| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > wan | Unicode version | ||
| Description: Conjunction type. |
| Ref | Expression |
|---|---|
| wan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wv 58 |
. . . . . . 7
| |
| 2 | wv 58 |
. . . . . . 7
| |
| 3 | wv 58 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | wov 64 |
. . . . . 6
|
| 5 | 4 | wl 59 |
. . . . 5
|
| 6 | wtru 40 |
. . . . . . 7
| |
| 7 | 1, 6, 6 | wov 64 |
. . . . . 6
|
| 8 | 7 | wl 59 |
. . . . 5
|
| 9 | 5, 8 | weqi 68 |
. . . 4
|
| 10 | 9 | wl 59 |
. . 3
|
| 11 | 10 | wl 59 |
. 2
|
| 12 | df-an 118 |
. 2
| |
| 13 | 11, 12 | eqtypri 71 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-cb1 29 ax-refl 39 |
| This theorem depends on definitions: df-an 118 |
| This theorem is referenced by: wim 127 imval 136 anval 138 dfan2 144 hbct 145 ex 148 axrep 207 axun 209 |
| Copyright terms: Public domain | W3C validator |