| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax12 | Unicode version | ||
| Description: Axiom of Quantifier Introduction. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). |
| Ref | Expression |
|---|---|
| ax12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wv 58 |
. . . . . . 7
| |
| 2 | wv 58 |
. . . . . . 7
| |
| 3 | 1, 2 | weqi 68 |
. . . . . 6
|
| 4 | wv 58 |
. . . . . . 7
| |
| 5 | 3, 4 | ax-17 95 |
. . . . . 6
|
| 6 | 3, 5 | isfree 176 |
. . . . 5
|
| 7 | wnot 128 |
. . . . . 6
| |
| 8 | wal 124 |
. . . . . . 7
| |
| 9 | wv 58 |
. . . . . . . . 9
| |
| 10 | 9, 2 | weqi 68 |
. . . . . . . 8
|
| 11 | 10 | wl 59 |
. . . . . . 7
|
| 12 | 8, 11 | wc 45 |
. . . . . 6
|
| 13 | 7, 12 | wc 45 |
. . . . 5
|
| 14 | 6, 13 | adantr 50 |
. . . 4
|
| 15 | 14 | ex 148 |
. . 3
|
| 16 | 9, 1 | weqi 68 |
. . . . . 6
|
| 17 | 16 | wl 59 |
. . . . 5
|
| 18 | 8, 17 | wc 45 |
. . . 4
|
| 19 | 7, 18 | wc 45 |
. . 3
|
| 20 | 15, 19 | adantr 50 |
. 2
|
| 21 | 20 | ex 148 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |