- ADDITIVE
-
⊢ ∀m s t u.
additive m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧
DISJOINT s t ∧ (u = s ∪ t) ⇒
(measure m u = measure m s + measure m t)
- ADDITIVE_INCREASING
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ∧ additive m ⇒
increasing m
- ADDITIVE_SUM
-
⊢ ∀m f n.
algebra (m_space m,measurable_sets m) ∧ positive m ∧ additive m ∧
f ∈ (𝕌(:num) → measurable_sets m) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
(sum (0,n) (measure m ∘ f) = measure m (BIGUNION (IMAGE f (count n))))
- ALGEBRA_SUBSET_LAMBDA_SYSTEM
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ∧
additive m ⇒
measurable_sets m ⊆
lambda_system (m_space m,POW (m_space m)) (inf_measure m)
- CARATHEODORY
-
⊢ ∀m0.
algebra (m_space m0,measurable_sets m0) ∧ positive m0 ∧
countably_additive m0 ⇒
∃m. (∀s. s ∈ measurable_sets m0 ⇒ (measure m s = measure m0 s)) ∧
((m_space m,measurable_sets m) =
sigma (m_space m0) (measurable_sets m0)) ∧ measure_space m
- CARATHEODORY_LEMMA
-
⊢ ∀gsig lam.
sigma_algebra gsig ∧ outer_measure_space (space gsig,subsets gsig,lam) ⇒
measure_space (space gsig,lambda_system gsig lam,lam)
- CLOSED_CDI_COMPL
-
⊢ ∀p s. closed_cdi p ∧ s ∈ subsets p ⇒ space p DIFF s ∈ subsets p
- CLOSED_CDI_DISJOINT
-
⊢ ∀p f.
closed_cdi p ∧ f ∈ (𝕌(:num) → subsets p) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p
- CLOSED_CDI_DUNION
-
⊢ ∀p s t.
∅ ∈ subsets p ∧ closed_cdi p ∧ s ∈ subsets p ∧ t ∈ subsets p ∧
DISJOINT s t ⇒
s ∪ t ∈ subsets p
- CLOSED_CDI_INCREASING
-
⊢ ∀p f.
closed_cdi p ∧ f ∈ (𝕌(:num) → subsets p) ∧ (f 0 = ∅) ∧
(∀n. f n ⊆ f (SUC n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p
- COUNTABLY_ADDITIVE
-
⊢ ∀m s f.
countably_additive m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ∧
s ∈ measurable_sets m ⇒
measure m ∘ f sums measure m s
- COUNTABLY_ADDITIVE_ADDITIVE
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ∧
countably_additive m ⇒
additive m
- COUNTABLY_SUBADDITIVE
-
⊢ ∀m f s.
countably_subadditive m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
summable (measure m ∘ f) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ∧
s ∈ measurable_sets m ⇒
measure m s ≤ suminf (measure m ∘ f)
- COUNTABLY_SUBADDITIVE_SUBADDITIVE
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ∧
countably_subadditive m ⇒
subadditive m
- INCREASING
-
⊢ ∀m s t.
increasing m ∧ s ⊆ t ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
measure m s ≤ measure m t
- INCREASING_ADDITIVE_SUMMABLE
-
⊢ ∀m f.
algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ∧
additive m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
summable (measure m ∘ f)
- INF_MEASURE_AGREES
-
⊢ ∀m s.
algebra (m_space m,measurable_sets m) ∧ positive m ∧
countably_additive m ∧ s ∈ measurable_sets m ⇒
(inf_measure m s = measure m s)
- INF_MEASURE_CLOSE
-
⊢ ∀m s e.
algebra (m_space m,measurable_sets m) ∧ positive m ∧ 0 < e ∧ s ⊆ m_space m ⇒
∃f l.
