- ALGEBRA_ALT_INTER
-
⊢ ∀a. algebra a ⇔
subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
(∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
- ALGEBRA_COMPL
-
⊢ ∀a s. algebra a ∧ s ∈ subsets a ⇒ space a DIFF s ∈ subsets a
- ALGEBRA_COMPL_SETS
-
⊢ ∀sp sts a. algebra (sp,sts) ∧ a ∈ sts ⇒ sp DIFF a ∈ sts
- ALGEBRA_DIFF
-
⊢ ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s DIFF t ∈ subsets a
- ALGEBRA_EMPTY
-
⊢ ∀a. algebra a ⇒ ∅ ∈ subsets a
- ALGEBRA_FINITE_UNION
-
⊢ ∀a c. algebra a ∧ FINITE c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
- ALGEBRA_IMP_RING
-
⊢ ∀a. algebra a ⇒ ring a
- ALGEBRA_IMP_SEMIRING
-
⊢ ∀a. algebra a ⇒ semiring a
- ALGEBRA_INTER
-
⊢ ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
- ALGEBRA_INTER_SPACE
-
⊢ ∀a s. algebra a ∧ s ∈ subsets a ⇒ (space a ∩ s = s) ∧ (s ∩ space a = s)
- ALGEBRA_RESTRICT
-
⊢ ∀sp sts a. algebra (sp,sts) ∧ a ∈ sts ⇒ algebra (a,IMAGE (λs. s ∩ a) sts)
- ALGEBRA_SETS_COLLECT_CONST
-
⊢ ∀sp sts P. algebra (sp,sts) ⇒ {x | x ∈ sp ∧ P} ∈ sts
- ALGEBRA_SETS_COLLECT_IMP
-
⊢ ∀sp sts P Q.
algebra (sp,sts) ∧ {x | x ∈ sp ∧ P x} ∈ sts ⇒
{x | x ∈ sp ∧ Q x} ∈ sts ⇒
{x | x ∈ sp ∧ (Q x ⇒ P x)} ∈ sts
- ALGEBRA_SETS_COLLECT_NEG
-
⊢ ∀sp sts P.
algebra (sp,sts) ∧ {x | x ∈ sp ∧ P x} ∈ sts ⇒ {x | x ∈ sp ∧ ¬P x} ∈ sts
- ALGEBRA_SINGLE_SET
-
⊢ ∀X S. X ⊆ S ⇒ algebra (S,{∅; X; S DIFF X; S})
- ALGEBRA_SPACE
-
⊢ ∀a. algebra a ⇒ space a ∈ subsets a
- ALGEBRA_UNION
-
⊢ ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a
- DYNKIN
-
⊢ ∀sp sts.
subset_class sp sts ⇒
sts ⊆ subsets (dynkin sp sts) ∧ dynkin_system (dynkin sp sts) ∧
subset_class sp (subsets (dynkin sp sts))
- DYNKIN_LEMMA
-
⊢ ∀d. dynkin_system d ∧
(∀s t. s ∈ subsets d ∧ t ∈ subsets d ⇒ s ∩ t ∈ subsets d) ⇔
sigma_algebra d
- DYNKIN_MONOTONE
-
⊢ ∀sp a b. a ⊆ b ⇒ subsets (dynkin sp a) ⊆ subsets (dynkin sp b)
- DYNKIN_SMALLEST
-
⊢ ∀sp sts D.
sts ⊆ D ∧ D ⊆ subsets (dynkin sp sts) ∧ dynkin_system (sp,D) ⇒
(D = subsets (dynkin sp sts))
- DYNKIN_STABLE
-
⊢ ∀d. dynkin_system d ⇒ (dynkin (space d) (subsets d) = d)
- DYNKIN_STABLE_LEMMA
-
⊢ ∀sp sts. dynkin_system (sp,sts) ⇒ (dynkin sp sts = (sp,sts))
- DYNKIN_SUBSET
-
⊢ ∀a b.
dynkin_system b ∧ a ⊆ subsets b ⇒ subsets (dynkin (space b) a) ⊆ subsets b
- DYNKIN_SUBSET_SIGMA
-
⊢ ∀sp sts.
