Theory "sigma_algebra"

Parents     util_prob

Signature

Constant Type
algebra :α algebra -> bool
dynkin :(α -> bool) -> ((α -> bool) -> bool) -> α algebra
dynkin_system :α algebra -> bool
measurable :α algebra -> β algebra -> (α -> β) -> bool
prod_sigma :α algebra -> β algebra -> (α # β) algebra
ring :α algebra -> bool
semiring :α algebra -> bool
sigma :(α -> bool) -> ((α -> bool) -> bool) -> α algebra
sigma_algebra :α algebra -> bool
sigma_function :(α -> bool) -> β algebra -> (α -> β) -> α algebra
sigma_functions :(α -> bool) -> ('index -> β algebra) -> ('index -> α -> β) -> ('index -> bool) -> α algebra
sigma_sets :(α -> bool) -> ((α -> bool) -> bool) -> (α -> bool) -> bool
smallest_ring :(α -> bool) -> ((α -> bool) -> bool) -> α algebra
space :α algebra -> α -> bool
subset_class :(α -> bool) -> ((α -> bool) -> bool) -> bool
subsets :α algebra -> (α -> bool) -> bool

Definitions

algebra_def
⊢ ∀a. algebra a ⇔
      subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
      (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
      ∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a
dynkin_def
⊢ ∀sp sts. dynkin sp sts = (sp,BIGINTER {d | sts ⊆ d ∧ dynkin_system (sp,d)})
dynkin_system_def
⊢ ∀d. dynkin_system d ⇔
      subset_class (space d) (subsets d) ∧ space d ∈ subsets d ∧
      (∀s. s ∈ subsets d ⇒ space d DIFF s ∈ subsets d) ∧
      ∀f. f ∈ (𝕌(:num) → subsets d) ∧ (∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒
          BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d
measurable_def
⊢ ∀a b.
    measurable a b =
    {f |
     sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
     ∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a}
prod_sigma_def
⊢ ∀a b. a × b = sigma (space a × space b) (prod_sets (subsets a) (subsets b))
ring_def
⊢ ∀r. ring r ⇔
      subset_class (space r) (subsets r) ∧ ∅ ∈ subsets r ∧
      (∀s t. s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∪ t ∈ subsets r) ∧
      ∀s t. s ∈ subsets r ∧ t ∈ subsets r ⇒ s DIFF t ∈ subsets r
semiring_def
⊢ ∀r. semiring r ⇔
      subset_class (space r) (subsets r) ∧ ∅ ∈ subsets r ∧
      (∀s t. s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∩ t ∈ subsets r) ∧
      ∀s t.
        s ∈ subsets r ∧ t ∈ subsets r ⇒
        ∃c. c ⊆ subsets r ∧ FINITE c ∧ disjoint c ∧ (s DIFF t = BIGUNION c)
sigma_algebra_def
⊢ ∀a. sigma_algebra a ⇔
      algebra a ∧ ∀c. COUNTABLE c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
sigma_def
⊢ ∀sp sts. sigma sp sts = (sp,BIGINTER {s | sts ⊆ s ∧ sigma_algebra (sp,s)})
sigma_function_def
⊢ ∀sp A f. sigma sp A f = (sp,IMAGE (λs. PREIMAGE f s ∩ sp) (subsets A))
sigma_functions_def
⊢ ∀sp A f J.
    sigma sp A f J =
    sigma sp
      (BIGUNION
         (IMAGE (λi. IMAGE (λs. PREIMAGE (f i) s ∩ sp) (subsets (A i))) J))
sigma_sets_def
⊢ sigma_sets =
  (λsp st a0.
       ∀sigma_sets'.
         (∀a0.
            (a0 = ∅) ∨ st a0 ∨ (∃a. (a0 = sp DIFF a) ∧ sigma_sets' a) ∨
            (∃A. (a0 = BIGUNION {A i | i ∈ 𝕌(:num)}) ∧ ∀i. sigma_sets' (A i)) ⇒
            sigma_sets' a0) ⇒
         sigma_sets' a0)
smallest_ring_def
⊢ ∀sp sts. smallest_ring sp sts = (sp,BIGINTER {s | sts ⊆ s ∧ ring (sp,s)})
space_def
⊢ ∀x y. space (x,y) = x
subset_class_def
⊢ ∀sp sts. subset_class sp sts ⇔ ∀x. x ∈ sts ⇒ x ⊆ sp
subsets_def
⊢ ∀x y. subsets (x,y) = y


Theorems

ALGEBRA_ALT_INTER
⊢ ∀a. algebra a ⇔
      subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
      (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
      ∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
ALGEBRA_COMPL
⊢ ∀a s. algebra a ∧ s ∈ subsets a ⇒ space a DIFF s ∈ subsets a
ALGEBRA_COMPL_SETS
⊢ ∀sp sts a. algebra (sp,sts) ∧ a ∈ sts ⇒ sp DIFF a ∈ sts
ALGEBRA_DIFF
⊢ ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s DIFF t ∈ subsets a
ALGEBRA_EMPTY
⊢ ∀a. algebra a ⇒ ∅ ∈ subsets a
ALGEBRA_FINITE_UNION
⊢ ∀a c. algebra a ∧ FINITE c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
ALGEBRA_IMP_RING
⊢ ∀a. algebra a ⇒ ring a
ALGEBRA_IMP_SEMIRING
⊢ ∀a. algebra a ⇒ semiring a
ALGEBRA_INTER
⊢ ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
ALGEBRA_INTER_SPACE
⊢ ∀a s. algebra a ∧ s ∈ subsets a ⇒ (space a ∩ s = s) ∧ (s ∩ space a = s)
ALGEBRA_RESTRICT
⊢ ∀sp sts a. algebra (sp,sts) ∧ a ∈ sts ⇒ algebra (a,IMAGE (λs. s ∩ a) sts)
ALGEBRA_SETS_COLLECT_CONST
⊢ ∀sp sts P. algebra (sp,sts) ⇒ {x | x ∈ sp ∧ P} ∈ sts
ALGEBRA_SETS_COLLECT_IMP
⊢ ∀sp sts P Q.
