Theory ZF_Base

(*  Title:      ZF/ZF_Base.thy
    Author:     Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
    Copyright   1993  University of Cambridge
*)

section Base of Zermelo-Fraenkel Set Theory

theory ZF_Base
imports FOL
begin

subsection Signature

declare [[eta_contract = false]]

typedecl i
instance i :: "term" ..

axiomatization mem :: "[i, i]  o"  (infixl  50)  ― ‹membership relation
  and zero :: "i"  (0)  ― ‹the empty set
  and Pow :: "i  i"  ― ‹power sets
  and Inf :: "i"  ― ‹infinite set
  and Union :: "i  i"  (_ [90] 90)
  and PrimReplace :: "[i, [i, i]  o]  i"

abbreviation not_mem :: "[i, i]  o"  (infixl  50)  ― ‹negated membership relation
  where "x  y  ¬ (x  y)"


subsection Bounded Quantifiers

definition Ball :: "[i, i  o]  o"
  where "Ball(A, P)  x. xA  P(x)"

definition Bex :: "[i, i  o]  o"
  where "Bex(A, P)  x. xA  P(x)"

syntax
  "_Ball" :: "[pttrn, i, o]  o"  ((3__./ _) 10)
  "_Bex" :: "[pttrn, i, o]  o"  ((3__./ _) 10)
translations
  "xA. P"  "CONST Ball(A, λx. P)"
  "xA. P"  "CONST Bex(A, λx. P)"


subsection Variations on Replacement

(* Derived form of replacement, restricting P to its functional part.
   The resulting set (for functional P) is the same as with
   PrimReplace, but the rules are simpler. *)
definition Replace :: "[i, [i, i]  o]  i"
  where "Replace(A,P) == PrimReplace(A, %x y. (∃!z. P(x,z)) & P(x,y))"

syntax
  "_Replace"  :: "[pttrn, pttrn, i, o] => i"  ((1{_ ./ _  _, _}))
translations
  "{y. xA, Q}"  "CONST Replace(A, λx y. Q)"


(* Functional form of replacement -- analgous to ML's map functional *)

definition RepFun :: "[i, i  i]  i"
  where "RepFun(A,f) == {y . xA, y=f(x)}"

syntax
  "_RepFun" :: "[i, pttrn, i] => i"  ((1{_ ./ _  _}) [51,0,51])
translations
  "{b. xA}"  "CONST RepFun(A, λx. b)"


(* Separation and Pairing can be derived from the Replacement
   and Powerset Axioms using the following definitions. *)
definition Collect :: "[i, i  o]  i"
  where "Collect(A,P) == {y . xA, x=y & P(x)}"

syntax
  "_Collect" :: "[pttrn, i, o]  i"  ((1{_  _ ./ _}))
translations
  "{xA. P}"  "CONST Collect(A, λx. P)"


subsection General union and intersection

definition Inter :: "i => i"  (_ [90] 90)
  where "(A) == { x(A) . yA. xy}"

syntax
  "_UNION" :: "[pttrn, i, i] => i"  ((3__./ _) 10)
  "_INTER" :: "[pttrn, i, i] => i"  ((3__./ _) 10)
translations
  "xA. B" == "CONST Union({B. xA})"
  "xA. B" == "CONST Inter({B. xA})"


subsection Finite sets and binary operations

(*Unordered pairs (Upair) express binary union/intersection and cons;
  set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)

definition Upair :: "[i, i] => i"
  where "Upair(a,b) == {y. xPow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"

definition Subset :: "[i, i]  o"  (infixl  50)  ― ‹subset relation
  where subset_def: "A  B  xA. xB"

definition Diff :: "[i, i]  i"  (infixl - 65)  ― ‹set difference
  where "A - B == { xA . ~(xB) }"

definition Un :: "[i, i]  i"  (infixl  65)  ― ‹binary union
  where "A  B == (Upair(A,B))"

definition Int :: "[i, i]  i"  (infixl  70)  ― ‹binary intersection
  where "A  B == (Upair(A,B))"