subset_class sp sts ⇒ subsets (dynkin sp sts) ⊆ subsets (sigma sp sts)
- DYNKIN_SUBSET_SUBSETS
-
⊢ ∀sp a. a ⊆ subsets (dynkin sp a)
- DYNKIN_SYSTEM_ALT
-
⊢ ∀d. dynkin_system d ⇔
subset_class (space d) (subsets d) ∧ space d ∈ subsets d ∧
(∀s. s ∈ subsets d ⇒ space d DIFF s ∈ subsets d) ∧
(∀f. f ∈ (𝕌(:num) → subsets d) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d) ∧
∀f. f ∈ (𝕌(:num) → subsets d) ∧ (∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d
- DYNKIN_SYSTEM_ALT_MONO
-
⊢ ∀d. dynkin_system d ⇔
subset_class (space d) (subsets d) ∧ space d ∈ subsets d ∧
(∀s t. s ∈ subsets d ∧ t ∈ subsets d ∧ s ⊆ t ⇒ t DIFF s ∈ subsets d) ∧
∀f. f ∈ (𝕌(:num) → subsets d) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d
- DYNKIN_SYSTEM_COMPL
-
⊢ ∀d s. dynkin_system d ∧ s ∈ subsets d ⇒ space d DIFF s ∈ subsets d
- DYNKIN_SYSTEM_COUNTABLY_DUNION
-
⊢ ∀d f.
dynkin_system d ∧ f ∈ (𝕌(:num) → subsets d) ∧
(∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d
- DYNKIN_SYSTEM_DUNION
-
⊢ ∀d s t.
dynkin_system d ∧ s ∈ subsets d ∧ t ∈ subsets d ∧ DISJOINT s t ⇒
s ∪ t ∈ subsets d
- DYNKIN_SYSTEM_EMPTY
-
⊢ ∀d. dynkin_system d ⇒ ∅ ∈ subsets d
- DYNKIN_SYSTEM_INCREASING
-
⊢ ∀p f.
dynkin_system p ∧ f ∈ (𝕌(:num) → subsets p) ∧ (f 0 = ∅) ∧
(∀n. f n ⊆ f (SUC n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p
- DYNKIN_SYSTEM_SPACE
-
⊢ ∀d. dynkin_system d ⇒ space d ∈ subsets d
- DYNKIN_THM
-
⊢ ∀sp sts.
subset_class sp sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∩ t ∈ sts) ⇒
(dynkin sp sts = sigma sp sts)
- INTER_SPACE_EQ1
-
⊢ ∀sp sts. subset_class sp sts ⇒ ∀x. x ∈ sts ⇒ (sp ∩ x = x)
- INTER_SPACE_REDUCE
-
⊢ ∀sp sts. subset_class sp sts ⇒ ∀x. x ∈ sts ⇒ (x ∩ sp = x)
- IN_DYNKIN
-
⊢ ∀sp a x. x ∈ a ⇒ x ∈ subsets (dynkin sp a)
- IN_MEASURABLE
-
⊢ ∀a b f.
f ∈ measurable a b ⇔
sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a
- IN_SIGMA
-
⊢ ∀sp a x. x ∈ a ⇒ x ∈ subsets (sigma sp a)
- MEASUBABLE_BIGUNION_LEMMA
-
⊢ ∀a b f.
sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
(∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
∀c. COUNTABLE c ∧ c ⊆ IMAGE (PREIMAGE f) (subsets b) ⇒
BIGUNION c ∈ IMAGE (PREIMAGE f) (subsets b)
- MEASURABLE_BIGUNION_PROPERTY
-
⊢ ∀a b f.
sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
(∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
∀c. c ⊆ subsets b ⇒
(PREIMAGE f (BIGUNION c) = BIGUNION (IMAGE (PREIMAGE f) c))
- MEASURABLE_COMP
-
⊢ ∀f g a b c. f ∈ measurable a b ∧ g ∈ measurable b c ⇒ g ∘ f ∈ measurable a c
- MEASURABLE_COMP_STRONG
-
⊢ ∀f g a b c.
f ∈ measurable a b ∧ sigma_algebra c ∧ g ∈ (space b → space c) ∧
(∀x. x ∈ subsets c ⇒ PREIMAGE g x ∩ IMAGE f (space a) ∈ subsets b) ⇒
g ∘ f ∈ measurable a c
- MEASURABLE_COMP_STRONGER
-
⊢ ∀f g a b c t.
