- ADD_POW_2
-
⊢ ∀x y. (x + y)² = x² + y² + 2 * x * y
- BIGINTER_IMAGE_OVER_INTER_L
-
⊢ ∀f n d.
0 < n ⇒
(BIGINTER (IMAGE f (count n)) ∩ d =
BIGINTER (IMAGE (λi. f i ∩ d) (count n)))
- BIGINTER_IMAGE_OVER_INTER_R
-
⊢ ∀f n d.
0 < n ⇒
(d ∩ BIGINTER (IMAGE f (count n)) =
BIGINTER (IMAGE (λi. d ∩ f i) (count n)))
- BIGINTER_PAIR
-
⊢ ∀s t. BIGINTER {s; t} = s ∩ t
- BIGUNION_IMAGE_BIGUNION_IMAGE_UNIV
-
⊢ ∀f. BIGUNION (IMAGE (λn. BIGUNION (IMAGE (f n) 𝕌(:num))) 𝕌(:num)) =
BIGUNION (IMAGE fᴾ 𝕌(:num # num))
- BIGUNION_IMAGE_COUNT_IMP_UNIV
-
⊢ ∀f g.
(∀n. BIGUNION (IMAGE g (count n)) = BIGUNION (IMAGE f (count n))) ⇒
(BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE g 𝕌(:num)))
- BIGUNION_IMAGE_OVER_INTER_L
-
⊢ ∀f n d.
BIGUNION (IMAGE f (count n)) ∩ d =
BIGUNION (IMAGE (λi. f i ∩ d) (count n))
- BIGUNION_IMAGE_OVER_INTER_R
-
⊢ ∀f n d.
d ∩ BIGUNION (IMAGE f (count n)) =
BIGUNION (IMAGE (λi. d ∩ f i) (count n))
- BIGUNION_IMAGE_UNIV_CROSS_UNIV
-
⊢ ∀f h.
BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
(BIGUNION (IMAGE fᴾ 𝕌(:num # num)) = BIGUNION (IMAGE (fᴾ ∘ h) 𝕌(:num)))
- BIGUNION_OVER_DIFF
-
⊢ ∀f d.
BIGUNION (IMAGE f 𝕌(:num)) DIFF d =
BIGUNION (IMAGE (λi. f i DIFF d) 𝕌(:num))
- BIGUNION_OVER_INTER_L
-
⊢ ∀f d.
BIGUNION (IMAGE f 𝕌(:num)) ∩ d = BIGUNION (IMAGE (λi. f i ∩ d) 𝕌(:num))
- BIGUNION_OVER_INTER_R
-
⊢ ∀f d.
d ∩ BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE (λi. d ∩ f i) 𝕌(:num))
- BIGUNION_disjointed
-
⊢ ∀A. BIGUNION {disjointed A i | i ∈ 𝕌(:num)} = BIGUNION {A i | i ∈ 𝕌(:num)}
- BINARY_RANGE
-
⊢ ∀a b. IMAGE (binary a b) 𝕌(:num) = {a; b}
- COMPL_BIGINTER
-
⊢ ∀c. COMPL (BIGINTER c) = BIGUNION (IMAGE COMPL c)
- COMPL_BIGINTER_IMAGE
-
⊢ ∀f. COMPL (BIGINTER (IMAGE f 𝕌(:num))) =
BIGUNION (IMAGE (COMPL ∘ f) 𝕌(:num))
- COMPL_BIGUNION
-
⊢ ∀c. c ≠ ∅ ⇒ (COMPL (BIGUNION c) = BIGINTER (IMAGE COMPL c))
- COMPL_BIGUNION_IMAGE
-
⊢ ∀f. COMPL (BIGUNION (IMAGE f 𝕌(:num))) =
BIGINTER (IMAGE (COMPL ∘ f) 𝕌(:num))
- CROSS_ALT
-
⊢ ∀A B. A × B = general_cross $, A B
- DIFF_INTER_PAIR
-
⊢ ∀sp x y. sp DIFF x ∩ y = sp DIFF x ∪ (sp DIFF y)
- DINTER_IMP_FINITE_INTER
-
⊢ ∀sts f.
(∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∩ t ∈ sts) ∧ f ∈ (𝕌(:num) → sts) ⇒
∀n. 0 < n ⇒ BIGINTER (IMAGE f (count n)) ∈ sts
- DISJOINT_CROSS_L
-
⊢ ∀s t c. DISJOINT s t ⇒ DISJOINT (s × c) (t × c)
- DISJOINT_CROSS_R
-
⊢ ∀s t c. DISJOINT s t ⇒ DISJOINT (c × s) (c × t)
- DISJOINT_RESTRICT_L
-
⊢ ∀s t c. DISJOINT s t ⇒ DISJOINT (s ∩ c) (t ∩ c)
- DISJOINT_RESTRICT_R
-
⊢ ∀s t c. DISJOINT s t ⇒ DISJOINT (c ∩ s) (c ∩ t)
- DUNION_IMP_FINITE_UNION
-
⊢ ∀sts f.
(∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∪ t ∈ sts) ⇒
∀n. 0 < n ∧ (∀i. i < n ⇒ f i ∈ sts) ⇒ BIGUNION (IMAGE f (count n)) ∈ sts
- FCP_BIGUNION_CROSS
-
⊢ ∀f s t.
fcp_cross (BIGUNION (IMAGE f s)) t =
BIGUNION (IMAGE (λn. fcp_cross (f n) t) s)
- FCP_CROSS_BIGUNION
-
⊢ ∀f s t.
fcp_cross t (BIGUNION (IMAGE f s)) =
BIGUNION (IMAGE (λn. fcp_cross t (f n)) s)
- FCP_CROSS_DIFF
-
⊢ ∀X s t.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
(fcp_cross (X DIFF s) t = fcp_cross X t DIFF fcp_cross s t)
- FCP_CROSS_DIFF'
-
⊢ ∀s X t.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
(fcp_cross s (X DIFF t) = fcp_cross s X DIFF fcp_cross s t)
- FCP_INTER_CROSS
-
⊢ ∀a b c d.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
(fcp_cross a b ∩ fcp_cross c d = fcp_cross (a ∩ c) (b ∩ d))
- FCP_SUBSET_CROSS
-
⊢ ∀a b c d. a ⊆ b ∧ c ⊆ d ⇒ fcp_cross a c ⊆ fcp_cross b d
- GBIGUNION_IMAGE
-
⊢ ∀s p n. {s | ∃n. p s n} = BIGUNION (IMAGE (λn. {s | p s n}) 𝕌(:γ))
- GEN_COMPL_BIGINTER
-
⊢ ∀sp c.
(∀x. x ∈ c ⇒ x ⊆ sp) ⇒
(sp DIFF BIGINTER c = BIGUNION (IMAGE (λx. sp DIFF x) c))
- GEN_COMPL_BIGINTER_IMAGE
-
⊢ ∀sp f.
(∀n. f n ⊆ sp) ⇒
(sp DIFF BIGINTER (IMAGE f 𝕌(:num)) =
BIGUNION (IMAGE (λn. sp DIFF f n) 𝕌(:num)))
- GEN_COMPL_BIGUNION
-
⊢ ∀sp c.
c ≠ ∅ ∧ (∀x. x ∈ c ⇒ x ⊆ sp) ⇒
(sp DIFF BIGUNION c = BIGINTER (IMAGE (λx. sp DIFF x) c))
- GEN_COMPL_BIGUNION_IMAGE
-
⊢ ∀sp f.
(∀n. f n ⊆ sp) ⇒
(sp DIFF BIGUNION (IMAGE f 𝕌(:num)) =
BIGINTER (IMAGE (λn. sp DIFF f n) 𝕌(:num)))
- GEN_COMPL_FINITE_INTER
-
⊢ ∀sp f n.
0 < n ⇒
(sp DIFF BIGINTER (IMAGE f (count n)) =
BIGUNION (IMAGE (λi. sp DIFF f i) (count n)))
- GEN_COMPL_FINITE_UNION
-
⊢ ∀sp f n.
