Theory Generated_Rings

(* ************************************************************************** *)
(* Title:      Generated_Rings.thy                                            *)
(* Author:     Martin Baillon                                                 *)
(* ************************************************************************** *)

theory Generated_Rings
  imports Subrings
begin

sectionGenerated Rings

inductive_set
  generate_ring :: "('a, 'b) ring_scheme  'a set  'a set"
  for R and H where
    one:   "𝟭R generate_ring R H"
  | incl:  "h  H  h  generate_ring R H"
  | a_inv: "h  generate_ring R H  Rh  generate_ring R H"
  | eng_add : " h1  generate_ring R H; h2  generate_ring R H   h1 Rh2  generate_ring R H"
  | eng_mult: " h1  generate_ring R H; h2  generate_ring R H   h1 Rh2  generate_ring R H"

subsectionBasic Properties of Generated Rings - First Part

lemma (in ring) generate_ring_in_carrier:
  assumes "H  carrier R"
  shows "h  generate_ring R H  h  carrier R"
  apply (induction rule: generate_ring.induct) using assms 
  by blast+

lemma (in ring) generate_ring_incl:
  assumes "H  carrier R"
  shows "generate_ring R H  carrier R"
  using generate_ring_in_carrier[OF assms] by auto

lemma (in ring) zero_in_generate: "𝟬R generate_ring R H"
  using one a_inv by (metis generate_ring.eng_add one_closed r_neg)

lemma (in ring) generate_ring_is_subring:
  assumes "H  carrier R"
  shows "subring (generate_ring R H) R"
  by (auto intro!: subringI[of "generate_ring R H"]
         simp add: generate_ring_in_carrier[OF assms] one a_inv eng_mult eng_add)

lemma (in ring) generate_ring_is_ring:
  assumes "H  carrier R"
  shows "ring (R  carrier := generate_ring R H )"
  using subring_iff[OF generate_ring_incl[OF assms]] generate_ring_is_subring[OF assms] by simp

lemma (in ring) generate_ring_min_subring1:
  assumes "H  carrier R" and "subring E R" "H  E"
  shows "generate_ring R H  E"
proof
  fix h assume h: "h  generate_ring R H"
  show "h  E"
    using h and assms(3)
      by (induct rule: generate_ring.induct)
         (auto simp add: subringE(3,5-7)[OF assms(2)])
qed

lemma (in ring) generate_ringI:
  assumes "H  carrier R"
    and "subring E R" "H  E"
    and "K.  subring K R; H  K   E  K"
  shows "E = generate_ring R H"
proof
  show "E  generate_ring R H"
    using assms generate_ring_is_subring generate_ring.incl by (metis subset_iff)
  show "generate_ring R H  E"
    using generate_ring_min_subring1[OF assms(1-3)] by simp
qed

lemma (in ring) generate_ringE:
  assumes "H  carrier R" and "E = generate_ring R H"
  shows "subring E R" and "H  E" and "K.  subring K R; H  K   E  K"
proof -
  show "subring E R" using assms generate_ring_is_subring by simp
  show "H  E" using assms(2) by (simp add: generate_ring.incl subsetI)
  show "K. subring K R   H  K  E  K"
    using assms generate_ring_min_subring1 by auto
qed

lemma (in ring) generate_ring_min_subring2:
  assumes "H  carrier R"
  shows "generate_ring R H = {K. subring K R  H  K}"
proof
  have "subring (generate_ring R H) R  H  generate_ring R H"
    by (simp add: assms generate_ringE(2) generate_ring_is_subring)
  thus "{K. subring K R  H  K}  generate_ring R H" by blast
next
  have "K. subring K R  H  K  generate_ring R H  K"
    by (simp add: assms generate_ring_min_subring1)
  thus "generate_ring R H  {K. subring K R  H  K}" by blast
qed

lemma (in ring) mono_generate_ring:
  assumes "I  J" and "J  carrier R"
  shows "generate_ring R I  generate_ring R J"
proof-
  have "I  generate_ring R J "
    using assms generate_ringE(2) by blast
  thus "generate_ring R I  generate_ring R J"
    using generate_ring_min_subring1[of I "generate_ring R J"] assms generate_ring_is_subring[OF assms(2)]
    by blast
qed

lemma (in ring) subring_gen_incl :
  assumes "subring H R"
    and  "subring K R"
    and "I  H"
    and "I  K"
  shows "generate_ring (Rcarrier := K) I  generate_ring (Rcarrier := H) I"
proof
  {fix J assume J_def : "subring J R" "I  J"
    have "generate_ring (R  carrier := J ) I  J"
      using ring.mono_generate_ring[of "(Rcarrier := J)" I J ] subring_is_ring[OF J_def(1)]
          ring.generate_ring_in_carrier[of "Rcarrier := J"]  ring_axioms J_def(2)
      by auto}
  note incl_HK = this
  {fix x have "x  generate_ring (Rcarrier := K) I  x  generate_ring (Rcarrier := H) I" 
    proof (induction  rule : generate_ring.induct)
      case one
        have "𝟭Rcarrier := H 𝟭Rcarrier := K= 𝟭Rcarrier := H" by simp
        moreover have "𝟭Rcarrier := H 𝟭Rcarrier := K= 𝟭Rcarrier := K" by simp
        ultimately show ?case using assms generate_ring.one by metis
    next
      case (incl h) thus ?case using generate_ring.incl by force
    next
      case (a_inv h)
      note hyp = this
      have "a_inv (Rcarrier := K) h = a_inv R h" 
        using assms group.m_inv_consistent[of "add_monoid R" K] a_comm_group incl_HK[of K] hyp
        unfolding subring_def comm_group_def a_inv_def by auto
      moreover have "a_inv (Rcarrier := H) h = a_inv R h"
        using assms group.m_inv_consistent[of "add_monoid R" H] a_comm_group incl_HK[of H] hyp
        unfolding subring_def comm_group_def a_inv_def by auto
      ultimately show ?case using generate_ring.a_inv a_inv.IH by fastforce
    next
      case (eng_add h1 h2)
      thus ?case using incl_HK assms generate_ring.eng_add by force
    next
      case (eng_mult h1 h2)
      thus ?case using generate_ring.eng_mult by force
    qed}
  thus "x. x  generate_ring (Rcarrier := K) I  x  generate_ring (Rcarrier := H) I"
    by auto
qed

lemma (in ring) subring_gen_equality:
  assumes "subring H R" "K  H"
  shows "generate_ring R K = generate_ring (R  carrier := H ) K"
  using subring_gen_incl[OF assms(1)carrier_is_subring assms(2)] assms subringE(1)
        subring_gen_incl[OF carrier_is_subring assms(1) _ assms(2)]
  by force

end