f ∈ measurable a b ∧ sigma_algebra c ∧ g ∈ (space b → space c) ∧
IMAGE f (space a) ⊆ t ∧ (∀s. s ∈ subsets c ⇒ PREIMAGE g s ∩ t ∈ subsets b) ⇒
g ∘ f ∈ measurable a c
- MEASURABLE_DIFF_PROPERTY
-
⊢ ∀a b f.
sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
(∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
∀s. s ∈ subsets b ⇒
(PREIMAGE f (space b DIFF s) = space a DIFF PREIMAGE f s)
- MEASURABLE_I
-
⊢ ∀a. sigma_algebra a ⇒ I ∈ measurable a a
- MEASURABLE_LIFT
-
⊢ ∀f a b. f ∈ measurable a b ⇒ f ∈ measurable a (sigma (space b) (subsets b))
- MEASURABLE_PROD_SIGMA
-
⊢ ∀a a1 a2 f.
sigma_algebra a ∧ FST ∘ f ∈ measurable a a1 ∧ SND ∘ f ∈ measurable a a2 ⇒
f ∈
measurable a
(sigma (space a1 × space a2) (prod_sets (subsets a1) (subsets a2)))
- MEASURABLE_PROD_SIGMA'
-
⊢ ∀a a1 a2 f.
sigma_algebra a ∧ FST ∘ f ∈ measurable a a1 ∧ SND ∘ f ∈ measurable a a2 ⇒
f ∈ measurable a (a1 × a2)
- MEASURABLE_SIGMA
-
⊢ ∀f a b sp.
sigma_algebra a ∧ subset_class sp b ∧ f ∈ (space a → sp) ∧
(∀s. s ∈ b ⇒ PREIMAGE f s ∩ space a ∈ subsets a) ⇒
f ∈ measurable a (sigma sp b)
- MEASURABLE_SIGMA_PREIMAGES
-
⊢ ∀a b f.
sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
(∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
sigma_algebra (space a,IMAGE (PREIMAGE f) (subsets b))
- MEASURABLE_SUBSET
-
⊢ ∀a b. measurable a b ⊆ measurable a (sigma (space b) (subsets b))
- MEASURABLE_UP_LIFT
-
⊢ ∀sp a b c f.
f ∈ measurable (sp,a) c ∧ sigma_algebra (sp,b) ∧ a ⊆ b ⇒
f ∈ measurable (sp,b) c
- MEASURABLE_UP_SIGMA
-
⊢ ∀a b. measurable a b ⊆ measurable (sigma (space a) (subsets a)) b
- MEASURABLE_UP_SUBSET
-
⊢ ∀sp a b c.
a ⊆ b ∧ sigma_algebra (sp,b) ⇒ measurable (sp,a) c ⊆ measurable (sp,b) c
- POW_ALGEBRA
-
⊢ ∀sp. algebra (sp,POW sp)
- POW_SIGMA_ALGEBRA
-
⊢ ∀sp. sigma_algebra (sp,POW sp)
- PREIMAGE_SIGMA
-
⊢ ∀Z sp sts f.
subset_class sp sts ∧ f ∈ (Z → sp) ⇒
(IMAGE (λs. PREIMAGE f s ∩ Z) (subsets (sigma sp sts)) =
subsets (sigma Z (IMAGE (λs. PREIMAGE f s ∩ Z) sts)))
- PREIMAGE_SIGMA_ALGEBRA
-
⊢ ∀sp A f.
sigma_algebra A ∧ f ∈ (sp → space A) ⇒
sigma_algebra (sp,IMAGE (λs. PREIMAGE f s ∩ sp) (subsets A))
- RING_BIGUNION
-
⊢ ∀sp sts A n.
ring (sp,sts) ∧ IMAGE A 𝕌(:num) ⊆ sts ⇒ BIGUNION {A i | i < n} ∈ sts
- RING_DIFF
-
⊢ ∀r s t. ring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s DIFF t ∈ subsets r
- RING_DIFF_ALT
-
⊢ ∀a b sp sts. ring (sp,sts) ∧ a ∈ sts ∧ b ∈ sts ⇒ a DIFF b ∈ sts
- RING_EMPTY
-
⊢ ∀r. ring r ⇒ ∅ ∈ subsets r
- RING_FINITE_BIGUNION1
-
⊢ ∀X sp sts. ring (sp,sts) ∧ FINITE X ⇒ X ⊆ sts ⇒ BIGUNION X ∈ sts
- RING_FINITE_BIGUNION2
-
⊢ ∀A N sp sts.