0 < n ⇒
(sp DIFF BIGUNION (IMAGE f (count n)) =
BIGINTER (IMAGE (λi. sp DIFF f i) (count n)))
- GEN_COMPL_INTER
-
⊢ ∀sp s t. s ⊆ sp ∧ t ⊆ sp ⇒ (sp DIFF s ∩ t = sp DIFF s ∪ (sp DIFF t))
- GEN_COMPL_UNION
-
⊢ ∀sp s t. s ⊆ sp ∧ t ⊆ sp ⇒ (sp DIFF (s ∪ t) = (sp DIFF s) ∩ (sp DIFF t))
- GEN_DIFF_INTER
-
⊢ ∀sp s t. s ⊆ sp ∧ t ⊆ sp ⇒ (s DIFF t = s ∩ (sp DIFF t))
- HARMONIC_SERIES_POW_2
-
⊢ summable (λn. (&SUC n)² ⁻¹)
- INCREASING_TO_DISJOINT_SETS
-
⊢ ∀f. (∀n. f n ⊆ f (SUC n)) ⇒
∃g. (g 0 = f 0) ∧ (∀n. 0 < n ⇒ (g n = f n DIFF f (PRE n))) ∧
(∀i j. i ≠ j ⇒ DISJOINT (g i) (g j)) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE g 𝕌(:num)))
- INCREASING_TO_DISJOINT_SETS'
-
⊢ ∀f. (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
∃g. (∀n. g n = f (SUC n) DIFF f n) ∧
(∀i j. i ≠ j ⇒ DISJOINT (g i) (g j)) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE g 𝕌(:num)))
- INF_CLOSE
-
⊢ ∀p e. (∃x. x ∈ p) ∧ 0 < e ⇒ ∃x. x ∈ p ∧ x < inf p + e
- INF_DEF_ALT
-
⊢ ∀p. inf p = -sup (λr. -r ∈ p)
- INF_GREATER
-
⊢ ∀p z. (∃x. x ∈ p) ∧ inf p < z ⇒ ∃x. x ∈ p ∧ x < z
- INF_LE
-
⊢ ∀p r. (∃z. ∀x. x ∈ p ⇒ z ≤ x) ∧ (∃x. x ∈ p ∧ x ≤ r) ⇒ inf p ≤ r
- INTER_BINARY
-
⊢ ∀a b. a ∩ b = BIGINTER {binary a b i | i ∈ 𝕌(:num)}
- IN_FCP_CROSS
-
⊢ ∀s a b. s ∈ fcp_cross a b ⇔ ∃t u. (s = FCP_CONCAT t u) ∧ t ∈ a ∧ u ∈ b
- IN_FCP_PROD
-
⊢ ∀s A B. s ∈ fcp_prod A B ⇔ ∃a b. (s = fcp_cross a b) ∧ a ∈ A ∧ b ∈ B
- IN_PROD_SETS
-
⊢ ∀s a b. s ∈ prod_sets a b ⇔ ∃t u. (s = t × u) ∧ t ∈ a ∧ u ∈ b
- IN_general_cross
-
⊢ ∀cons s A B.
s ∈ general_cross cons A B ⇔ ∃a b. (s = cons a b) ∧ a ∈ A ∧ b ∈ B
- IN_general_prod
-
⊢ ∀cons s A B.
s ∈ general_prod cons A B ⇔
∃a b. (s = general_cross cons a b) ∧ a ∈ A ∧ b ∈ B
- IN_o
-
⊢ ∀x f s. x ∈ s ∘ f ⇔ f x ∈ s
- LE_INF
-
⊢ ∀p r. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ r ≤ x) ⇒ r ≤ inf p
- LOGR_MONO_LE
-
⊢ ∀x y b. 0 < x ∧ 0 < y ∧ 1 < b ⇒ (logr b x ≤ logr b y ⇔ x ≤ y)
- LOGR_MONO_LE_IMP
-
⊢ ∀x y b. 0 < x ∧ x ≤ y ∧ 1 ≤ b ⇒ logr b x ≤ logr b y
- MINIMAL_EQ
-
⊢ ∀p m. p m ∧ (m = minimal p) ⇔ p m ∧ ∀n. n < m ⇒ ¬p n
- MINIMAL_EQ_IMP
-
⊢ ∀m p. p m ∧ (∀n. n < m ⇒ ¬p n) ⇒ (m = minimal p)
- MINIMAL_EXISTS
-
⊢ ∀P. (∃n. P n) ⇔ P (minimal P) ∧ ∀n. n < minimal P ⇒ ¬P n
- MINIMAL_EXISTS0
-
⊢ (∃n. P n) ⇔ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
- MINIMAL_EXISTS_IMP
-
⊢ ∀P. (∃n. P n) ⇒ ∃m. P m ∧ ∀n. n < m ⇒ ¬P n
- MINIMAL_SUC
-
⊢ ∀n p.
(SUC n = minimal p) ∧ p (SUC n) ⇔
¬p 0 ∧ (n = minimal (p ∘ SUC)) ∧ p (SUC n)
- MINIMAL_SUC_IMP
-
⊢ ∀n p. p (SUC n) ∧ ¬p 0 ∧ (n = minimal (p ∘ SUC)) ⇒ (SUC n = minimal p)
- NUM_2D_BIJ
-
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) 𝕌(:num)
- NUM_2D_BIJ_INV
-
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num))
- NUM_2D_BIJ_NZ
-
⊢ ∃f. BIJ f (𝕌(:num) × (𝕌(:num) DIFF {0})) 𝕌(:num)
- NUM_2D_BIJ_NZ_ALT
-
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) (𝕌(:num) DIFF {0})
- NUM_2D_BIJ_NZ_ALT2
-
⊢ ∃f. BIJ f ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0})) 𝕌(:num)
- NUM_2D_BIJ_NZ_ALT2_INV
-
⊢ ∃f. BIJ f 𝕌(:num) ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0}))
- NUM_2D_BIJ_NZ_ALT_INV
-
⊢ ∃f. BIJ f (𝕌(:num) DIFF {0}) (𝕌(:num) × 𝕌(:num))
- NUM_2D_BIJ_NZ_INV
-
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × (𝕌(:num) DIFF {0}))
- NUM_2D_BIJ_nfst_nsnd
-
⊢ BIJ (λn. (nfst n,nsnd n)) 𝕌(:num) (𝕌(:num) × 𝕌(:num))
- NUM_2D_BIJ_npair
-
⊢ BIJ $*,ᴾ (𝕌(:num) × 𝕌(:num)) 𝕌(:num)
- PAIRED_BETA_THM
-
⊢ ∀f z. fᴾ z = f (FST z) (SND z)
- POW_HALF_MONO
-
⊢ ∀m n. m ≤ n ⇒ (1 / 2) pow n ≤ (1 / 2) pow m
- POW_HALF_POS
-
⊢ ∀n. 0 < (1 / 2) pow n
- POW_HALF_SMALL
-
⊢ ∀e. 0 < e ⇒ ∃n. (1 / 2) pow n < e
- POW_NEG_ODD
-
⊢ ∀x. x < 0 ⇒ (x pow n < 0 ⇔ ODD n)
- POW_POS_EVEN
-
⊢ ∀x. x < 0 ⇒ (0 < x pow n ⇔ EVEN n)
- PREIMAGE_REAL_COMPL1
-
⊢ ∀c. COMPL {x | c < x} = {x | x ≤ c}
- PREIMAGE_REAL_COMPL2
-
⊢ ∀c. COMPL {x | c ≤ x} = {x | x < c}
- PREIMAGE_REAL_COMPL3
-
⊢ ∀c. COMPL {x | x ≤ c} = {x | c < x}
- PREIMAGE_REAL_COMPL4
-
⊢ ∀c. COMPL {x | x < c} = {x | c ≤ x}
- REAL_ARCH_INV'
-
⊢ ∀x. 0 < x ⇒ ∃n. (&n)⁻¹ < x
- REAL_ARCH_INV_SUC
-
⊢ ∀x. 0 < x ⇒ ∃n. (&SUC n)⁻¹ < x
- REAL_LE_LT_MUL
-
⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
- REAL_LE_RDIV_EQ_NEG
-
⊢ ∀x y z. z < 0 ⇒ (y / z ≤ x ⇔ x * z ≤ y)
- REAL_LT_LE_MUL
-
⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
- REAL_LT_LMUL_0_NEG
-
⊢ ∀x y. 0 < x * y ∧ x < 0 ⇒ y < 0
- REAL_LT_LMUL_NEG_0
-
⊢ ∀x y. x * y < 0 ∧ 0 < x ⇒ y < 0
- REAL_LT_LMUL_NEG_0_NEG
-
⊢ ∀x y. x * y < 0 ∧ x < 0 ⇒ 0 < y
- REAL_LT_MAX_BETWEEN
-
⊢ ∀x b d. x < max b d ∧ b ≤ x ⇒ x < d