definition cons :: "[i, i] => i"
  where "cons(a,A) == Upair(a,a)  A"

definition succ :: "i => i"
  where "succ(i) == cons(i, i)"

nonterminal "is"
syntax
  "" :: "i  is"  (_)
  "_Enum" :: "[i, is]  is"  (_,/ _)
  "_Finset" :: "is  i"  ({(_)})
translations
  "{x, xs}" == "CONST cons(x, {xs})"
  "{x}" == "CONST cons(x, 0)"


subsection Axioms

(* ZF axioms -- see Suppes p.238
   Axioms for Union, Pow and Replace state existence only,
   uniqueness is derivable using extensionality. *)

axiomatization
where
  extension:     "A = B  A  B  B  A" and
  Union_iff:     "A  (C)  (BC. AB)" and
  Pow_iff:       "A  Pow(B)  A  B" and

  (*We may name this set, though it is not uniquely defined.*)
  infinity:      "0  Inf  (yInf. succ(y)  Inf)" and

  (*This formulation facilitates case analysis on A.*)
  foundation:    "A = 0  (xA. yx. yA)" and

  (*Schema axiom since predicate P is a higher-order variable*)
  replacement:   "(xA. y z. P(x,y)  P(x,z)  y = z) 
                         b  PrimReplace(A,P)  (xA. P(x,b))"


subsection Definite descriptions -- via Replace over the set "1"

definition The :: "(i  o)  i"  (binder THE  10)
  where the_def: "The(P)    == ({y . x  {0}, P(y)})"

definition If :: "[o, i, i]  i"  ((if (_)/ then (_)/ else (_)) [10] 10)
  where if_def: "if P then a else b == THE z. P & z=a | ~P & z=b"

abbreviation (input)
  old_if :: "[o, i, i] => i"  (if '(_,_,_'))
  where "if(P,a,b) == If(P,a,b)"


subsection Ordered Pairing

(* this "symmetric" definition works better than {{a}, {a,b}} *)
definition Pair :: "[i, i] => i"
  where "Pair(a,b) == {{a,a}, {a,b}}"

definition fst :: "i  i"
  where "fst(p) == THE a. b. p = Pair(a, b)"

definition snd :: "i  i"
  where "snd(p) == THE b. a. p = Pair(a, b)"

definition split :: "[[i, i]  'a, i]  'a::{}"  ― ‹for pattern-matching
  where "split(c) == λp. c(fst(p), snd(p))"

(* Patterns -- extends pre-defined type "pttrn" used in abstractions *)
nonterminal patterns
syntax
  "_pattern"  :: "patterns => pttrn"         (_)
  ""          :: "pttrn => patterns"         (_)
  "_patterns" :: "[pttrn, patterns] => patterns"  (_,/_)
  "_Tuple"    :: "[i, is] => i"              ((_,/ _))
translations
  "x, y, z"   == "x, y, z"
  "x, y"      == "CONST Pair(x, y)"
  "λx,y,zs.b" == "CONST split(λx y,zs.b)"
  "λx,y.b"    == "CONST split(λx y. b)"

definition Sigma :: "[i, i  i]  i"
  where "Sigma(A,B) == xA. yB(x). {x,y}"

abbreviation cart_prod :: "[i, i] => i"  (infixr × 80)  ― ‹Cartesian product
  where "A × B  Sigma(A, λ_. B)"


subsection Relations and Functions

(*converse of relation r, inverse of function*)
definition converse :: "i  i"
  where "converse(r) == {z. wr, x y. w=x,y  z=y,x}"

definition domain :: "i  i"
  where "domain(r) == {x. wr, y. w=x,y}"

definition range :: "i  i"
  where "range(r) == domain(converse(r))"

definition field :: "i  i"
  where "field(r) == domain(r)  range(r)"

definition relation :: "i  o"  ― ‹recognizes sets of pairs
  where "relation(r) == zr. x y. z = x,y"

definition "function" :: "i  o"  ― ‹recognizes functions; can have non-pairs
  where "function(r) == x y. x,y  r  (y'. x,y'  r  y = y')"

definition Image :: "[i, i]  i"  (infixl `` 90)  ― ‹image
  where image_def: "r `` A  == {y  range(r). xA. x,y  r}"

definition vimage :: "[i, i]  i"  (infixl -`` 90)  ― ‹inverse image
  where vimage_def: "r -`` A == converse(r)``A"