ring (sp,sts) ∧ FINITE N ∧ (∀i. i ∈ N ⇒ A i ∈ sts) ⇒
BIGUNION {A i | i ∈ N} ∈ sts
- RING_FINITE_INTER
-
⊢ ∀r f n.
ring r ∧ 0 < n ∧ (∀i. i < n ⇒ f i ∈ subsets r) ⇒
BIGINTER (IMAGE f (count n)) ∈ subsets r
- RING_FINITE_UNION
-
⊢ ∀r c. ring r ∧ c ⊆ subsets r ∧ FINITE c ⇒ BIGUNION c ∈ subsets r
- RING_FINITE_UNION_ALT
-
⊢ ∀r f n.
ring r ∧ (∀i. i < n ⇒ f i ∈ subsets r) ⇒
BIGUNION (IMAGE f (count n)) ∈ subsets r
- RING_IMP_SEMIRING
-
⊢ ∀r. ring r ⇒ semiring r
- RING_INSERT
-
⊢ ∀x A sp sts. ring (sp,sts) ∧ {x} ∈ sts ∧ A ∈ sts ⇒ x INSERT A ∈ sts
- RING_INTER
-
⊢ ∀r s t. ring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∩ t ∈ subsets r
- RING_SETS_COLLECT_FINITE
-
⊢ ∀sp sts s P.
ring (sp,sts) ∧ (∀i. i ∈ s ⇒ {x | x ∈ sp ∧ P i x} ∈ sts) ∧ FINITE s ⇒
{x | x ∈ sp ∧ ∃i. i ∈ s ∧ P i x} ∈ sts
- RING_SPACE_IMP_ALGEBRA
-
⊢ ∀r. ring r ∧ space r ∈ subsets r ⇒ algebra r
- RING_UNION
-
⊢ ∀r s t. ring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∪ t ∈ subsets r
- SEMIRING_DIFF
-
⊢ ∀r s t.
semiring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒
∃c. c ⊆ subsets r ∧ FINITE c ∧ disjoint c ∧ (s DIFF t = BIGUNION c)
- SEMIRING_DIFF_ALT
-
⊢ ∀r s t.
semiring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒
∃f n.
(∀i. i < n ⇒ f i ∈ subsets r) ∧
(∀i j. i < n ∧ j < n ∧ i ≠ j ⇒ DISJOINT (f i) (f j)) ∧
(s DIFF t = BIGUNION (IMAGE f (count n)))
- SEMIRING_EMPTY
-
⊢ ∀r. semiring r ⇒ ∅ ∈ subsets r
- SEMIRING_INTER
-
⊢ ∀r s t. semiring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∩ t ∈ subsets r
- SEMIRING_PROD_SETS
-
⊢ ∀a b.
semiring a ∧ semiring b ⇒
semiring (space a × space b,prod_sets (subsets a) (subsets b))
- SEMIRING_PROD_SETS'
-
⊢ ∀a b.
sigma_algebra a ∧ sigma_algebra b ⇒
semiring (space a × space b,prod_sets (subsets a) (subsets b))
- SEMIRING_SETS_COLLECT
-
⊢ ∀sp sts P Q.
semiring (sp,sts) ∧ {x | x ∈ sp ∧ P x} ∈ sts ∧ {x | x ∈ sp ∧ Q x} ∈ sts ⇒
{x | x ∈ sp ∧ P x ∧ Q x} ∈ sts
- SIGMA_ALGEBRA
-
⊢ ∀p. sigma_algebra p ⇔
subset_class (space p) (subsets p) ∧ ∅ ∈ subsets p ∧
(∀s. s ∈ subsets p ⇒ space p DIFF s ∈ subsets p) ∧
∀c. COUNTABLE c ∧ c ⊆ subsets p ⇒ BIGUNION c ∈ subsets p
- SIGMA_ALGEBRA_ALGEBRA
-
⊢ ∀a. sigma_algebra a ⇒ algebra a
- SIGMA_ALGEBRA_ALT
-
⊢ ∀a. sigma_algebra a ⇔
algebra a ∧
∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_ALT_DISJOINT
-
⊢ ∀a. sigma_algebra a ⇔
algebra a ∧
∀f. f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_ALT_MONO
-
⊢ ∀a. sigma_algebra a ⇔
algebra a ∧
∀f. f ∈ (𝕌(:num) → subsets a) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_ALT_SPACE
-
⊢ ∀a. sigma_algebra a ⇔
subset_class (space a) (subsets a) ∧ space a ∈ subsets a ∧
(∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_COMPL
-
⊢ ∀a s. sigma_algebra a ∧ s ∈ subsets a ⇒ space a DIFF s ∈ subsets a
- SIGMA_ALGEBRA_COUNTABLE_INT
-
⊢ ∀sp sts A X.