    algebra (sp,sts) ∧ {x | x ∈ sp ∧ P x} ∈ sts ⇒
    {x | x ∈ sp ∧ Q x} ∈ sts ⇒
    {x | x ∈ sp ∧ (Q x ⇒ P x)} ∈ sts
ALGEBRA_SETS_COLLECT_NEG
⊢ ∀sp sts P.
    algebra (sp,sts) ∧ {x | x ∈ sp ∧ P x} ∈ sts ⇒ {x | x ∈ sp ∧ ¬P x} ∈ sts
ALGEBRA_SINGLE_SET
⊢ ∀X S. X ⊆ S ⇒ algebra (S,{∅; X; S DIFF X; S})
ALGEBRA_SPACE
⊢ ∀a. algebra a ⇒ space a ∈ subsets a
ALGEBRA_UNION
⊢ ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a
DYNKIN
⊢ ∀sp sts.
    subset_class sp sts ⇒
    sts ⊆ subsets (dynkin sp sts) ∧ dynkin_system (dynkin sp sts) ∧
    subset_class sp (subsets (dynkin sp sts))
DYNKIN_LEMMA
⊢ ∀d. dynkin_system d ∧
      (∀s t. s ∈ subsets d ∧ t ∈ subsets d ⇒ s ∩ t ∈ subsets d) ⇔
      sigma_algebra d
DYNKIN_MONOTONE
⊢ ∀sp a b. a ⊆ b ⇒ subsets (dynkin sp a) ⊆ subsets (dynkin sp b)
DYNKIN_SMALLEST
⊢ ∀sp sts D.
    sts ⊆ D ∧ D ⊆ subsets (dynkin sp sts) ∧ dynkin_system (sp,D) ⇒
    (D = subsets (dynkin sp sts))
DYNKIN_STABLE
⊢ ∀d. dynkin_system d ⇒ (dynkin (space d) (subsets d) = d)
DYNKIN_STABLE_LEMMA
⊢ ∀sp sts. dynkin_system (sp,sts) ⇒ (dynkin sp sts = (sp,sts))
DYNKIN_SUBSET
⊢ ∀a b.
    dynkin_system b ∧ a ⊆ subsets b ⇒ subsets (dynkin (space b) a) ⊆ subsets b
DYNKIN_SUBSET_SIGMA
⊢ ∀sp sts.
    subset_class sp sts ⇒ subsets (dynkin sp sts) ⊆ subsets (sigma sp sts)
DYNKIN_SUBSET_SUBSETS
⊢ ∀sp a. a ⊆ subsets (dynkin sp a)
DYNKIN_SYSTEM_ALT
⊢ ∀d. dynkin_system d ⇔
      subset_class (space d) (subsets d) ∧ space d ∈ subsets d ∧
      (∀s. s ∈ subsets d ⇒ space d DIFF s ∈ subsets d) ∧
      (∀f. f ∈ (𝕌(:num) → subsets d) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
           BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d) ∧
      ∀f. f ∈ (𝕌(:num) → subsets d) ∧ (∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒
          BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d
DYNKIN_SYSTEM_ALT_MONO
⊢ ∀d. dynkin_system d ⇔
      subset_class (space d) (subsets d) ∧ space d ∈ subsets d ∧
      (∀s t. s ∈ subsets d ∧ t ∈ subsets d ∧ s ⊆ t ⇒ t DIFF s ∈ subsets d) ∧
      ∀f. f ∈ (𝕌(:num) → subsets d) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
          BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d
DYNKIN_SYSTEM_COMPL
⊢ ∀d s. dynkin_system d ∧ s ∈ subsets d ⇒ space d DIFF s ∈ subsets d
DYNKIN_SYSTEM_COUNTABLY_DUNION
⊢ ∀d f.