(* Restrict the relation r to the domain A *)
definition restrict :: "[i, i]  i"
  where "restrict(r,A) == {z  r. xA. y. z = x,y}"


(* Abstraction, application and Cartesian product of a family of sets *)

definition Lambda :: "[i, i  i]  i"
  where lam_def: "Lambda(A,b) == {x,b(x). xA}"

definition "apply" :: "[i, i]  i"  (infixl ` 90)  ― ‹function application
  where "f`a == (f``{a})"

definition Pi :: "[i, i  i]  i"
  where "Pi(A,B) == {fPow(Sigma(A,B)). Adomain(f) & function(f)}"

abbreviation function_space :: "[i, i]  i"  (infixr  60)  ― ‹function space
  where "A  B  Pi(A, λ_. B)"


(* binder syntax *)

syntax
  "_PROD"     :: "[pttrn, i, i] => i"        ((3__./ _) 10)
  "_SUM"      :: "[pttrn, i, i] => i"        ((3__./ _) 10)
  "_lam"      :: "[pttrn, i, i] => i"        ((3λ__./ _) 10)
translations
  "xA. B"   == "CONST Pi(A, λx. B)"
  "xA. B"   == "CONST Sigma(A, λx. B)"
  "λxA. f"    == "CONST Lambda(A, λx. f)"


subsection ASCII syntax

notation (ASCII)
  cart_prod       (infixr * 80) and
  Int             (infixl Int 70) and
  Un              (infixl Un 65) and
  function_space  (infixr -> 60) and
  Subset          (infixl <= 50) and
  mem             (infixl : 50) and
  not_mem         (infixl ~: 50)

syntax (ASCII)
  "_Ball"     :: "[pttrn, i, o] => o"        ((3ALL _:_./ _) 10)
  "_Bex"      :: "[pttrn, i, o] => o"        ((3EX _:_./ _) 10)
  "_Collect"  :: "[pttrn, i, o] => i"        ((1{_: _ ./ _}))
  "_Replace"  :: "[pttrn, pttrn, i, o] => i" ((1{_ ./ _: _, _}))
  "_RepFun"   :: "[i, pttrn, i] => i"        ((1{_ ./ _: _}) [51,0,51])
  "_UNION"    :: "[pttrn, i, i] => i"        ((3UN _:_./ _) 10)
  "_INTER"    :: "[pttrn, i, i] => i"        ((3INT _:_./ _) 10)
  "_PROD"     :: "[pttrn, i, i] => i"        ((3PROD _:_./ _) 10)
  "_SUM"      :: "[pttrn, i, i] => i"        ((3SUM _:_./ _) 10)
  "_lam"      :: "[pttrn, i, i] => i"        ((3lam _:_./ _) 10)
  "_Tuple"    :: "[i, is] => i"              (<(_,/ _)>)
  "_pattern"  :: "patterns => pttrn"         (<_>)


subsection Substitution

(*Useful examples:  singletonI RS subst_elem,  subst_elem RSN (2,IntI) *)
lemma subst_elem: "[| bA;  a=b |] ==> aA"
by (erule ssubst, assumption)


subsectionBounded universal quantifier

lemma ballI [intro!]: "[| !!x. xA ==> P(x) |] ==> xA. P(x)"
by (simp add: Ball_def)

lemmas strip = impI allI ballI

lemma bspec [dest?]: "[| xA. P(x);  x: A |] ==> P(x)"
by (simp add: Ball_def)

(*Instantiates x first: better for automatic theorem proving?*)
lemma rev_ballE [elim]:
    "[| xA. P(x);  xA ==> Q;  P(x) ==> Q |] ==> Q"
by (simp add: Ball_def, blast)

lemma ballE: "[| xA. P(x);  P(x) ==> Q;  xA ==> Q |] ==> Q"
by blast

(*Used in the datatype package*)
lemma rev_bspec: "[| x: A;  xA. P(x) |] ==> P(x)"
by (simp add: Ball_def)