sigma_algebra (sp,sts) ∧ IMAGE A X ⊆ sts ∧ X ≠ ∅ ⇒
BIGINTER {A x | x ∈ X} ∈ sts
- SIGMA_ALGEBRA_COUNTABLE_INT'
-
⊢ ∀sp sts A X.
sigma_algebra (sp,sts) ∧ COUNTABLE X ∧ X ≠ ∅ ∧ IMAGE A X ⊆ sts ⇒
BIGINTER {A x | x ∈ X} ∈ sts
- SIGMA_ALGEBRA_COUNTABLE_UN
-
⊢ ∀sp sts A X.
sigma_algebra (sp,sts) ∧ IMAGE A X ⊆ sts ⇒ BIGUNION {A x | x ∈ X} ∈ sts
- SIGMA_ALGEBRA_COUNTABLE_UN'
-
⊢ ∀sp sts A X.
sigma_algebra (sp,sts) ∧ IMAGE A X ⊆ sts ∧ COUNTABLE X ⇒
BIGUNION {A x | x ∈ X} ∈ sts
- SIGMA_ALGEBRA_COUNTABLE_UNION
-
⊢ ∀a c. sigma_algebra a ∧ COUNTABLE c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
- SIGMA_ALGEBRA_DIFF
-
⊢ ∀a s t.
sigma_algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s DIFF t ∈ subsets a
- SIGMA_ALGEBRA_EMPTY
-
⊢ ∀a. sigma_algebra a ⇒ ∅ ∈ subsets a
- SIGMA_ALGEBRA_ENUM
-
⊢ ∀a f.
sigma_algebra a ∧ f ∈ (𝕌(:num) → subsets a) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_FN
-
⊢ ∀a. sigma_algebra a ⇔
subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
(∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_FN_BIGINTER
-
⊢ ∀a. sigma_algebra a ⇒
subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
(∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGINTER (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_FN_DISJOINT
-
⊢ ∀a. sigma_algebra a ⇔
subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
(∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
(∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a) ∧
∀f. f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
- SIGMA_ALGEBRA_IMP_DYNKIN_SYSTEM
-
⊢ ∀a. sigma_algebra a ⇒ dynkin_system a
- SIGMA_ALGEBRA_INTER
-
⊢ ∀a s t. sigma_algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
- SIGMA_ALGEBRA_PROD_SIGMA
-
⊢ ∀a b.
subset_class (space a) (subsets a) ∧ subset_class (space b) (subsets b) ⇒
sigma_algebra (a × b)
- SIGMA_ALGEBRA_PROD_SIGMA'
-
⊢ ∀X Y A B.
subset_class X A ∧ subset_class Y B ⇒ sigma_algebra ((X,A) × (Y,B))
- SIGMA_ALGEBRA_RESTRICT
-
⊢ ∀sp sts a.
sigma_algebra (sp,sts) ∧ a ∈ sts ⇒ sigma_algebra (a,IMAGE (λs. s ∩ a) sts)
- SIGMA_ALGEBRA_RESTRICT_SUBSET
-
⊢ ∀sp sts a. sigma_algebra (sp,sts) ∧ a ∈ sts ⇒ IMAGE (λs. s ∩ a) sts ⊆ sts
- SIGMA_ALGEBRA_SIGMA
-
⊢ ∀sp sts. subset_class sp sts ⇒ sigma_algebra (sigma sp sts)
- SIGMA_ALGEBRA_SPACE
-
⊢ ∀a. sigma_algebra a ⇒ space a ∈ subsets a
- SIGMA_ALGEBRA_UNION
-
⊢ ∀a s t. sigma_algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a
- SIGMA_CONG
-
⊢ ∀sp a b.