    dynkin_system d ∧ f ∈ (𝕌(:num) → subsets d) ∧
    (∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒
    BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets d
DYNKIN_SYSTEM_DUNION
⊢ ∀d s t.
    dynkin_system d ∧ s ∈ subsets d ∧ t ∈ subsets d ∧ DISJOINT s t ⇒
    s ∪ t ∈ subsets d
DYNKIN_SYSTEM_EMPTY
⊢ ∀d. dynkin_system d ⇒ ∅ ∈ subsets d
DYNKIN_SYSTEM_INCREASING
⊢ ∀p f.
    dynkin_system p ∧ f ∈ (𝕌(:num) → subsets p) ∧ (f 0 = ∅) ∧
    (∀n. f n ⊆ f (SUC n)) ⇒
    BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p
DYNKIN_SYSTEM_SPACE
⊢ ∀d. dynkin_system d ⇒ space d ∈ subsets d
DYNKIN_THM
⊢ ∀sp sts.
    subset_class sp sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∩ t ∈ sts) ⇒
    (dynkin sp sts = sigma sp sts)
INTER_SPACE_EQ1
⊢ ∀sp sts. subset_class sp sts ⇒ ∀x. x ∈ sts ⇒ (sp ∩ x = x)
INTER_SPACE_REDUCE
⊢ ∀sp sts. subset_class sp sts ⇒ ∀x. x ∈ sts ⇒ (x ∩ sp = x)
IN_DYNKIN
⊢ ∀sp a x. x ∈ a ⇒ x ∈ subsets (dynkin sp a)
IN_MEASURABLE
⊢ ∀a b f.
    f ∈ measurable a b ⇔
    sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
    ∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a
IN_SIGMA
⊢ ∀sp a x. x ∈ a ⇒ x ∈ subsets (sigma sp a)
MEASUBABLE_BIGUNION_LEMMA
⊢ ∀a b f.
    sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
    (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
    ∀c. COUNTABLE c ∧ c ⊆ IMAGE (PREIMAGE f) (subsets b) ⇒
        BIGUNION c ∈ IMAGE (PREIMAGE f) (subsets b)
MEASURABLE_BIGUNION_PROPERTY
⊢ ∀a b f.
    sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
    (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
    ∀c. c ⊆ subsets b ⇒
        (PREIMAGE f (BIGUNION c) = BIGUNION (IMAGE (PREIMAGE f) c))
MEASURABLE_COMP
⊢ ∀f g a b c. f ∈ measurable a b ∧ g ∈ measurable b c ⇒ g ∘ f ∈ measurable a c
MEASURABLE_COMP_STRONG
⊢ ∀f g a b c.
    f ∈ measurable a b ∧ sigma_algebra c ∧ g ∈ (space b → space c) ∧
    (∀x. x ∈ subsets c ⇒ PREIMAGE g x ∩ IMAGE f (space a) ∈ subsets b) ⇒
    g ∘ f ∈ measurable a c
MEASURABLE_COMP_STRONGER
⊢ ∀f g a b c t.
    f ∈ measurable a b ∧ sigma_algebra c ∧ g ∈ (space b → space c) ∧
    IMAGE f (space a) ⊆ t ∧ (∀s. s ∈ subsets c ⇒ PREIMAGE g s ∩ t ∈ subsets b) ⇒
    g ∘ f ∈ measurable a c
MEASURABLE_DIFF_PROPERTY
⊢ ∀a b f.
    sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
    (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
    ∀s. s ∈ subsets b ⇒
        (PREIMAGE f (space b DIFF s) = space a DIFF PREIMAGE f s)
MEASURABLE_I
⊢ ∀a. sigma_algebra a ⇒ I ∈ measurable a a
MEASURABLE_LIFT
⊢ ∀f a b. f ∈ measurable a b ⇒ f ∈ measurable a (sigma (space b) (subsets b))
MEASURABLE_PROD_SIGMA
⊢ ∀a a1 a2 f.
    sigma_algebra a ∧ FST ∘ f ∈ measurable a a1 ∧ SND ∘ f ∈ measurable a a2 ⇒
    f ∈
    measurable a
      (sigma (space a1 × space a2) (prod_sets (subsets a1) (subsets a2)))
MEASURABLE_PROD_SIGMA'
⊢ ∀a a1 a2 f.
    sigma_algebra a ∧ FST ∘ f ∈ measurable a a1 ∧ SND ∘ f ∈ measurable a a2 ⇒
    f ∈ measurable a (a1 × a2)
MEASURABLE_SIGMA
⊢ ∀f a b sp.
    sigma_algebra a ∧ subset_class sp b ∧ f ∈ (space a → sp) ∧
    (∀s. s ∈ b ⇒ PREIMAGE f s ∩ space a ∈ subsets a) ⇒
    f ∈ measurable a (sigma sp b)
MEASURABLE_SIGMA_PREIMAGES
⊢ ∀a b f.
    sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
    (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
    sigma_algebra (space a,IMAGE (PREIMAGE f) (subsets b))
MEASURABLE_SUBSET
⊢ ∀a b. measurable a b ⊆ measurable a (sigma (space b) (subsets b))
MEASURABLE_UP_LIFT
⊢ ∀sp a b c f.
    f ∈ measurable (sp,a) c ∧ sigma_algebra (sp,b) ∧ a ⊆ b ⇒
    f ∈ measurable (sp,b) c
MEASURABLE_UP_SIGMA
⊢ ∀a b. measurable a b ⊆ measurable (sigma (space a) (subsets a)) b
MEASURABLE_UP_SUBSET
⊢ ∀sp a b c.
    a ⊆ b ∧ sigma_algebra (sp,b) ⇒ measurable (sp,a) c ⊆ measurable (sp,b) c
POW_ALGEBRA
⊢ ∀sp. algebra (sp,POW sp)
POW_SIGMA_ALGEBRA
⊢ ∀sp. sigma_algebra (sp,POW sp)
PREIMAGE_SIGMA
⊢ ∀Z sp sts f.
    subset_class sp sts ∧ f ∈ (Z → sp) ⇒
    (IMAGE (λs. PREIMAGE f s ∩ Z) (subsets (sigma sp sts)) =
     subsets (sigma Z (IMAGE (λs. PREIMAGE f s ∩ Z) sts)))
PREIMAGE_SIGMA_ALGEBRA
⊢ ∀sp A f.
    sigma_algebra A ∧ f ∈ (sp → space A) ⇒
    sigma_algebra (sp,IMAGE (λs. PREIMAGE f s ∩ sp) (subsets A))
RING_BIGUNION
⊢ ∀sp sts A n.
    ring (sp,sts) ∧ IMAGE A 𝕌(:num) ⊆ sts ⇒ BIGUNION {A i | i < n} ∈ sts
RING_DIFF
⊢ ∀r s t. ring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s DIFF t ∈ subsets r
RING_DIFF_ALT
⊢ ∀a b sp sts. ring (sp,sts) ∧ a ∈ sts ∧ b ∈ sts ⇒ a DIFF b ∈ sts
RING_EMPTY
⊢ ∀r. ring r ⇒ ∅ ∈ subsets r
RING_FINITE_BIGUNION1
⊢ ∀X sp sts. ring (sp,sts) ∧ FINITE X ⇒ X ⊆ sts ⇒ BIGUNION X ∈ sts
RING_FINITE_BIGUNION2
⊢ ∀A N sp sts.
    ring (sp,sts) ∧ FINITE N ∧ (∀i. i ∈ N ⇒ A i ∈ sts) ⇒
    BIGUNION {A i | i ∈ N} ∈ sts
RING_FINITE_INTER
⊢ ∀r f n.
    ring r ∧ 0 < n ∧ (∀i. i < n ⇒ f i ∈ subsets r) ⇒
    BIGINTER (IMAGE f (count n)) ∈ subsets r
RING_FINITE_UNION
⊢ ∀r c. ring r ∧ c ⊆ subsets r ∧ FINITE c ⇒ BIGUNION c ∈ subsets r
RING_FINITE_UNION_ALT
⊢ ∀r f n.
    ring r ∧ (∀i. i < n ⇒ f i ∈ subsets r) ⇒
    BIGUNION (IMAGE f (count n)) ∈ subsets r
RING_IMP_SEMIRING
⊢ ∀r. ring r ⇒ semiring r
RING_INSERT
⊢ ∀x A sp sts. ring (sp,sts) ∧ {x} ∈ sts ∧ A ∈ sts ⇒ x INSERT A ∈ sts
RING_INTER
⊢ ∀r s t. ring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∩ t ∈ subsets r
RING_SETS_COLLECT_FINITE
⊢ ∀sp sts s P.
    ring (sp,sts) ∧ (∀i. i ∈ s ⇒ {x | x ∈ sp ∧ P i x} ∈ sts) ∧ FINITE s ⇒
    {x | x ∈ sp ∧ ∃i. i ∈ s ∧ P i x} ∈ sts
RING_SPACE_IMP_ALGEBRA
⊢ ∀r. ring r ∧ space r ∈ subsets r ⇒ algebra r
RING_UNION
⊢ ∀r s t. ring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∪ t ∈ subsets r
SEMIRING_DIFF
⊢ ∀r s t.
    semiring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒
    ∃c. c ⊆ subsets r ∧ FINITE c ∧ disjoint c ∧ (s DIFF t = BIGUNION c)
SEMIRING_DIFF_ALT
⊢ ∀r s t.
    semiring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒
    ∃f n.