(*Trival rewrite rule;   @{term"(∀x∈A.P)<->P"} holds only if A is nonempty!*)
lemma ball_triv [simp]: "(xA. P) <-> ((x. xA)  P)"
by (simp add: Ball_def)

(*Congruence rule for rewriting*)
lemma ball_cong [cong]:
    "[| A=A';  !!x. xA' ==> P(x) <-> P'(x) |] ==> (xA. P(x)) <-> (xA'. P'(x))"
by (simp add: Ball_def)

lemma atomize_ball:
    "(!!x. x  A ==> P(x)) == Trueprop (xA. P(x))"
  by (simp only: Ball_def atomize_all atomize_imp)

lemmas [symmetric, rulify] = atomize_ball
  and [symmetric, defn] = atomize_ball


subsectionBounded existential quantifier

lemma bexI [intro]: "[| P(x);  x: A |] ==> xA. P(x)"
by (simp add: Bex_def, blast)

(*The best argument order when there is only one @{term"x∈A"}*)
lemma rev_bexI: "[| xA;  P(x) |] ==> xA. P(x)"
by blast

(*Not of the general form for such rules. The existential quanitifer becomes universal. *)
lemma bexCI: "[| xA. ~P(x) ==> P(a);  a: A |] ==> xA. P(x)"
by blast

lemma bexE [elim!]: "[| xA. P(x);  !!x. [| xA; P(x) |] ==> Q |] ==> Q"
by (simp add: Bex_def, blast)

(*We do not even have @{term"(∃x∈A. True) <-> True"} unless @{term"A" is nonempty!!*)
lemma bex_triv [simp]: "(xA. P) <-> ((x. xA) & P)"
by (simp add: Bex_def)

lemma bex_cong [cong]:
    "[| A=A';  !!x. xA' ==> P(x) <-> P'(x) |]
     ==> (xA. P(x)) <-> (xA'. P'(x))"
by (simp add: Bex_def cong: conj_cong)



subsectionRules for subsets

lemma subsetI [intro!]:
    "(!!x. xA ==> xB) ==> A  B"
by (simp add: subset_def)

(*Rule in Modus Ponens style [was called subsetE] *)
lemma subsetD [elim]: "[| A  B;  cA |] ==> cB"
apply (unfold subset_def)
apply (erule bspec, assumption)
done

(*Classical elimination rule*)
lemma subsetCE [elim]:
    "[| A  B;  cA ==> P;  cB ==> P |] ==> P"
by (simp add: subset_def, blast)

(*Sometimes useful with premises in this order*)
lemma rev_subsetD: "[| cA; A<=B |] ==> cB"
by blast

lemma contra_subsetD: "[| A  B; c  B |] ==> c  A"
by blast

lemma rev_contra_subsetD: "[| c  B;  A  B |] ==> c  A"
by blast

lemma subset_refl [simp]: "A  A"
by blast

lemma subset_trans: "[| A<=B;  B<=C |] ==> A<=C"
by blast

(*Useful for proving A<=B by rewriting in some cases*)
lemma subset_iff:
     "A<=B <-> (x. xA  xB)"
apply (unfold subset_def Ball_def)
apply (rule iff_refl)
done

textFor calculations
declare subsetD [trans] rev_subsetD [trans] subset_trans [trans]


subsectionRules for equality

(*Anti-symmetry of the subset relation*)
lemma equalityI [intro]: "[| A  B;  B  A |] ==> A = B"
by (rule extension [THEN iffD2], rule conjI)


lemma equality_iffI: "(!!x. xA <-> xB) ==> A = B"
by (rule equalityI, blast+)

lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1]
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2]

lemma equalityE: "[| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P"
by (blast dest: equalityD1 equalityD2)

lemma equalityCE:
    "[| A = B;  [| cA; cB |] ==> P;  [| cA; cB |] ==> P |]  ==>  P"
by (erule equalityE, blast)

lemma equality_iffD:
  "A = B ==> (!!x. x  A <-> x  B)"
  by auto


subsectionRules for Replace -- the derived form of replacement

lemma Replace_iff:
    "b  {y. xA, P(x,y)}  <->  (xA. P(x,b) & (y. P(x,y)  y=b))"
apply (unfold Replace_def)
apply (rule replacement [THEN iff_trans], blast+)
done