(subsets (sigma sp a) = subsets (sigma sp b)) ⇒ (sigma sp a = sigma sp b)
- SIGMA_MEASURABLE
-
⊢ ∀sp A f.
sigma_algebra A ∧ f ∈ (sp → space A) ⇒ f ∈ measurable (sigma sp A f) A
- SIGMA_MONOTONE
-
⊢ ∀sp a b. a ⊆ b ⇒ subsets (sigma sp a) ⊆ subsets (sigma sp b)
- SIGMA_POW
-
⊢ ∀s. sigma s (POW s) = (s,POW s)
- SIGMA_PROPERTY
-
⊢ ∀sp p a.
subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
(∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
(∀c. COUNTABLE c ∧ c ⊆ p ∩ subsets (sigma sp a) ⇒ BIGUNION c ∈ p) ⇒
subsets (sigma sp a) ⊆ p
- SIGMA_PROPERTY_ALT
-
⊢ ∀sp p a.
subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
(∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
(∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
subsets (sigma sp a) ⊆ p
- SIGMA_PROPERTY_DISJOINT
-
⊢ ∀sp p a.
algebra (sp,a) ∧ a ⊆ p ∧
(∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
(∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ∧ (f 0 = ∅) ∧
(∀n. f n ⊆ f (SUC n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ∧
(∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ∧
(∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
subsets (sigma sp a) ⊆ p
- SIGMA_PROPERTY_DISJOINT_LEMMA
-
⊢ ∀sp a d.
algebra (sp,a) ∧ a ⊆ d ∧ dynkin_system (sp,d) ⇒ subsets (sigma sp a) ⊆ d
- SIGMA_PROPERTY_DISJOINT_LEMMA1
-
⊢ ∀sp sts.
algebra (sp,sts) ⇒
∀s t.
s ∈ sts ∧ t ∈ subsets (dynkin sp sts) ⇒ s ∩ t ∈ subsets (dynkin sp sts)
- SIGMA_PROPERTY_DISJOINT_LEMMA2
-
⊢ ∀sp sts.
algebra (sp,sts) ⇒
∀s t.
s ∈ subsets (dynkin sp sts) ∧ t ∈ subsets (dynkin sp sts) ⇒
s ∩ t ∈ subsets (dynkin sp sts)
- SIGMA_PROPERTY_DISJOINT_WEAK
-
⊢ ∀sp p a.
subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
(∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
(∀s t. s ∈ p ∧ t ∈ p ⇒ s ∪ t ∈ p) ∧
(∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
subsets (sigma sp a) ⊆ p
- SIGMA_PROPERTY_DISJOINT_WEAK_ALT
-
⊢ ∀sp p a.
algebra (sp,a) ∧ a ⊆ p ∧ subset_class sp p ∧ (∀s. s ∈ p ⇒ sp DIFF s ∈ p) ∧
(∀f. f ∈ (𝕌(:num) → p) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ∧
(∀f. f ∈ (𝕌(:num) → p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
subsets (sigma sp a) ⊆ p
- SIGMA_REDUCE
-
⊢ ∀sp a. (sp,subsets (sigma sp a)) = sigma sp a
- SIGMA_SIMULTANEOUSLY_MEASURABLE
-
⊢ ∀sp A f J.
(∀i. i ∈ J ⇒ sigma_algebra (A i)) ∧ (∀i. f i ∈ (sp → space (A i))) ⇒
∀i. i ∈ J ⇒ f i ∈ measurable (sigma sp A f J) (A i)
- SIGMA_SMALLEST
-
⊢ ∀sp sts A.
sts ⊆ A ∧ A ⊆ subsets (sigma sp sts) ∧ sigma_algebra (sp,A) ⇒
(A = subsets (sigma sp sts))
- SIGMA_STABLE
-
⊢ ∀a. sigma_algebra a ⇒ (sigma (space a) (subsets a) = a)
- SIGMA_STABLE_LEMMA
-
⊢ ∀sp sts. sigma_algebra (sp,sts) ⇒ (sigma sp sts = (sp,sts))
- SIGMA_SUBSET
-
⊢ ∀a b.
sigma_algebra b ∧ a ⊆ subsets b ⇒ subsets (sigma (space b) a) ⊆ subsets b
- SIGMA_SUBSET_SUBSETS
-
⊢ ∀sp a. a ⊆ subsets (sigma sp a)
- SMALLEST_RING
-
⊢ ∀sp sts. subset_class sp sts ⇒ ring (smallest_ring sp sts)
- SMALLEST_RING_OF_SEMIRING
-
⊢ ∀sp sts.