      (∀i. i < n ⇒ f i ∈ subsets r) ∧
      (∀i j. i < n ∧ j < n ∧ i ≠ j ⇒ DISJOINT (f i) (f j)) ∧
      (s DIFF t = BIGUNION (IMAGE f (count n)))
SEMIRING_EMPTY
⊢ ∀r. semiring r ⇒ ∅ ∈ subsets r
SEMIRING_INTER
⊢ ∀r s t. semiring r ∧ s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∩ t ∈ subsets r
SEMIRING_PROD_SETS
⊢ ∀a b.
    semiring a ∧ semiring b ⇒
    semiring (space a × space b,prod_sets (subsets a) (subsets b))
SEMIRING_PROD_SETS'
⊢ ∀a b.
    sigma_algebra a ∧ sigma_algebra b ⇒
    semiring (space a × space b,prod_sets (subsets a) (subsets b))
SEMIRING_SETS_COLLECT
⊢ ∀sp sts P Q.
    semiring (sp,sts) ∧ {x | x ∈ sp ∧ P x} ∈ sts ∧ {x | x ∈ sp ∧ Q x} ∈ sts ⇒
    {x | x ∈ sp ∧ P x ∧ Q x} ∈ sts
SIGMA_ALGEBRA
⊢ ∀p. sigma_algebra p ⇔
      subset_class (space p) (subsets p) ∧ ∅ ∈ subsets p ∧
      (∀s. s ∈ subsets p ⇒ space p DIFF s ∈ subsets p) ∧
      ∀c. COUNTABLE c ∧ c ⊆ subsets p ⇒ BIGUNION c ∈ subsets p
SIGMA_ALGEBRA_ALGEBRA
⊢ ∀a. sigma_algebra a ⇒ algebra a
SIGMA_ALGEBRA_ALT
⊢ ∀a. sigma_algebra a ⇔
      algebra a ∧
      ∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_ALT_DISJOINT
⊢ ∀a. sigma_algebra a ⇔
      algebra a ∧
      ∀f. f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
          BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_ALT_MONO
⊢ ∀a. sigma_algebra a ⇔
      algebra a ∧
      ∀f. f ∈ (𝕌(:num) → subsets a) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
          BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_ALT_SPACE
⊢ ∀a. sigma_algebra a ⇔
      subset_class (space a) (subsets a) ∧ space a ∈ subsets a ∧
      (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
      ∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_COMPL
⊢ ∀a s. sigma_algebra a ∧ s ∈ subsets a ⇒ space a DIFF s ∈ subsets a
SIGMA_ALGEBRA_COUNTABLE_INT
⊢ ∀sp sts A X.
    sigma_algebra (sp,sts) ∧ IMAGE A X ⊆ sts ∧ X ≠ ∅ ⇒
    BIGINTER {A x | x ∈ X} ∈ sts
SIGMA_ALGEBRA_COUNTABLE_INT'
⊢ ∀sp sts A X.
    sigma_algebra (sp,sts) ∧ COUNTABLE X ∧ X ≠ ∅ ∧ IMAGE A X ⊆ sts ⇒
    BIGINTER {A x | x ∈ X} ∈ sts
SIGMA_ALGEBRA_COUNTABLE_UN
⊢ ∀sp sts A X.
    sigma_algebra (sp,sts) ∧ IMAGE A X ⊆ sts ⇒ BIGUNION {A x | x ∈ X} ∈ sts
SIGMA_ALGEBRA_COUNTABLE_UN'
⊢ ∀sp sts A X.
    sigma_algebra (sp,sts) ∧ IMAGE A X ⊆ sts ∧ COUNTABLE X ⇒
    BIGUNION {A x | x ∈ X} ∈ sts
SIGMA_ALGEBRA_COUNTABLE_UNION
⊢ ∀a c. sigma_algebra a ∧ COUNTABLE c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
SIGMA_ALGEBRA_DIFF
⊢ ∀a s t.
    sigma_algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s DIFF t ∈ subsets a
SIGMA_ALGEBRA_EMPTY
⊢ ∀a. sigma_algebra a ⇒ ∅ ∈ subsets a
SIGMA_ALGEBRA_ENUM
⊢ ∀a f.
    sigma_algebra a ∧ f ∈ (𝕌(:num) → subsets a) ⇒
    BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_FN
⊢ ∀a. sigma_algebra a ⇔
      subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
      (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
      ∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_FN_BIGINTER
⊢ ∀a. sigma_algebra a ⇒
      subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
      (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
      ∀f. f ∈ (𝕌(:num) → subsets a) ⇒ BIGINTER (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_FN_DISJOINT
⊢ ∀a. sigma_algebra a ⇔
      subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
      (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
      (∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a) ∧
      ∀f. f ∈ (𝕌(:num) → subsets a) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
          BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_IMP_DYNKIN_SYSTEM
⊢ ∀a. sigma_algebra a ⇒ dynkin_system a
SIGMA_ALGEBRA_INTER
⊢ ∀a s t. sigma_algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
SIGMA_ALGEBRA_PROD_SIGMA
⊢ ∀a b.
    subset_class (space a) (subsets a) ∧ subset_class (space b) (subsets b) ⇒
    sigma_algebra (a × b)
SIGMA_ALGEBRA_PROD_SIGMA'
⊢ ∀X Y A B.
    subset_class X A ∧ subset_class Y B ⇒ sigma_algebra ((X,A) × (Y,B))
SIGMA_ALGEBRA_RESTRICT
⊢ ∀sp sts a.
    sigma_algebra (sp,sts) ∧ a ∈ sts ⇒ sigma_algebra (a,IMAGE (λs. s ∩ a) sts)
SIGMA_ALGEBRA_RESTRICT_SUBSET
⊢ ∀sp sts a. sigma_algebra (sp,sts) ∧ a ∈ sts ⇒ IMAGE (λs. s ∩ a) sts ⊆ sts
SIGMA_ALGEBRA_SIGMA
⊢ ∀sp sts. subset_class sp sts ⇒ sigma_algebra (sigma sp sts)
SIGMA_ALGEBRA_SPACE
⊢ ∀a. sigma_algebra a ⇒ space a ∈ subsets a
SIGMA_ALGEBRA_UNION
⊢ ∀a s t. sigma_algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a
SIGMA_CONG
⊢ ∀sp a b.
    (subsets (sigma sp a) = subsets (sigma sp b)) ⇒ (sigma sp a = sigma sp b)
SIGMA_MEASURABLE
⊢ ∀sp A f.
    sigma_algebra A ∧ f ∈ (sp → space A) ⇒ f ∈ measurable (sigma sp A f) A
SIGMA_MONOTONE
⊢ ∀sp a b. a ⊆ b ⇒ subsets (sigma sp a) ⊆ subsets (sigma sp b)
SIGMA_POW
⊢ ∀s. sigma s (POW s) = (s,POW s)
SIGMA_PROPERTY
⊢ ∀sp p a.
    subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
    (∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
    (∀c. COUNTABLE c ∧ c ⊆ p ∩ subsets (sigma sp a) ⇒ BIGUNION c ∈ p) ⇒
    subsets (sigma sp a) ⊆ p
SIGMA_PROPERTY_ALT
⊢ ∀sp p a.
    subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
    (∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
    (∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ⇒
         BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
    subsets (sigma sp a) ⊆ p
SIGMA_PROPERTY_DISJOINT
⊢ ∀sp p a.
    algebra (sp,a) ∧ a ⊆ p ∧
    (∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
    (∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ∧ (f 0 = ∅) ∧
         (∀n. f n ⊆ f (SUC n)) ⇒
         BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ∧
    (∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ∧
         (∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒
         BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
    subsets (sigma sp a) ⊆ p
SIGMA_PROPERTY_DISJOINT_LEMMA
⊢ ∀sp a d.
    algebra (sp,a) ∧ a ⊆ d ∧ dynkin_system (sp,d) ⇒ subsets (sigma sp a) ⊆ d
SIGMA_PROPERTY_DISJOINT_LEMMA1
⊢ ∀sp sts.
    algebra (sp,sts) ⇒
    ∀s t.
      s ∈ sts ∧ t ∈ subsets (dynkin sp sts) ⇒ s ∩ t ∈ subsets (dynkin sp sts)
SIGMA_PROPERTY_DISJOINT_LEMMA2
⊢ ∀sp sts.
    algebra (sp,sts) ⇒
    ∀s t.
      s ∈ subsets (dynkin sp sts) ∧ t ∈ subsets (dynkin sp sts) ⇒
      s ∩ t ∈ subsets (dynkin sp sts)
SIGMA_PROPERTY_DISJOINT_WEAK
⊢ ∀sp p a.
    subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
    (∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
    (∀s t. s ∈ p ∧ t ∈ p ⇒ s ∪ t ∈ p) ∧
    (∀f. f ∈ (𝕌(:num) → p ∩ subsets (sigma sp a)) ∧
         (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
         BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
    subsets (sigma sp a) ⊆ p
SIGMA_PROPERTY_DISJOINT_WEAK_ALT
⊢ ∀sp p a.
    algebra (sp,a) ∧ a ⊆ p ∧ subset_class sp p ∧ (∀s. s ∈ p ⇒ sp DIFF s ∈ p) ∧
    (∀f. f ∈ (𝕌(:num) → p) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
         BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ∧
    (∀f. f ∈ (𝕌(:num) → p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
         BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
    subsets (sigma sp a) ⊆ p
SIGMA_REDUCE
⊢ ∀sp a. (sp,subsets (sigma sp a)) = sigma sp a
SIGMA_SIMULTANEOUSLY_MEASURABLE
⊢ ∀sp A f J.