(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
lemma ReplaceI [intro]:
    "[| P(x,b);  x: A;  !!y. P(x,y) ==> y=b |] ==>
     b  {y. xA, P(x,y)}"
by (rule Replace_iff [THEN iffD2], blast)

(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
lemma ReplaceE:
    "[| b  {y. xA, P(x,y)};
        !!x. [| x: A;  P(x,b);  y. P(x,y)y=b |] ==> R
     |] ==> R"
by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)

(*As above but without the (generally useless) 3rd assumption*)
lemma ReplaceE2 [elim!]:
    "[| b  {y. xA, P(x,y)};
        !!x. [| x: A;  P(x,b) |] ==> R
     |] ==> R"
by (erule ReplaceE, blast)

lemma Replace_cong [cong]:
    "[| A=B;  !!x y. xB ==> P(x,y) <-> Q(x,y) |] ==>
     Replace(A,P) = Replace(B,Q)"
apply (rule equality_iffI)
apply (simp add: Replace_iff)
done


subsectionRules for RepFun

lemma RepFunI: "a  A ==> f(a)  {f(x). xA}"
by (simp add: RepFun_def Replace_iff, blast)

(*Useful for coinduction proofs*)
lemma RepFun_eqI [intro]: "[| b=f(a);  a  A |] ==> b  {f(x). xA}"
apply (erule ssubst)
apply (erule RepFunI)
done

lemma RepFunE [elim!]:
    "[| b  {f(x). xA};
        !!x.[| xA;  b=f(x) |] ==> P |] ==>
     P"
by (simp add: RepFun_def Replace_iff, blast)

lemma RepFun_cong [cong]:
    "[| A=B;  !!x. xB ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"
by (simp add: RepFun_def)

lemma RepFun_iff [simp]: "b  {f(x). xA} <-> (xA. b=f(x))"
by (unfold Bex_def, blast)

lemma triv_RepFun [simp]: "{x. xA} = A"
by blast


subsectionRules for Collect -- forming a subset by separation

(*Separation is derivable from Replacement*)
lemma separation [simp]: "a  {xA. P(x)} <-> aA & P(a)"
by (unfold Collect_def, blast)

lemma CollectI [intro!]: "[| aA;  P(a) |] ==> a  {xA. P(x)}"
by simp

lemma CollectE [elim!]: "[| a  {xA. P(x)};  [| aA; P(a) |] ==> R |] ==> R"
by simp

lemma CollectD1: "a  {xA. P(x)} ==> aA"
by (erule CollectE, assumption)

lemma CollectD2: "a  {xA. P(x)} ==> P(a)"
by (erule CollectE, assumption)

lemma Collect_cong [cong]:
    "[| A=B;  !!x. xB ==> P(x) <-> Q(x) |]
     ==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))"
by (simp add: Collect_def)


subsectionRules for Unions

declare Union_iff [simp]

(*The order of the premises presupposes that C is rigid; A may be flexible*)
lemma UnionI [intro]: "[| B: C;  A: B |] ==> A: (C)"
by (simp, blast)

lemma UnionE [elim!]: "[| A  (C);  !!B.[| A: B;  B: C |] ==> R |] ==> R"
by (simp, blast)


subsectionRules for Unions of families
(* @{term"⋃x∈A. B(x)"} abbreviates @{term"⋃({B(x). x∈A})"} *)

lemma UN_iff [simp]: "b  (xA. B(x)) <-> (xA. b  B(x))"
by (simp add: Bex_def, blast)