semiring (sp,sts) ⇒
(subsets (smallest_ring sp sts) =
{BIGUNION c | c ⊆ sts ∧ FINITE c ∧ disjoint c})
- SMALLEST_RING_SUBSET_SUBSETS
-
⊢ ∀sp a. a ⊆ subsets (smallest_ring sp a)
- SPACE
-
⊢ ∀a. (space a,subsets a) = a
- SPACE_DYNKIN
-
⊢ ∀sp sts. space (dynkin sp sts) = sp
- SPACE_PROD_SIGMA
-
⊢ ∀a b. space (a × b) = space a × space b
- SPACE_SIGMA
-
⊢ ∀sp a. space (sigma sp a) = sp
- SPACE_SMALLEST_RING
-
⊢ ∀sp sts. space (smallest_ring sp sts) = sp
- UNIV_SIGMA_ALGEBRA
-
⊢ sigma_algebra (𝕌(:α),𝕌(:α -> bool))
- algebra_alt
-
⊢ ∀sp sts. algebra (sp,sts) ⇔ ring (sp,sts) ∧ sp ∈ sts
- algebra_alt_inter
-
⊢ ∀sp sts.
algebra (sp,sts) ⇔
sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀a. a ∈ sts ⇒ sp DIFF a ∈ sts) ∧
∀a b. a ∈ sts ∧ b ∈ sts ⇒ a ∩ b ∈ sts
- algebra_alt_union
-
⊢ ∀sp sts.
algebra (sp,sts) ⇔
sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀a. a ∈ sts ⇒ sp DIFF a ∈ sts) ∧
∀a b. a ∈ sts ∧ b ∈ sts ⇒ a ∪ b ∈ sts
- prod_sigma_alt_sigma_functions
-
⊢ ∀A B.
sigma_algebra A ∧ sigma_algebra B ⇒
(A × B = sigma (space A × space B) (binary A B) (binary FST SND) {0; 1})
- ring_alt
-
⊢ ring (sp,sts) ⇔
subset_class sp sts ∧ ∅ ∈ sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∪ t ∈ sts) ∧
∀s t. s ∈ sts ∧ t ∈ sts ⇒ s DIFF t ∈ sts
- ring_alt_pow
-
⊢ ∀sp sts.
ring (sp,sts) ⇔
sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∪ t ∈ sts) ∧
∀s t. s ∈ sts ∧ t ∈ sts ⇒ s DIFF t ∈ sts
- ring_alt_pow_imp
-
⊢ ∀sp sts.
sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀a b. a ∈ sts ∧ b ∈ sts ⇒ a ∪ b ∈ sts) ∧
(∀a b. a ∈ sts ∧ b ∈ sts ⇒ a DIFF b ∈ sts) ⇒
ring (sp,sts)
- ring_and_semiring
-
⊢ ∀r. ring r ⇔
semiring r ∧ ∀s t. s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∪ t ∈ subsets r
- ring_disjointed_sets
-
⊢ ∀sp sts A.
ring (sp,sts) ∧ IMAGE A 𝕌(:num) ⊆ sts ⇒
IMAGE (λn. disjointed A n) 𝕌(:num) ⊆ sts
- semiring_alt
-
⊢ semiring (sp,sts) ⇔
subset_class sp sts ∧ ∅ ∈ sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∩ t ∈ sts) ∧
∀s t.
s ∈ sts ∧ t ∈ sts ⇒
∃c. c ⊆ sts ∧ FINITE c ∧ disjoint c ∧ (s DIFF t = BIGUNION c)
- sigma_algebra_alt
-
⊢ ∀sp sts.
sigma_algebra (sp,sts) ⇔
algebra (sp,sts) ∧
∀A. IMAGE A 𝕌(:num) ⊆ sts ⇒ BIGUNION {A i | i ∈ 𝕌(:num)} ∈ sts
- sigma_algebra_alt_pow
-
⊢ ∀sp sts.
sigma_algebra (sp,sts) ⇔
sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀s. s ∈ sts ⇒ sp DIFF s ∈ sts) ∧
∀A. IMAGE A 𝕌(:num) ⊆ sts ⇒ BIGUNION {A i | i ∈ 𝕌(:num)} ∈ sts
- sigma_algebra_sigma_sets
-
⊢ ∀sp st. st ⊆ POW sp ⇒ sigma_algebra (sp,sigma_sets sp st)
- sigma_sets_BIGINTER
-
⊢ ∀sp st A.
st ⊆ POW sp ⇒
(∀i. A i ∈ sigma_sets sp st) ⇒
BIGINTER {A i | i ∈ 𝕌(:num)} ∈ sigma_sets sp st
- sigma_sets_BIGINTER2
-
⊢ ∀sp st A N.
st ⊆ POW sp ∧ (∀i. i ∈ N ⇒ A i ∈ sigma_sets sp st) ∧ N ≠ ∅ ⇒
BIGINTER {A i | i ∈ N} ∈ sigma_sets sp st
- sigma_sets_BIGUNION
-
⊢ ∀sp st A.
