- ABS_1_MINUS_PROB
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ∧ prob p s ≠ 0 ⇒ abs (1 − prob p s) < 1
- ABS_PROB
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (abs (prob p s) = prob p s)
- ADDITIVE_PROB
-
⊢ ∀p. additive p ⇔
∀s t.
s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ⇒
(prob p (s ∪ t) = prob p s + prob p t)
- BAYES_RULE
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
(cond_prob p B A = cond_prob p A B * prob p B / prob p A)
- BAYES_RULE_GENERAL_SIGMA
-
⊢ ∀p A B s k.
prob_space p ∧ A ∈ events p ∧ FINITE s ∧ (∀x. x ∈ s ⇒ B x ∈ events p) ∧
k ∈ s ∧ (∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
(BIGUNION (IMAGE B s) = p_space p) ⇒
(cond_prob p (B k) A =
cond_prob p A (B k) * prob p (B k) /
∑ (λi. prob p (B i) * cond_prob p A (B i)) s)
- COND_PROB_ADDITIVE
-
⊢ ∀p A B s.
prob_space p ∧ FINITE s ∧ B ∈ events p ∧ (∀x. x ∈ s ⇒ A x ∈ events p) ∧
0 < prob p B ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (A x) (A y)) ∧
(BIGUNION (IMAGE A s) = p_space p) ⇒
(∑ (λi. cond_prob p (A i) B) s = 1)
- COND_PROB_BOUNDS
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
0 ≤ cond_prob p A B ∧ cond_prob p A B ≤ 1
- COND_PROB_COMPL
-
⊢ ∀A B p.
prob_space p ∧ A ∈ events p ∧ COMPL A ∈ events p ∧ B ∈ events p ∧
0 < prob p B ⇒
(cond_prob p (COMPL A) B = 1 − cond_prob p A B)
- COND_PROB_DIFF
-
⊢ ∀p A1 A2 B.
prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ B ∈ events p ⇒
(cond_prob p (A1 DIFF A2) B = cond_prob p A1 B − cond_prob p (A1 ∩ A2) B)
- COND_PROB_FINITE_ADDITIVE
-
⊢ ∀p A B n s.
prob_space p ∧ B ∈ events p ∧ A ∈ (count n → events p) ∧
(s = BIGUNION (IMAGE A (count n))) ∧ (∀a b. a ≠ b ⇒ DISJOINT (A a) (A b)) ⇒
(cond_prob p s B = ∑ (λi. cond_prob p (A i) B) (count n))
- COND_PROB_INCREASING
-
⊢ ∀A B C p.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
cond_prob p (A ∩ B) C ≤ cond_prob p A C
- COND_PROB_INTER_SPLIT
-
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
(cond_prob p (A ∩ B) C = cond_prob p A (B ∩ C) * cond_prob p B C)
- COND_PROB_INTER_ZERO
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p A = 0) ⇒
(cond_prob p A B = 0)
- COND_PROB_ITSELF
-
⊢ ∀p B. prob_space p ∧ B ∈ events p ∧ 0 < prob p B ⇒ (cond_prob p B B = 1)
- COND_PROB_MUL_EQ
-
⊢ ∀A B p.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
(cond_prob p A B * prob p B = cond_prob p B A * prob p A)
- COND_PROB_MUL_RULE
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
(prob p (A ∩ B) = prob p B * cond_prob p A B)
- COND_PROB_POS_IMP_PROB_NZ
-
⊢ ∀A B p.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ 0 < cond_prob p A B ⇒
prob p (A ∩ B) ≠ 0
- COND_PROB_SWAP
-
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
(cond_prob p A (B ∩ C) * cond_prob p B C =
cond_prob p B (A ∩ C) * cond_prob p A C)
- COND_PROB_ZERO
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p B = 0) ⇒
(cond_prob p A B = 0)
- COND_PROB_ZERO_INTER
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p (A ∩ B) = 0) ⇒
(cond_prob p A B = 0)
- COUNTABLY_ADDITIVE_PROB
-
⊢ ∀p. countably_additive p ⇔
∀f. f ∈ (𝕌(:num) → events p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
BIGUNION (IMAGE f 𝕌(:num)) ∈ events p ⇒
prob p ∘ f sums prob p (BIGUNION (IMAGE f 𝕌(:num)))
- EVENTS
-
⊢ ∀a b c. events (a,b,c) = b
- EVENTS_ALGEBRA
-
⊢ ∀p. prob_space p ⇒ algebra (p_space p,events p)
- EVENTS_BIGUNION
-
⊢ ∀p f n.