f ∈ (𝕌(:num) → measurable_sets m) ∧ s ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ measure m ∘ f sums l ∧
l ≤ inf_measure m s + e
- INF_MEASURE_COUNTABLY_SUBADDITIVE
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ⇒
countably_subadditive (m_space m,POW (m_space m),inf_measure m)
- INF_MEASURE_EMPTY
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ⇒
(inf_measure m ∅ = 0)
- INF_MEASURE_INCREASING
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ⇒
increasing (m_space m,POW (m_space m),inf_measure m)
- INF_MEASURE_LE
-
⊢ ∀m s x.
algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ∧
x ∈
{r |
∃f. f ∈ (𝕌(:num) → measurable_sets m) ∧ s ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧
measure m ∘ f sums r} ⇒
inf_measure m s ≤ x
- INF_MEASURE_NONEMPTY
-
⊢ ∀m g s.
algebra (m_space m,measurable_sets m) ∧ positive m ∧
s ∈ measurable_sets m ∧ g ⊆ s ⇒
measure m s ∈
{r |
∃f. f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
g ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧ measure m ∘ f sums r}
- INF_MEASURE_OUTER
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ⇒
outer_measure_space (m_space m,POW (m_space m),inf_measure m)
- INF_MEASURE_POS
-
⊢ ∀m g.
algebra (m_space m,measurable_sets m) ∧ positive m ∧ g ⊆ m_space m ⇒
0 ≤ inf_measure m g
- INF_MEASURE_POS0
-
⊢ ∀m g x.
algebra (m_space m,measurable_sets m) ∧ positive m ∧
x ∈
{r |
∃f. f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
g ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧ measure m ∘ f sums r} ⇒
0 ≤ x
- INF_MEASURE_POSITIVE
-
⊢ ∀m. algebra (m_space m,measurable_sets m) ∧ positive m ⇒
positive (m_space m,POW (m_space m),inf_measure m)
- IN_MEASURE_PRESERVING
-
⊢ ∀m1 m2 f.
f ∈ measure_preserving m1 m2 ⇔
f ∈
measurable (m_space m1,measurable_sets m1) (m_space m2,measurable_sets m2) ∧
measure_space m1 ∧ measure_space m2 ∧
∀s. s ∈ measurable_sets m2 ⇒
(measure m1 (PREIMAGE f s ∩ m_space m1) = measure m2 s)
- LAMBDA_SYSTEM_ADDITIVE
-
⊢ ∀g0 lam l1 l2.
algebra g0 ∧ positive (space g0,subsets g0,lam) ⇒
additive (space g0,lambda_system g0 lam,lam)
- LAMBDA_SYSTEM_ALGEBRA
-
⊢ ∀g0 lam.
algebra g0 ∧ positive (space g0,subsets g0,lam) ⇒
algebra (space g0,lambda_system g0 lam)
- LAMBDA_SYSTEM_CARATHEODORY
-
⊢ ∀gsig lam.
sigma_algebra gsig ∧ outer_measure_space (space gsig,subsets gsig,lam) ⇒
∀f. f ∈ (𝕌(:num) → lambda_system gsig lam) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ lambda_system gsig lam ∧
lam ∘ f sums lam (BIGUNION (IMAGE f 𝕌(:num)))
- LAMBDA_SYSTEM_COMPL
-
⊢ ∀g0 lam l.
algebra g0 ∧ positive (space g0,subsets g0,lam) ∧ l ∈ lambda_system g0 lam ⇒
space g0 DIFF l ∈ lambda_system g0 lam
- LAMBDA_SYSTEM_EMPTY
-
⊢ ∀g0 lam.
algebra g0 ∧ positive (space g0,subsets g0,lam) ⇒ ∅ ∈ lambda_system g0 lam
- LAMBDA_SYSTEM_INCREASING
-
⊢ ∀g0 lam.
increasing (space g0,subsets g0,lam) ⇒
increasing (space g0,lambda_system g0 lam,lam)
- LAMBDA_SYSTEM_INTER
-
⊢ ∀g0 lam l1 l2.
