| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > wnot | Unicode version | ||
| Description: Negation type. |
| Ref | Expression |
|---|---|
| wnot |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wim 127 |
. . . 4
| |
| 2 | wv 58 |
. . . 4
| |
| 3 | wfal 125 |
. . . 4
| |
| 4 | 1, 2, 3 | wov 64 |
. . 3
|
| 5 | 4 | wl 59 |
. 2
|
| 6 | df-not 120 |
. 2
| |
| 7 | 5, 6 | eqtypri 71 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-cb1 29 ax-refl 39 |
| This theorem depends on definitions: df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 |
| This theorem is referenced by: notval 135 notval2 149 notnot1 150 con3d 152 alnex 174 exnal1 175 exmid 186 notnot 187 exnal 188 ax3 192 ax6 195 ax9 199 ax12 202 |
| Copyright terms: Public domain | W3C validator |