- REAL_LT_RDIV_EQ_NEG
-
⊢ ∀x y z. z < 0 ⇒ (y / z < x ⇔ x * z < y)
- REAL_LT_RMUL_0_NEG
-
⊢ ∀x y. 0 < x * y ∧ y < 0 ⇒ x < 0
- REAL_LT_RMUL_NEG_0
-
⊢ ∀x y. x * y < 0 ∧ 0 < y ⇒ x < 0
- REAL_LT_RMUL_NEG_0_NEG
-
⊢ ∀x y. x * y < 0 ∧ y < 0 ⇒ 0 < x
- REAL_MAX_REDUCE
-
⊢ ∀x y. x ≤ y ∨ x < y ⇒ (max x y = y) ∧ (max y x = y)
- REAL_MIN_LE_BETWEEN
-
⊢ ∀x a c. min a c ≤ x ∧ x < a ⇒ c ≤ x
- REAL_MIN_REDUCE
-
⊢ ∀x y. x ≤ y ∨ x < y ⇒ (min x y = x) ∧ (min y x = x)
- REAL_MUL_IDEMPOT
-
⊢ ∀r. (r * r = r) ⇔ (r = 0) ∨ (r = 1)
- REAL_NEG_NZ
-
⊢ ∀x. x < 0 ⇒ x ≠ 0
- REAL_SUP_LE_X
-
⊢ ∀P x. (∃r. P r) ∧ (∀r. P r ⇒ r ≤ x) ⇒ sup P ≤ x
- REAL_X_LE_SUP
-
⊢ ∀P x. (∃r. P r) ∧ (∃z. ∀r. P r ⇒ r ≤ z) ∧ (∃r. P r ∧ x ≤ r) ⇒ x ≤ sup P
- SETS_TO_DISJOINT_SETS
-
⊢ ∀sp sts f.
(∀s. s ∈ sts ⇒ s ⊆ sp) ∧ (∀n. f n ∈ sts) ⇒
∃g. (g 0 = f 0) ∧
(∀n. 0 < n ⇒
(g n = f n ∩ BIGINTER (IMAGE (λi. sp DIFF f i) (count n)))) ∧
(∀i j. i ≠ j ⇒ DISJOINT (g i) (g j)) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE g 𝕌(:num)))
- SETS_TO_DISJOINT_SETS'
-
⊢ ∀f. ∃g.
(g 0 = f 0) ∧
(∀n. 0 < n ⇒ (g n = f n ∩ BIGINTER (IMAGE (COMPL ∘ f) (count n)))) ∧
(∀i j. i ≠ j ⇒ DISJOINT (g i) (g j)) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE g 𝕌(:num)))
- SETS_TO_INCREASING_SETS
-
⊢ ∀f. ∃g.
(g 0 = f 0) ∧ (∀n. g n = BIGUNION (IMAGE f (count (SUC n)))) ∧
(∀n. g n ⊆ g (SUC n)) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE g 𝕌(:num)))
- SETS_TO_INCREASING_SETS'
-
⊢ ∀f. ∃g.
(g 0 = ∅) ∧ (∀n. g n = BIGUNION (IMAGE f (count n))) ∧
(∀n. g n ⊆ g (SUC n)) ∧
(BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE g 𝕌(:num)))
- SUBSET_DIFF_DISJOINT
-
⊢ ∀s1 s2 s3. s1 ⊆ s2 DIFF s3 ⇒ DISJOINT s1 s3
- SUBSET_DIFF_SUBSET
-
⊢ ∀r s t. s ⊆ t ⇒ s DIFF r ⊆ t
- SUBSET_INTER_SUBSET_L
-
⊢ ∀r s t. s ⊆ t ⇒ s ∩ r ⊆ t
- SUBSET_INTER_SUBSET_R
-
⊢ ∀r s t. s ⊆ t ⇒ r ∩ s ⊆ t
- SUBSET_MONO_DIFF
-
⊢ ∀r s t. s ⊆ t ⇒ s DIFF r ⊆ t DIFF r
- SUBSET_RESTRICT_DIFF
-
⊢ ∀r s t. s ⊆ t ⇒ r DIFF t ⊆ r DIFF s
- SUBSET_RESTRICT_L
-
⊢ ∀r s t. s ⊆ t ⇒ s ∩ r ⊆ t ∩ r
- SUBSET_RESTRICT_R
-
⊢ ∀r s t. s ⊆ t ⇒ r ∩ s ⊆ r ∩ t
- UNION_BINARY
-
⊢ ∀a b. a ∪ b = BIGUNION {binary a b i | i ∈ 𝕌(:num)}
- UNION_TO_3_DISJOINT_UNIONS
-
⊢ ∀s t.
(s ∪ t = s DIFF t ∪ s ∩ t ∪ (t DIFF s)) ∧
disjoint {s DIFF t; s ∩ t; t DIFF s}
- countable_disjoint_decomposition
-
⊢ ∀c. FINITE c ∧ disjoint c ⇒
∃f n.
(∀i. i < n ⇒ f i ∈ c) ∧ (∀i. n ≤ i ⇒ (f i = ∅)) ∧
(c = IMAGE f (count n)) ∧ (BIGUNION c = BIGUNION (IMAGE f 𝕌(:num))) ∧
(∀i j. i < n ∧ j < n ∧ i ≠ j ⇒ f i ≠ f j) ∧
∀i j. i < n ∧ j < n ∧ i ≠ j ⇒ DISJOINT (f i) (f j)
- disjoint
-
⊢ ∀A. disjoint A ⇔ ∀a b. a ∈ A ∧ b ∈ A ∧ a ≠ b ⇒ (a ∩ b = ∅)
- disjointD
-
⊢ ∀A a b. disjoint A ⇒ a ∈ A ⇒ b ∈ A ⇒ a ≠ b ⇒ DISJOINT a b
- disjointI
-
⊢ ∀A. (∀a b. a ∈ A ⇒ b ∈ A ⇒ a ≠ b ⇒ DISJOINT a b) ⇒ disjoint A
- disjoint_empty
-
⊢ disjoint ∅
- disjoint_family_disjoint
-
⊢ ∀A. disjoint_family (disjointed A)
- disjoint_image
-
⊢ ∀f. (∀i j. i ≠ j ⇒ DISJOINT (f i) (f j)) ⇒ disjoint (IMAGE f 𝕌(:α))
- disjoint_insert
-
⊢ ∀e c. disjoint c ∧ (∀x. x ∈ c ⇒ DISJOINT x e) ⇒ disjoint (e INSERT c)
- disjoint_insert_imp
-
⊢ ∀e c. disjoint (e INSERT c) ⇒ disjoint c
- disjoint_insert_notin
-
⊢ ∀e c. disjoint (e INSERT c) ∧ e ∉ c ⇒ ∀s. s ∈ c ⇒ DISJOINT e s
- disjoint_restrict
-
⊢ ∀e c. disjoint c ⇒ disjoint (IMAGE ($INTER e) c)
- disjoint_same
-
⊢ ∀s t. (s = t) ⇒ disjoint {s; t}
- disjoint_sing
-
⊢ ∀a. disjoint {a}
- disjoint_two
-
⊢ ∀s t. s ≠ t ∧ DISJOINT s t ⇒ disjoint {s; t}
- disjoint_union
-
⊢ ∀A B.
disjoint A ∧ disjoint B ∧ (BIGUNION A ∩ BIGUNION B = ∅) ⇒ disjoint (A ∪ B)
- disjointed_subset
-
⊢ ∀A n. disjointed A n ⊆ A n
- fcp_cross_UNIV
-
⊢ FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒ (fcp_cross 𝕌(:α[β]) 𝕌(:α[γ]) = 𝕌(:α[β + γ]))
- fcp_cross_alt
-
⊢ ∀A B. fcp_cross A B = general_cross FCP_CONCAT A B
- fcp_prod_alt
-
⊢ ∀A B. fcp_prod A B = general_prod FCP_CONCAT A B
- finite_decomposition
-
⊢ ∀c. FINITE c ⇒
∃f n.
(∀x. x < n ⇒ f x ∈ c) ∧ (c = IMAGE f (count n)) ∧
∀i j. i < n ∧ j < n ∧ i ≠ j ⇒ f i ≠ f j
- finite_decomposition_simple
-
⊢ ∀c. FINITE c ⇒ ∃f n. (∀x. x < n ⇒ f x ∈ c) ∧ (c = IMAGE f (count n))
- finite_disjoint_decomposition
-
⊢ ∀c. FINITE c ∧ disjoint c ⇒
∃f n.
(∀i. i < n ⇒ f i ∈ c) ∧ (c = IMAGE f (count n)) ∧
(∀i j. i < n ∧ j < n ∧ i ≠ j ⇒ f i ≠ f j) ∧
∀i j. i < n ∧ j < n ∧ i ≠ j ⇒ DISJOINT (f i) (f j)
- finite_enumeration_of_sets_has_max_non_empty
-
⊢ ∀f s.
FINITE s ∧ (∀x. f x ∈ s) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
∃N. ∀n. n ≥ N ⇒ (f n = ∅)
- general_BIGUNION_CROSS
-
⊢ ∀cons f s t.
general_cross cons (BIGUNION (IMAGE f s)) t =
BIGUNION (IMAGE (λn. general_cross cons (f n) t) s)
- general_CROSS_BIGUNION
-
⊢ ∀cons f s t.
general_cross cons t (BIGUNION (IMAGE f s)) =
BIGUNION (IMAGE (λn. general_cross cons t (f n)) s)
- general_CROSS_DIFF
-
⊢ ∀cons car cdr X s t.
pair_operation cons car cdr ⇒
(general_cross cons (X DIFF s) t =
general_cross cons X t DIFF general_cross cons s t)
- general_CROSS_DIFF'
-
⊢ ∀cons car cdr s X t.
pair_operation cons car cdr ⇒
(general_cross cons s (X DIFF t) =
general_cross cons s X DIFF general_cross cons s t)
- general_INTER_CROSS
-
⊢ ∀cons car cdr a b c d.
pair_operation cons car cdr ⇒
(general_cross cons a b ∩ general_cross cons c d =
general_cross cons (a ∩ c) (b ∩ d))
- general_SUBSET_CROSS
-
⊢ ∀cons a b c d.
a ⊆ b ∧ c ⊆ d ⇒ general_cross cons a c ⊆ general_cross cons b d
- infinitely_often_lemma
-
⊢ ∀P. ¬(∃N. INFINITE N ∧ ∀n. n ∈ N ⇒ P n) ⇔ ∃m. ∀n. m ≤ n ⇒ ¬P n
- infinity_bound_lemma
-
⊢ ∀N m. INFINITE N ⇒ ∃n. m ≤ n ∧ n ∈ N
- lg_1
-
⊢ lg 1 = 0
- lg_2
-
⊢ lg 2 = 1
- lg_inv
-
⊢ ∀x. 0 < x ⇒ (lg x⁻¹ = -lg x)
- lg_mul
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (lg (x * y) = lg x + lg y)
- lg_nonzero
-
⊢ ∀x. x ≠ 0 ∧ 0 ≤ x ⇒ (lg x ≠ 0 ⇔ x ≠ 1)
- lg_pow
-
⊢ ∀n. lg (2 pow n) = &n
- logr_1
-
⊢ ∀b. logr b 1 = 0
- logr_div
-
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x / y) = logr b x − logr b y)
- logr_inv
-
⊢ ∀b x. 0 < x ⇒ (logr b x⁻¹ = -logr b x)
- logr_mul
-
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x * y) = logr b x + logr b y)
- neg_lg
-
⊢ ∀x. 0 < x ⇒ (-lg x = lg x⁻¹)
- neg_logr
-
⊢ ∀b x. 0 < x ⇒ (-logr b x = logr b x⁻¹)
- pair_operation_FCP_CONCAT
-
⊢ FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒ pair_operation FCP_CONCAT FCP_FST FCP_SND
- pair_operation_pair
-
⊢ pair_operation $, FST SND
- prod_sets_alt
-
⊢ ∀A B. prod_sets A B = general_prod $, A B
- tail_countable
-
⊢ ∀A m. COUNTABLE {A n | m ≤ n}
- tail_not_empty
-
⊢ ∀A m. {A n | m ≤ n} ≠ ∅