m f s a x ⇒
∀z. 0 ≤ z ⇒
∃s' b y.
pos_simple_fn m (λx. z * f x) s' b y ∧
(pos_simple_fn_integral m s' b y =
z * pos_simple_fn_integral m s a x)
- pos_simple_fn_integral_present
-
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ⇒
∃z z' c k.
(∀t. t ∈ m_space m ⇒ (f t = ∑ (λi. z i * 𝟙 (c i) t) k)) ∧
(∀t. t ∈ m_space m ⇒ (g t = ∑ (λi. z' i * 𝟙 (c i) t) k)) ∧
(pos_simple_fn_integral m s a x = pos_simple_fn_integral m k c z) ∧
(pos_simple_fn_integral m s' b y = pos_simple_fn_integral m k c z') ∧
FINITE k ∧ (∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
(BIGUNION (IMAGE c k) = m_space m) ∧ (∀i. 0 ≤ z i) ∧ ∀i. 0 ≤ z' i
- pos_simple_fn_integral_unique
-
⊢ ∀m f s a x s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧ pos_simple_fn m f s' b y ⇒
(pos_simple_fn_integral m s a x = pos_simple_fn_integral m s' b y)
- psfis_REAL_SUM_IMAGE
-
⊢ ∀m f a P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ psfis m (f i)) ∧ FINITE P ⇒
∑ a P ∈ psfis m (λt. ∑ (λi. f i t) P)
- psfis_add
-
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
a + b ∈ psfis m (λx. f x + g x)
- psfis_borel_measurable
-
⊢ ∀m f a.
measure_space m ∧ a ∈ psfis m f ⇒
f ∈ borel_measurable (m_space m,measurable_sets m)
- psfis_equiv
-
⊢ ∀f g a m.
measure_space m ∧ a ∈ psfis m f ∧ (∀t. 0 ≤ g t) ∧
(∀t. t ∈ m_space m ⇒ (f t = g t)) ⇒
a ∈ psfis m g
- psfis_indicator
-
⊢ ∀m A. measure_space m ∧ A ∈ measurable_sets m ⇒ measure m A ∈ psfis m (𝟙 A)
- psfis_intro
-
⊢ ∀m a x P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ measurable_sets m) ∧ (∀i. 0 ≤ x i) ∧
FINITE P ⇒
∑ (λi. x i * measure m (a i)) P ∈ psfis m (λt. ∑ (λi. x i * 𝟙 (a i) t) P)
- psfis_mono
-
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ∧
(∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
a ≤ b
- psfis_mono_conv_mono
-
⊢ ∀m f u x y r s.
measure_space m ∧ mono_convergent u f (m_space m) ∧
(∀n. x n ∈ psfis m (u n)) ∧ (∀m n. m ≤ n ⇒ x m ≤ x n) ∧ x ⟶ y ∧
r ∈ psfis m s ∧ (∀a. a ∈ m_space m ⇒ s a ≤ f a) ⇒
r ≤ y
- psfis_mult
-
⊢ ∀m f a.
measure_space m ∧ a ∈ psfis m f ⇒
∀z. 0 ≤ z ⇒ z * a ∈ psfis m (λx. z * f x)
- psfis_nnfis
-
⊢ ∀m f a. measure_space m ∧ a ∈ psfis m f ⇒ a ∈ nnfis m f
- psfis_nonneg
-
⊢ ∀m f a. a ∈ psfis m f ⇒ nonneg f
- psfis_present
-
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
∃z z' c k.
(∀t. t ∈ m_space m ⇒ (f t = ∑ (λi. z i * 𝟙 (c i) t) k)) ∧
(∀t. t ∈ m_space m ⇒ (g t = ∑ (λi. z' i * 𝟙 (c i) t) k)) ∧
(a = pos_simple_fn_integral m k c z) ∧
(b = pos_simple_fn_integral m k c z') ∧ FINITE k ∧
(∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
(BIGUNION (IMAGE c k) = m_space m) ∧ (∀i. 0 ≤ z i) ∧ ∀i. 0 ≤ z' i
- psfis_unique
-
⊢ ∀m f a b. measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m f ⇒ (a = b)
- upclose_psfis
-
⊢ ∀f g a b m.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
∃c. c ∈ psfis m (upclose f g)