algebra g0 ∧ positive (space g0,subsets g0,lam) ∧
l1 ∈ lambda_system g0 lam ∧ l2 ∈ lambda_system g0 lam ⇒
l1 ∩ l2 ∈ lambda_system g0 lam
- LAMBDA_SYSTEM_POSITIVE
-
⊢ ∀g0 lam.
positive (space g0,subsets g0,lam) ⇒
positive (space g0,lambda_system g0 lam,lam)
- LAMBDA_SYSTEM_STRONG_ADDITIVE
-
⊢ ∀g0 lam g l1 l2.
algebra g0 ∧ positive (space g0,subsets g0,lam) ∧ g ∈ subsets g0 ∧
DISJOINT l1 l2 ∧ l1 ∈ lambda_system g0 lam ∧ l2 ∈ lambda_system g0 lam ⇒
(lam ((l1 ∪ l2) ∩ g) = lam (l1 ∩ g) + lam (l2 ∩ g))
- LAMBDA_SYSTEM_STRONG_SUM
-
⊢ ∀g0 lam g f n.
algebra g0 ∧ positive (space g0,subsets g0,lam) ∧ g ∈ subsets g0 ∧
f ∈ (𝕌(:num) → lambda_system g0 lam) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
(sum (0,n) (lam ∘ (λs. s ∩ g) ∘ f) =
lam (BIGUNION (IMAGE f (count n)) ∩ g))
- MEASURABLE_POW_TO_POW
-
⊢ ∀m f.
measure_space m ∧ (measurable_sets m = POW (m_space m)) ⇒
f ∈ measurable (m_space m,measurable_sets m) (𝕌(:β),POW 𝕌(:β))
- MEASURABLE_POW_TO_POW_IMAGE
-
⊢ ∀m f.
measure_space m ∧ (measurable_sets m = POW (m_space m)) ⇒
f ∈
measurable (m_space m,measurable_sets m)
(IMAGE f (m_space m),POW (IMAGE f (m_space m)))
- MEASURABLE_RANGE_REDUCE
-
⊢ ∀m f s.
measure_space m ∧ f ∈ measurable (m_space m,measurable_sets m) (s,POW s) ∧
s ≠ ∅ ⇒
f ∈
measurable (m_space m,measurable_sets m)
(s ∩ IMAGE f (m_space m),POW (s ∩ IMAGE f (m_space m)))
- MEASURABLE_SETS_SUBSET_SPACE
-
⊢ ∀m s. measure_space m ∧ s ∈ measurable_sets m ⇒ s ⊆ m_space m
- MEASURE_ADDITIVE
-
⊢ ∀m s t u.
measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧
DISJOINT s t ∧ (u = s ∪ t) ⇒
(measure m u = measure m s + measure m t)
- MEASURE_COMPL
-
⊢ ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
(measure m (m_space m DIFF s) = measure m (m_space m) − measure m s)
- MEASURE_COMPL_SUBSET
-
⊢ ∀m s t.
measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧ t ⊆ s ⇒
(measure m (s DIFF t) = measure m s − measure m t)
- MEASURE_COUNTABLE_INCREASING
-
⊢ ∀m s f.
measure_space m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧ (f 0 = ∅) ∧
(∀n. f n ⊆ f (SUC n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
measure m ∘ f ⟶ measure m s
- MEASURE_COUNTABLY_ADDITIVE
-
⊢ ∀m s f.
measure_space m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
measure m ∘ f sums measure m s
- MEASURE_DOWN
-
⊢ ∀m0 m1.
sigma_algebra (m_space m0,measurable_sets m0) ∧
measurable_sets m0 ⊆ measurable_sets m1 ∧ (measure m0 = measure m1) ∧
measure_space m1 ⇒
measure_space m0
- MEASURE_EMPTY
-
⊢ ∀m. measure_space m ⇒ (measure m ∅ = 0)
- MEASURE_PRESERVING_LIFT
-
⊢ ∀m1 m2 a f.