(∀i. A i ∈ sigma_sets sp st) ⇒
BIGUNION {A i | i ∈ 𝕌(:num)} ∈ sigma_sets sp st
- sigma_sets_basic
-
⊢ ∀sp st a. a ∈ st ⇒ a ∈ sigma_sets sp st
- sigma_sets_cases
-
⊢ ∀sp st a0.
sigma_sets sp st a0 ⇔
(a0 = ∅) ∨ st a0 ∨ (∃a. (a0 = sp DIFF a) ∧ sigma_sets sp st a) ∨
∃A. (a0 = BIGUNION {A i | i ∈ 𝕌(:num)}) ∧ ∀i. sigma_sets sp st (A i)
- sigma_sets_compl
-
⊢ ∀sp st a. a ∈ sigma_sets sp st ⇒ sp DIFF a ∈ sigma_sets sp st
- sigma_sets_empty
-
⊢ ∀sp st. ∅ ∈ sigma_sets sp st
- sigma_sets_fixpoint
-
⊢ ∀sp sts. sigma_algebra (sp,sts) ⇒ (sigma_sets sp sts = sts)
- sigma_sets_ind
-
⊢ ∀sp st sigma_sets'.
sigma_sets' ∅ ∧ (∀a. st a ⇒ sigma_sets' a) ∧
(∀a. sigma_sets' a ⇒ sigma_sets' (sp DIFF a)) ∧
(∀A. (∀i. sigma_sets' (A i)) ⇒ sigma_sets' (BIGUNION {A i | i ∈ 𝕌(:num)})) ⇒
∀a0. sigma_sets sp st a0 ⇒ sigma_sets' a0
- sigma_sets_into_sp
-
⊢ ∀sp st. st ⊆ POW sp ⇒ ∀x. x ∈ sigma_sets sp st ⇒ x ⊆ sp
- sigma_sets_least_sigma_algebra
-
⊢ ∀sp A.
A ⊆ POW sp ⇒
(sigma_sets sp A = BIGINTER {B | A ⊆ B ∧ sigma_algebra (sp,B)})
- sigma_sets_rules
-
⊢ ∀sp st.
sigma_sets sp st ∅ ∧ (∀a. st a ⇒ sigma_sets sp st a) ∧
(∀a. sigma_sets sp st a ⇒ sigma_sets sp st (sp DIFF a)) ∧
∀A. (∀i. sigma_sets sp st (A i)) ⇒
sigma_sets sp st (BIGUNION {A i | i ∈ 𝕌(:num)})
- sigma_sets_strongind
-
⊢ ∀sp st sigma_sets'.
sigma_sets' ∅ ∧ (∀a. st a ⇒ sigma_sets' a) ∧
(∀a. sigma_sets sp st a ∧ sigma_sets' a ⇒ sigma_sets' (sp DIFF a)) ∧
(∀A. (∀i. sigma_sets sp st (A i) ∧ sigma_sets' (A i)) ⇒
sigma_sets' (BIGUNION {A i | i ∈ 𝕌(:num)})) ⇒
∀a0. sigma_sets sp st a0 ⇒ sigma_sets' a0
- sigma_sets_subset
-
⊢ ∀sp sts st. sigma_algebra (sp,sts) ∧ st ⊆ sts ⇒ sigma_sets sp st ⊆ sts
- sigma_sets_superset_generator
-
⊢ ∀X A. A ⊆ sigma_sets X A
- sigma_sets_top
-
⊢ ∀sp A. sp ∈ sigma_sets sp A
- sigma_sets_union
-
⊢ ∀sp st a b.
a ∈ sigma_sets sp st ∧ b ∈ sigma_sets sp st ⇒ a ∪ b ∈ sigma_sets sp st
- subset_class_POW
-
⊢ ∀sp. subset_class sp (POW sp)