prob_space p ∧ f ∈ (count n → events p) ⇒
BIGUNION (IMAGE f (count n)) ∈ events p
- EVENTS_COMPL
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p DIFF s ∈ events p
- EVENTS_COUNTABLE_INTER
-
⊢ ∀p c.
prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ∧ c ≠ ∅ ⇒ BIGINTER c ∈ events p
- EVENTS_COUNTABLE_UNION
-
⊢ ∀p c. prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ⇒ BIGUNION c ∈ events p
- EVENTS_DIFF
-
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s DIFF t ∈ events p
- EVENTS_EMPTY
-
⊢ ∀p. prob_space p ⇒ ∅ ∈ events p
- EVENTS_INTER
-
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∩ t ∈ events p
- EVENTS_SIGMA_ALGEBRA
-
⊢ ∀p. prob_space p ⇒ sigma_algebra (p_space p,events p)
- EVENTS_SPACE
-
⊢ ∀p. prob_space p ⇒ p_space p ∈ events p
- EVENTS_UNION
-
⊢ ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∪ t ∈ events p
- INCREASING_PROB
-
⊢ ∀p. increasing p ⇔
∀s t. s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
- INDEP_EMPTY
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p ∅ s
- INDEP_REFL
-
⊢ ∀p a.
prob_space p ∧ a ∈ events p ⇒
(indep p a a ⇔ (prob p a = 0)) ∨ (prob p a = 1)
- INDEP_SPACE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p (p_space p) s
- INDEP_SYM
-
⊢ ∀p a b. prob_space p ∧ indep p a b ⇒ indep p b a
- INTER_PSPACE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ (p_space p ∩ s = s)
- POSITIVE_PROB
-
⊢ ∀p. positive p ⇔ (prob p ∅ = 0) ∧ ∀s. s ∈ events p ⇒ 0 ≤ prob p s
- PROB
-
⊢ ∀a b c. prob (a,b,c) = c
- PROB_ADDITIVE
-
⊢ ∀p s t u.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧ (u = s ∪ t) ⇒
(prob p u = prob p s + prob p t)
- PROB_COMPL
-
⊢ ∀p s.
prob_space p ∧ s ∈ events p ⇒ (prob p (p_space p DIFF s) = 1 − prob p s)
- PROB_COMPL_LE1
-
⊢ ∀p s r.
prob_space p ∧ s ∈ events p ⇒
(prob p (p_space p DIFF s) ≤ r ⇔ 1 − r ≤ prob p s)
- PROB_COUNTABLY_ADDITIVE
-
⊢ ∀p s f.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
prob p ∘ f sums prob p s
- PROB_COUNTABLY_SUBADDITIVE
-
⊢ ∀p f.
prob_space p ∧ IMAGE f 𝕌(:num) ⊆ events p ∧ summable (prob p ∘ f) ⇒
prob p (BIGUNION (IMAGE f 𝕌(:num))) ≤ suminf (prob p ∘ f)
- PROB_COUNTABLY_ZERO
-
⊢ ∀p c.
prob_space p ∧ COUNTABLE c ∧ c ⊆ events p ∧ (∀x. x ∈ c ⇒ (prob p x = 0)) ⇒
(prob p (BIGUNION c) = 0)
- PROB_DISCRETE_EVENTS
-
⊢ ∀p. prob_space p ∧ FINITE (p_space p) ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
∀s. s ⊆ p_space p ⇒ s ∈ events p
- PROB_DISCRETE_EVENTS_COUNTABLE
-
⊢ ∀p. prob_space p ∧ COUNTABLE (p_space p) ∧
(∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
∀s. s ⊆ p_space p ⇒ s ∈ events p
- PROB_EMPTY
-
⊢ ∀p. prob_space p ⇒ (prob p ∅ = 0)
- PROB_EQUIPROBABLE_FINITE_UNIONS
-
⊢ ∀p s.
prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧ FINITE s ∧
(∀x y. x ∈ s ∧ y ∈ s ⇒ (prob p {x} = prob p {y})) ⇒
(prob p s = &CARD s * prob p {CHOICE s})
- PROB_EQ_BIGUNION_IMAGE
-
⊢ ∀p f g.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ g ∈ (𝕌(:num) → events p) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
(∀m n. m ≠ n ⇒ DISJOINT (g m) (g n)) ∧ (∀n. prob p (f n) = prob p (g n)) ⇒
(prob p (BIGUNION (IMAGE f 𝕌(:num))) = prob p (BIGUNION (IMAGE g 𝕌(:num))))
- PROB_EQ_COMPL
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧
(prob p (p_space p DIFF s) = prob p (p_space p DIFF t)) ⇒
(prob p s = prob p t)
- PROB_FINITELY_ADDITIVE
-
⊢ ∀p s f n.
prob_space p ∧ f ∈ (count n → events p) ∧
(∀a b. a < n ∧ b < n ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
(s = BIGUNION (IMAGE f (count n))) ⇒
(sum (0,n) (prob p ∘ f) = prob p s)
- PROB_FINITE_ADDITIVE
-
⊢ ∀p s f t.
prob_space p ∧ FINITE s ∧ (∀x. x ∈ s ⇒ f x ∈ events p) ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
(t = BIGUNION (IMAGE f s)) ⇒
(prob p t = ∑ (prob p ∘ f) s)
- PROB_INCREASING
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
- PROB_INCREASING_UNION
-
⊢ ∀p s f.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ (∀n. f n ⊆ f (SUC n)) ∧
(s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
prob p ∘ f ⟶ prob p s
- PROB_INDEP
-
⊢ ∀p s t u. indep p s t ∧ (u = s ∩ t) ⇒ (prob p u = prob p s * prob p t)
- PROB_INTER_SPLIT
-
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
(prob p (A ∩ B ∩ C) = cond_prob p A (B ∩ C) * cond_prob p B C * prob p C)
- PROB_INTER_ZERO
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p B = 0) ⇒
(prob p (A ∩ B) = 0)
- PROB_LE_1
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≤ 1
- PROB_ONE_INTER
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 1) ⇒
(prob p (s ∩ t) = prob p s)
- PROB_POSITIVE
-
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ 0 ≤ prob p s
- PROB_PRESERVING
-
⊢ ∀p1 p2.
prob_preserving p1 p2 =
{f |
f ∈ measurable (p_space p1,events p1) (p_space p2,events p2) ∧
measure_space p1 ∧ measure_space p2 ∧
∀s. s ∈ events p2 ⇒ (prob p1 (PREIMAGE f s ∩ p_space p1) = prob p2 s)}
- PROB_PRESERVING_LIFT
-
⊢ ∀p1 p2 a f.
prob_space p1 ∧ prob_space p2 ∧
(events p2 = subsets (sigma (m_space p2) a)) ∧
f ∈ prob_preserving p1 (m_space p2,a,prob p2) ⇒
f ∈ prob_preserving p1 p2
- PROB_PRESERVING_SUBSET
-
⊢ ∀p1 p2 a.
prob_space p1 ∧ prob_space p2 ∧
(events p2 = subsets (sigma (p_space p2) a)) ⇒
prob_preserving p1 (p_space p2,a,prob p2) ⊆ prob_preserving p1 p2
- PROB_PRESERVING_UP_LIFT
-
⊢ ∀p1 p2 f.
prob_space p1 ∧ f ∈ prob_preserving (p_space p1,a,prob p1) p2 ∧
sigma_algebra (p_space p1,events p1) ∧ a ⊆ events p1 ⇒
f ∈ prob_preserving p1 p2
- PROB_PRESERVING_UP_SIGMA
-
⊢ ∀p1 p2 a.
prob_space p1 ∧ (events p1 = subsets (sigma (p_space p1) a)) ⇒
prob_preserving (p_space p1,a,prob p1) p2 ⊆ prob_preserving p1 p2
- PROB_PRESERVING_UP_SUBSET
-
⊢ ∀p1 p2.
prob_space p1 ∧ a ⊆ events p1 ∧ sigma_algebra (p_space p1,events p1) ⇒
prob_preserving (p_space p1,a,prob p1) p2 ⊆ prob_preserving p1 p2
- PROB_REAL_SUM_IMAGE
-
⊢ ∀p s.
prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧ FINITE s ⇒
(prob p s = ∑ (λx. prob p {x}) s)
- PROB_REAL_SUM_IMAGE_FN
-
⊢ ∀p f e s.
prob_space p ∧ e ∈ events p ∧ (∀x. x ∈ s ⇒ e ∩ f x ∈ events p) ∧
FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (f x) (f y)) ∧
(BIGUNION (IMAGE f s) ∩ p_space p = p_space p) ⇒
(prob p e = ∑ (λx. prob p (e ∩ f x)) s)
- PROB_REAL_SUM_IMAGE_SPACE
-
⊢ ∀p. prob_space p ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ∧ FINITE (p_space p) ⇒
(∑ (λx. prob p {x}) (p_space p) = 1)
- PROB_SPACE
-
⊢ ∀p. prob_space p ⇔
sigma_algebra (p_space p,events p) ∧ positive p ∧ countably_additive p ∧
(prob p (p_space p) = 1)
- PROB_SPACE_ADDITIVE
-
⊢ ∀p. prob_space p ⇒ additive p
- PROB_SPACE_COUNTABLY_ADDITIVE
-
⊢ ∀p. prob_space p ⇒ countably_additive p
- PROB_SPACE_INCREASING
-
⊢ ∀p. prob_space p ⇒ increasing p
- PROB_SPACE_POSITIVE
-
⊢ ∀p. prob_space p ⇒ positive p
- PROB_SUBADDITIVE
-
⊢ ∀p s t u.
prob_space p ∧ t ∈ events p ∧ u ∈ events p ∧ (s = t ∪ u) ⇒
prob p s ≤ prob p t + prob p u
- PROB_UNIV
-
⊢ ∀p. prob_space p ⇒ (prob p (p_space p) = 1)
- PROB_ZERO_INTER
-
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ (prob p A = 0) ⇒
(prob p (A ∩ B) = 0)
- PROB_ZERO_UNION
-
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 0) ⇒
(prob p (s ∪ t) = prob p s)
- PSPACE
-
⊢ ∀a b c. p_space (a,b,c) = a
- TOTAL_PROB_SIGMA
-
⊢ ∀p A B s.
prob_space p ∧ A ∈ events p ∧ FINITE s ∧ (∀x. x ∈ s ⇒ B x ∈ events p) ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
(BIGUNION (IMAGE B s) = p_space p) ⇒
(prob p A = ∑ (λi. prob p (B i) * cond_prob p A (B i)) s)
- conditional_distribution_le_1
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
conditional_distribution p X Y a b ≤ 1
- conditional_distribution_pos
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
0 ≤ conditional_distribution p X Y a b
- distribution_lebesgue_thm1
-
⊢ ∀X p s A.
random_variable X p s ∧ A ∈ subsets s ⇒
(distribution p X A = integral p (𝟙 (PREIMAGE X A ∩ p_space p)))
- distribution_lebesgue_thm2
-
⊢ ∀X p s A.
random_variable X p s ∧ A ∈ subsets s ⇒
(distribution p X A = integral (space s,subsets s,distribution p X) (𝟙 A))
- distribution_pos
-
⊢ ∀p X a. prob_space p ∧ (events p = POW (p_space p)) ⇒ 0 ≤ distribution p X a
- distribution_prob_space
-
⊢ ∀p X s.
random_variable X p s ⇒ prob_space (space s,subsets s,distribution p X)
- distribution_x_eq_1_imp_distribution_y_eq_0
-
⊢ ∀X p x.
random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
(distribution p X {x} = 1) ⇒
∀y. y ≠ x ⇒ (distribution p X {y} = 0)
- finite_expectation
-
⊢ ∀p X.
FINITE (p_space p) ∧ real_random_variable X p ⇒
(expectation p X = ∑ (λr. r * distribution p X {r}) (IMAGE X (p_space p)))
- finite_expectation1
-
⊢ ∀p X.
FINITE (p_space p) ∧ real_random_variable X p ⇒
(expectation p X =
∑ (λr. r * prob p (PREIMAGE X {r} ∩ p_space p)) (IMAGE X (p_space p)))
- finite_marginal_product_space_POW
-
⊢ ∀p X Y.