measure_space m1 ∧ measure_space m2 ∧
(measurable_sets m2 = subsets (sigma (m_space m2) a)) ∧
f ∈ measure_preserving m1 (m_space m2,a,measure m2) ⇒
f ∈ measure_preserving m1 m2
- MEASURE_PRESERVING_SUBSET
-
⊢ ∀m1 m2 a.
measure_space m1 ∧ measure_space m2 ∧
(measurable_sets m2 = subsets (sigma (m_space m2) a)) ⇒
measure_preserving m1 (m_space m2,a,measure m2) ⊆ measure_preserving m1 m2
- MEASURE_PRESERVING_UP_LIFT
-
⊢ ∀m1 m2 f a.
measure_space m1 ∧ f ∈ measure_preserving (m_space m1,a,measure m1) m2 ∧
sigma_algebra (m_space m1,measurable_sets m1) ∧ a ⊆ measurable_sets m1 ⇒
f ∈ measure_preserving m1 m2
- MEASURE_PRESERVING_UP_SIGMA
-
⊢ ∀m1 m2 a.
measure_space m1 ∧ (measurable_sets m1 = subsets (sigma (m_space m1) a)) ⇒
measure_preserving (m_space m1,a,measure m1) m2 ⊆ measure_preserving m1 m2
- MEASURE_PRESERVING_UP_SUBSET
-
⊢ ∀m1 m2 a.
measure_space m1 ∧ a ⊆ measurable_sets m1 ∧
sigma_algebra (m_space m1,measurable_sets m1) ⇒
measure_preserving (m_space m1,a,measure m1) m2 ⊆ measure_preserving m1 m2
- MEASURE_REAL_SUM_IMAGE
-
⊢ ∀m s.
measure_space m ∧ s ∈ measurable_sets m ∧
(∀x. x ∈ s ⇒ {x} ∈ measurable_sets m) ∧ FINITE s ⇒
(measure m s = ∑ (λx. measure m {x}) s)
- MEASURE_SPACE_ADDITIVE
-
⊢ ∀m. measure_space m ⇒ additive m
- MEASURE_SPACE_BIGINTER
-
⊢ ∀m s.
measure_space m ∧ (∀n. s n ∈ measurable_sets m) ⇒
BIGINTER (IMAGE s 𝕌(:num)) ∈ measurable_sets m
- MEASURE_SPACE_BIGUNION
-
⊢ ∀m s.
measure_space m ∧ (∀n. s n ∈ measurable_sets m) ⇒
BIGUNION (IMAGE s 𝕌(:num)) ∈ measurable_sets m
- MEASURE_SPACE_CMUL
-
⊢ ∀m c.
measure_space m ∧ 0 ≤ c ⇒
measure_space (m_space m,measurable_sets m,(λa. c * measure m a))
- MEASURE_SPACE_DIFF
-
⊢ ∀m s t.
measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
s DIFF t ∈ measurable_sets m
- MEASURE_SPACE_EMPTY_MEASURABLE
-
⊢ ∀m. measure_space m ⇒ ∅ ∈ measurable_sets m
- MEASURE_SPACE_INCREASING
-
⊢ ∀m. measure_space m ⇒ increasing m
- MEASURE_SPACE_INTER
-
⊢ ∀m s t.
measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
s ∩ t ∈ measurable_sets m
- MEASURE_SPACE_IN_MSPACE
-
⊢ ∀m A. measure_space m ∧ A ∈ measurable_sets m ⇒ ∀x. x ∈ A ⇒ x ∈ m_space m
- MEASURE_SPACE_MSPACE_MEASURABLE
-
⊢ ∀m. measure_space m ⇒ m_space m ∈ measurable_sets m
- MEASURE_SPACE_POSITIVE
-
⊢ ∀m. measure_space m ⇒ positive m
- MEASURE_SPACE_REDUCE
-
⊢ ∀m. (m_space m,measurable_sets m,measure m) = m
- MEASURE_SPACE_RESTRICTED
-
⊢ ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
measure_space (s,IMAGE (λt. s ∩ t) (measurable_sets m),measure m)
- MEASURE_SPACE_SUBSET
-
⊢ ∀s s' m. s' ⊆ s ∧ measure_space (s,POW s,m) ⇒ measure_space (s',POW s',m)
- MEASURE_SPACE_SUBSET_MSPACE
-
⊢ ∀A m. measure_space m ∧ A ∈ measurable_sets m ⇒ A ⊆ m_space m
- MEASURE_SPACE_UNION
-
⊢ ∀m s t.
measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
s ∪ t ∈ measurable_sets m
- MONOTONE_CONVERGENCE
-
⊢ ∀m s f.
measure_space m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀n. f n ⊆ f (SUC n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
measure m ∘ f ⟶ measure m s
- MONOTONE_CONVERGENCE2
-
⊢ ∀m f.
measure_space m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀n. f n ⊆ f (SUC n)) ⇒
measure m ∘ f ⟶ measure m (BIGUNION (IMAGE f 𝕌(:num)))
- MONOTONE_CONVERGENCE_BIGINTER
-
⊢ ∀m s f.
measure_space m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀n. f (SUC n) ⊆ f n) ∧ (s = BIGINTER (IMAGE f 𝕌(:num))) ⇒
measure m ∘ f ⟶ measure m s
- MONOTONE_CONVERGENCE_BIGINTER2
-
⊢ ∀m f.
measure_space m ∧ f ∈ (𝕌(:num) → measurable_sets m) ∧
(∀n. f (SUC n) ⊆ f n) ⇒
measure m ∘ f ⟶ measure m (BIGINTER (IMAGE f 𝕌(:num)))
- OUTER_MEASURE_SPACE_POSITIVE
-
⊢ ∀m. outer_measure_space m ⇒ positive m
- SIGMA_PROPERTY_DISJOINT_LEMMA
-
⊢ ∀sp a p.
algebra (sp,a) ∧ a ⊆ p ∧ closed_cdi (sp,p) ⇒ subsets (sigma sp a) ⊆ p
- SIGMA_PROPERTY_DISJOINT_LEMMA1
-
⊢ ∀a. algebra a ⇒
∀s t.
s ∈ subsets a ∧ t ∈ subsets (smallest_closed_cdi a) ⇒
s ∩ t ∈ subsets (smallest_closed_cdi a)
- SIGMA_PROPERTY_DISJOINT_LEMMA2
-
⊢ ∀a. algebra a ⇒
∀s t.
s ∈ subsets (smallest_closed_cdi a) ∧
t ∈ subsets (smallest_closed_cdi a) ⇒
s ∩ t ∈ subsets (smallest_closed_cdi a)
- SIGMA_SUBSET_MEASURABLE_SETS
-
⊢ ∀a m.
measure_space m ∧ a ⊆ measurable_sets m ⇒
subsets (sigma (m_space m) a) ⊆ measurable_sets m
- SMALLEST_CLOSED_CDI
-
⊢ ∀a. algebra a ⇒
subsets a ⊆ subsets (smallest_closed_cdi a) ∧
closed_cdi (smallest_closed_cdi a) ∧
subset_class (space a) (subsets (smallest_closed_cdi a))
- SPACE_SMALLEST_CLOSED_CDI
-
⊢ ∀a. space (smallest_closed_cdi a) = space a
- STRONG_MEASURE_SPACE_SUBSET
-
⊢ ∀s s'.
s' ⊆ m_space s ∧ measure_space s ∧ POW s' ⊆ measurable_sets s ⇒
measure_space (s',POW s',measure s)
- SUBADDITIVE
-
⊢ ∀m s t u.