(*The order of the premises presupposes that A is rigid; b may be flexible*)
lemma UN_I: "[| a: A;  b: B(a) |] ==> b: (xA. B(x))"
by (simp, blast)


lemma UN_E [elim!]:
    "[| b  (xA. B(x));  !!x.[| x: A;  b: B(x) |] ==> R |] ==> R"
by blast

lemma UN_cong:
    "[| A=B;  !!x. xB ==> C(x)=D(x) |] ==> (xA. C(x)) = (xB. D(x))"
by simp


(*No "Addcongs [UN_cong]" because @{term⋃} is a combination of constants*)

(* UN_E appears before UnionE so that it is tried first, to avoid expensive
  calls to hyp_subst_tac.  Cannot include UN_I as it is unsafe: would enlarge
  the search space.*)


subsectionRules for the empty set

(*The set @{term"{x∈0. False}"} is empty; by foundation it equals 0
  See Suppes, page 21.*)
lemma not_mem_empty [simp]: "a  0"
apply (cut_tac foundation)
apply (best dest: equalityD2)
done

lemmas emptyE [elim!] = not_mem_empty [THEN notE]


lemma empty_subsetI [simp]: "0  A"
by blast

lemma equals0I: "[| !!y. yA ==> False |] ==> A=0"
by blast

lemma equals0D [dest]: "A=0 ==> a  A"
by blast

declare sym [THEN equals0D, dest]

lemma not_emptyI: "aA ==> A  0"
by blast

lemma not_emptyE:  "[| A  0;  !!x. xA ==> R |] ==> R"
by blast


subsectionRules for Inter

(*Not obviously useful for proving InterI, InterD, InterE*)
lemma Inter_iff: "A  (C) <-> (xC. A: x) & C0"
by (simp add: Inter_def Ball_def, blast)

(* Intersection is well-behaved only if the family is non-empty! *)
lemma InterI [intro!]:
    "[| !!x. x: C ==> A: x;  C0 |] ==> A  (C)"
by (simp add: Inter_iff)

(*A "destruct" rule -- every B in C contains A as an element, but
  A∈B can hold when B∈C does not!  This rule is analogous to "spec". *)
lemma InterD [elim, Pure.elim]: "[| A  (C);  B  C |] ==> A  B"
by (unfold Inter_def, blast)

(*"Classical" elimination rule -- does not require exhibiting @{term"B∈C"} *)
lemma InterE [elim]:
    "[| A  (C);  BC ==> R;  AB ==> R |] ==> R"
by (simp add: Inter_def, blast)


subsectionRules for Intersections of families

(* @{term"⋂x∈A. B(x)"} abbreviates @{term"⋂({B(x). x∈A})"} *)

lemma INT_iff: "b  (xA. B(x)) <-> (xA. b  B(x)) & A0"
by (force simp add: Inter_def)

lemma INT_I: "[| !!x. x: A ==> b: B(x);  A0 |] ==> b: (xA. B(x))"
by blast

lemma INT_E: "[| b  (xA. B(x));  a: A |] ==> b  B(a)"
by blast

lemma INT_cong:
    "[| A=B;  !!x. xB ==> C(x)=D(x) |] ==> (xA. C(x)) = (xB. D(x))"
by simp

(*No "Addcongs [INT_cong]" because @{term⋂} is a combination of constants*)


subsectionRules for Powersets

lemma PowI: "A  B ==> A  Pow(B)"
by (erule Pow_iff [THEN iffD2])

lemma PowD: "A  Pow(B)  ==>  A<=B"
by (erule Pow_iff [THEN iffD1])

declare Pow_iff [iff]

lemmas Pow_bottom = empty_subsetI [THEN PowI]    ― ‹term0  Pow(B)
lemmas Pow_top = subset_refl [THEN PowI]         ― ‹termA  Pow(A)


subsectionCantor's Theorem: There is no surjection from a set to its powerset.

(*The search is undirected.  Allowing redundant introduction rules may
  make it diverge.  Variable b represents ANY map, such as
  (lam x∈A.b(x)): A->Pow(A). *)
lemma cantor: "S  Pow(A). xA. b(x)  S"
by (best elim!: equalityCE del: ReplaceI RepFun_eqI)

end