(POW (p_space p) = events p) ∧
random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
random_variable Y p (IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) ∧
FINITE (p_space p) ⇒
measure_space
(IMAGE X (p_space p) × IMAGE Y (p_space p),
POW (IMAGE X (p_space p) × IMAGE Y (p_space p)),
(λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p)))
- finite_marginal_product_space_POW2
-
⊢ ∀p s1 s2 X Y.
(POW (p_space p) = events p) ∧ random_variable X p (s1,POW s1) ∧
random_variable Y p (s2,POW s2) ∧ FINITE (p_space p) ∧ FINITE s1 ∧
FINITE s2 ⇒
measure_space (s1 × s2,POW (s1 × s2),joint_distribution p X Y)
- finite_marginal_product_space_POW3
-
⊢ ∀p s1 s2 s3 X Y Z.
(POW (p_space p) = events p) ∧ random_variable X p (s1,POW s1) ∧
random_variable Y p (s2,POW s2) ∧ random_variable Z p (s3,POW s3) ∧
FINITE (p_space p) ∧ FINITE s1 ∧ FINITE s2 ∧ FINITE s3 ⇒
measure_space
(s1 × (s2 × s3),POW (s1 × (s2 × s3)),joint_distribution3 p X Y Z)
- joint_conditional
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
(joint_distribution p X Y (a × b) =
conditional_distribution p Y X b a * distribution p X a)
- joint_distribution_le
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
joint_distribution p X Y (a × b) ≤ distribution p X a
- joint_distribution_le2
-
⊢ ∀p X Y a b.
prob_space p ∧ (events p = POW (p_space p)) ⇒
joint_distribution p X Y (a × b) ≤ distribution p Y b
- joint_distribution_le_1
-
⊢ ∀p X Y a.
prob_space p ∧ (events p = POW (p_space p)) ⇒
joint_distribution p X Y a ≤ 1
- joint_distribution_pos
-
⊢ ∀p X Y a.
prob_space p ∧ (events p = POW (p_space p)) ⇒
0 ≤ joint_distribution p X Y a
- joint_distribution_sum_mul1
-
⊢ ∀p X Y f.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
(∑ (λ(x,y). joint_distribution p X Y {(x,y)} * f x)
(IMAGE X (p_space p) × IMAGE Y (p_space p)) =
∑ (λx. distribution p X {x} * f x) (IMAGE X (p_space p)))
- joint_distribution_sums_1
-
⊢ ∀p X Y.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
(∑ (λ(x,y). joint_distribution p X Y {(x,y)})
(IMAGE X (p_space p) × IMAGE Y (p_space p)) = 1)
- joint_distribution_sym
-
⊢ ∀p X Y a b.
prob_space p ⇒
(joint_distribution p X Y (a × b) = joint_distribution p Y X (b × a))
- marginal_distribution1
-
⊢ ∀p X Y a.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
(distribution p X a =
∑ (λx. joint_distribution p X Y (a × {x})) (IMAGE Y (p_space p)))
- marginal_distribution2
-
⊢ ∀p X Y b.
prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
(distribution p Y b =
∑ (λx. joint_distribution p X Y ({x} × b)) (IMAGE X (p_space p)))
- marginal_joint_zero
-
⊢ ∀p X Y s t.
prob_space p ∧ (events p = POW (p_space p)) ∧
((distribution p X s = 0) ∨ (distribution p Y t = 0)) ⇒
(joint_distribution p X Y (s × t) = 0)
- marginal_joint_zero3
-
⊢ ∀p X Y Z s t u.
prob_space p ∧ (events p = POW (p_space p)) ∧
((distribution p X s = 0) ∨ (distribution p Y t = 0) ∨
(distribution p Z u = 0)) ⇒
(joint_distribution3 p X Y Z (s × (t × u)) = 0)
- prob_x_eq_1_imp_prob_y_eq_0
-
⊢ ∀p x.
prob_space p ∧ {x} ∈ events p ∧ (prob p {x} = 1) ⇒
∀y. {y} ∈ events p ∧ y ≠ x ⇒ (prob p {y} = 0)
- uniform_distribution_prob_space
-
⊢ ∀X p s.
FINITE (p_space p) ∧ FINITE (space s) ∧ random_variable X p s ⇒
prob_space (space s,subsets s,uniform_distribution p X s)