subadditive m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧
(u = s ∪ t) ⇒
measure m u ≤ measure m s + measure m t
- affine_borel_measurable
-
⊢ ∀m g.
measure_space m ∧ g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
∀a b. (λx. a + g x * b) ∈ borel_measurable (m_space m,measurable_sets m)
- borel_measurable_SIGMA_borel_measurable
-
⊢ ∀m f s.
measure_space m ∧ FINITE s ∧
(∀i. i ∈ s ⇒ f i ∈ borel_measurable (m_space m,measurable_sets m)) ⇒
(λx. ∑ (λi. f i x) s) ∈ borel_measurable (m_space m,measurable_sets m)
- borel_measurable_eq_borel_measurable
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
{w | w ∈ m_space m ∧ (f w = g w)} ∈ measurable_sets m
- borel_measurable_ge_iff
-
⊢ ∀m. measure_space m ⇒
∀f. f ∈ borel_measurable (m_space m,measurable_sets m) ⇔
∀a. {w | w ∈ m_space m ∧ a ≤ f w} ∈ measurable_sets m
- borel_measurable_gr_iff
-
⊢ ∀m. measure_space m ⇒
∀f. f ∈ borel_measurable (m_space m,measurable_sets m) ⇔
∀a. {w | w ∈ m_space m ∧ a < f w} ∈ measurable_sets m
- borel_measurable_le_iff
-
⊢ ∀m. measure_space m ⇒
∀f. f ∈ borel_measurable (m_space m,measurable_sets m) ⇔
∀a. {w | w ∈ m_space m ∧ f w ≤ a} ∈ measurable_sets m
- borel_measurable_leq_borel_measurable
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
{w | w ∈ m_space m ∧ f w ≤ g w} ∈ measurable_sets m
- borel_measurable_less_borel_measurable
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
{w | w ∈ m_space m ∧ f w < g w} ∈ measurable_sets m
- borel_measurable_less_iff
-
⊢ ∀m. measure_space m ⇒
∀f. f ∈ borel_measurable (m_space m,measurable_sets m) ⇔
∀a. {w | w ∈ m_space m ∧ f w < a} ∈ measurable_sets m
- borel_measurable_neq_borel_measurable
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
{w | w ∈ m_space m ∧ f w ≠ g w} ∈ measurable_sets m
- borel_measurable_plus_borel_measurable
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
(λx. f x + g x) ∈ borel_measurable (m_space m,measurable_sets m)
- borel_measurable_square
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ⇒
(λx. (f x)²) ∈ borel_measurable (m_space m,measurable_sets m)
- borel_measurable_sub_borel_measurable
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
(λx. f x − g x) ∈ borel_measurable (m_space m,measurable_sets m)
- borel_measurable_times_borel_measurable
-
⊢ ∀m f g.
measure_space m ∧ f ∈ borel_measurable (m_space m,measurable_sets m) ∧
g ∈ borel_measurable (m_space m,measurable_sets m) ⇒
(λx. f x * g x) ∈ borel_measurable (m_space m,measurable_sets m)
- finite_additivity_sufficient_for_finite_spaces
-
⊢ ∀s m.
sigma_algebra s ∧ FINITE (space s) ∧ positive (space s,subsets s,m) ∧
additive (space s,subsets s,m) ⇒
measure_space (space s,subsets s,m)
- finite_additivity_sufficient_for_finite_spaces2
-
⊢ ∀m. sigma_algebra (m_space m,measurable_sets m) ∧ FINITE (m_space m) ∧
positive m ∧ additive m ⇒
measure_space m
- mono_convergent_borel_measurable
-
⊢ ∀u m f.
measure_space m ∧
(∀n. u n ∈ borel_measurable (m_space m,measurable_sets m)) ∧
mono_convergent u f (m_space m) ⇒
f ∈ borel_measurable (m_space m,measurable_sets m)