    (∀i. i ∈ J ⇒ sigma_algebra (A i)) ∧ (∀i. f i ∈ (sp → space (A i))) ⇒
    ∀i. i ∈ J ⇒ f i ∈ measurable (sigma sp A f J) (A i)
SIGMA_SMALLEST
⊢ ∀sp sts A.
    sts ⊆ A ∧ A ⊆ subsets (sigma sp sts) ∧ sigma_algebra (sp,A) ⇒
    (A = subsets (sigma sp sts))
SIGMA_STABLE
⊢ ∀a. sigma_algebra a ⇒ (sigma (space a) (subsets a) = a)
SIGMA_STABLE_LEMMA
⊢ ∀sp sts. sigma_algebra (sp,sts) ⇒ (sigma sp sts = (sp,sts))
SIGMA_SUBSET
⊢ ∀a b.
    sigma_algebra b ∧ a ⊆ subsets b ⇒ subsets (sigma (space b) a) ⊆ subsets b
SIGMA_SUBSET_SUBSETS
⊢ ∀sp a. a ⊆ subsets (sigma sp a)
SMALLEST_RING
⊢ ∀sp sts. subset_class sp sts ⇒ ring (smallest_ring sp sts)
SMALLEST_RING_OF_SEMIRING
⊢ ∀sp sts.
    semiring (sp,sts) ⇒
    (subsets (smallest_ring sp sts) =
     {BIGUNION c | c ⊆ sts ∧ FINITE c ∧ disjoint c})
SMALLEST_RING_SUBSET_SUBSETS
⊢ ∀sp a. a ⊆ subsets (smallest_ring sp a)
SPACE
⊢ ∀a. (space a,subsets a) = a
SPACE_DYNKIN
⊢ ∀sp sts. space (dynkin sp sts) = sp
SPACE_PROD_SIGMA
⊢ ∀a b. space (a × b) = space a × space b
SPACE_SIGMA
⊢ ∀sp a. space (sigma sp a) = sp
SPACE_SMALLEST_RING
⊢ ∀sp sts. space (smallest_ring sp sts) = sp
UNIV_SIGMA_ALGEBRA
⊢ sigma_algebra (𝕌(:α),𝕌(:α -> bool))
algebra_alt
⊢ ∀sp sts. algebra (sp,sts) ⇔ ring (sp,sts) ∧ sp ∈ sts
algebra_alt_inter
⊢ ∀sp sts.
    algebra (sp,sts) ⇔
    sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀a. a ∈ sts ⇒ sp DIFF a ∈ sts) ∧
    ∀a b. a ∈ sts ∧ b ∈ sts ⇒ a ∩ b ∈ sts
algebra_alt_union
⊢ ∀sp sts.
    algebra (sp,sts) ⇔
    sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀a. a ∈ sts ⇒ sp DIFF a ∈ sts) ∧
    ∀a b. a ∈ sts ∧ b ∈ sts ⇒ a ∪ b ∈ sts
prod_sigma_alt_sigma_functions
⊢ ∀A B.
    sigma_algebra A ∧ sigma_algebra B ⇒
    (A × B = sigma (space A × space B) (binary A B) (binary FST SND) {0; 1})
ring_alt
⊢ ring (sp,sts) ⇔
  subset_class sp sts ∧ ∅ ∈ sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∪ t ∈ sts) ∧
  ∀s t. s ∈ sts ∧ t ∈ sts ⇒ s DIFF t ∈ sts
ring_alt_pow
⊢ ∀sp sts.
    ring (sp,sts) ⇔
    sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∪ t ∈ sts) ∧
    ∀s t. s ∈ sts ∧ t ∈ sts ⇒ s DIFF t ∈ sts
ring_alt_pow_imp
⊢ ∀sp sts.
    sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀a b. a ∈ sts ∧ b ∈ sts ⇒ a ∪ b ∈ sts) ∧
    (∀a b. a ∈ sts ∧ b ∈ sts ⇒ a DIFF b ∈ sts) ⇒
    ring (sp,sts)
ring_and_semiring
⊢ ∀r. ring r ⇔
      semiring r ∧ ∀s t. s ∈ subsets r ∧ t ∈ subsets r ⇒ s ∪ t ∈ subsets r
ring_disjointed_sets
⊢ ∀sp sts A.
    ring (sp,sts) ∧ IMAGE A 𝕌(:num) ⊆ sts ⇒
    IMAGE (λn. disjointed A n) 𝕌(:num) ⊆ sts
semiring_alt
⊢ semiring (sp,sts) ⇔
  subset_class sp sts ∧ ∅ ∈ sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∩ t ∈ sts) ∧
  ∀s t.
    s ∈ sts ∧ t ∈ sts ⇒
    ∃c. c ⊆ sts ∧ FINITE c ∧ disjoint c ∧ (s DIFF t = BIGUNION c)
sigma_algebra_alt
⊢ ∀sp sts.
    sigma_algebra (sp,sts) ⇔
    algebra (sp,sts) ∧
    ∀A. IMAGE A 𝕌(:num) ⊆ sts ⇒ BIGUNION {A i | i ∈ 𝕌(:num)} ∈ sts
sigma_algebra_alt_pow
⊢ ∀sp sts.
    sigma_algebra (sp,sts) ⇔
    sts ⊆ POW sp ∧ ∅ ∈ sts ∧ (∀s. s ∈ sts ⇒ sp DIFF s ∈ sts) ∧
    ∀A. IMAGE A 𝕌(:num) ⊆ sts ⇒ BIGUNION {A i | i ∈ 𝕌(:num)} ∈ sts
sigma_algebra_sigma_sets
⊢ ∀sp st. st ⊆ POW sp ⇒ sigma_algebra (sp,sigma_sets sp st)
sigma_sets_BIGINTER
⊢ ∀sp st A.
    st ⊆ POW sp ⇒
    (∀i. A i ∈ sigma_sets sp st) ⇒
    BIGINTER {A i | i ∈ 𝕌(:num)} ∈ sigma_sets sp st
sigma_sets_BIGINTER2
⊢ ∀sp st A N.
    st ⊆ POW sp ∧ (∀i. i ∈ N ⇒ A i ∈ sigma_sets sp st) ∧ N ≠ ∅ ⇒
    BIGINTER {A i | i ∈ N} ∈ sigma_sets sp st
sigma_sets_BIGUNION
⊢ ∀sp st A.
    (∀i. A i ∈ sigma_sets sp st) ⇒
    BIGUNION {A i | i ∈ 𝕌(:num)} ∈ sigma_sets sp st
sigma_sets_basic
⊢ ∀sp st a. a ∈ st ⇒ a ∈ sigma_sets sp st
sigma_sets_cases
⊢ ∀sp st a0.
    sigma_sets sp st a0 ⇔
    (a0 = ∅) ∨ st a0 ∨ (∃a. (a0 = sp DIFF a) ∧ sigma_sets sp st a) ∨
    ∃A. (a0 = BIGUNION {A i | i ∈ 𝕌(:num)}) ∧ ∀i. sigma_sets sp st (A i)
sigma_sets_compl
⊢ ∀sp st a. a ∈ sigma_sets sp st ⇒ sp DIFF a ∈ sigma_sets sp st
sigma_sets_empty
⊢ ∀sp st. ∅ ∈ sigma_sets sp st
sigma_sets_fixpoint
⊢ ∀sp sts. sigma_algebra (sp,sts) ⇒ (sigma_sets sp sts = sts)
sigma_sets_ind
⊢ ∀sp st sigma_sets'.
    sigma_sets' ∅ ∧ (∀a. st a ⇒ sigma_sets' a) ∧
    (∀a. sigma_sets' a ⇒ sigma_sets' (sp DIFF a)) ∧
    (∀A. (∀i. sigma_sets' (A i)) ⇒ sigma_sets' (BIGUNION {A i | i ∈ 𝕌(:num)})) ⇒
    ∀a0. sigma_sets sp st a0 ⇒ sigma_sets' a0
sigma_sets_into_sp
⊢ ∀sp st. st ⊆ POW sp ⇒ ∀x. x ∈ sigma_sets sp st ⇒ x ⊆ sp
sigma_sets_least_sigma_algebra
⊢ ∀sp A.
    A ⊆ POW sp ⇒
    (sigma_sets sp A = BIGINTER {B | A ⊆ B ∧ sigma_algebra (sp,B)})
sigma_sets_rules
⊢ ∀sp st.
    sigma_sets sp st ∅ ∧ (∀a. st a ⇒ sigma_sets sp st a) ∧
    (∀a. sigma_sets sp st a ⇒ sigma_sets sp st (sp DIFF a)) ∧
    ∀A. (∀i. sigma_sets sp st (A i)) ⇒
        sigma_sets sp st (BIGUNION {A i | i ∈ 𝕌(:num)})
sigma_sets_strongind
⊢ ∀sp st sigma_sets'.
    sigma_sets' ∅ ∧ (∀a. st a ⇒ sigma_sets' a) ∧
    (∀a. sigma_sets sp st a ∧ sigma_sets' a ⇒ sigma_sets' (sp DIFF a)) ∧
    (∀A. (∀i. sigma_sets sp st (A i) ∧ sigma_sets' (A i)) ⇒
         sigma_sets' (BIGUNION {A i | i ∈ 𝕌(:num)})) ⇒
    ∀a0. sigma_sets sp st a0 ⇒ sigma_sets' a0
sigma_sets_subset
⊢ ∀sp sts st. sigma_algebra (sp,sts) ∧ st ⊆ sts ⇒ sigma_sets sp st ⊆ sts
sigma_sets_superset_generator
⊢ ∀X A. A ⊆ sigma_sets X A
sigma_sets_top
⊢ ∀sp A. sp ∈ sigma_sets sp A
sigma_sets_union
⊢ ∀sp st a b.
    a ∈ sigma_sets sp st ∧ b ∈ sigma_sets sp st ⇒ a ∪ b ∈ sigma_sets sp st
subset_class_POW
⊢ ∀sp. subset_class sp (POW sp)