| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > imval | Unicode version | ||
| Description: Value of the implication. |
| Ref | Expression |
|---|---|
| imval.1 |
|
| imval.2 |
|
| Ref | Expression |
|---|---|
| imval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wim 127 |
. . 3
| |
| 2 | imval.1 |
. . 3
| |
| 3 | imval.2 |
. . 3
| |
| 4 | 1, 2, 3 | wov 64 |
. 2
|
| 5 | df-im 119 |
. . 3
| |
| 6 | 1, 2, 3, 5 | oveq 92 |
. 2
|
| 7 | wan 126 |
. . . . 5
| |
| 8 | wv 58 |
. . . . 5
| |
| 9 | wv 58 |
. . . . 5
| |
| 10 | 7, 8, 9 | wov 64 |
. . . 4
|
| 11 | 10, 8 | weqi 68 |
. . 3
|
| 12 | weq 38 |
. . . 4
| |
| 13 | 8, 2 | weqi 68 |
. . . . . 6
|
| 14 | 13 | id 25 |
. . . . 5
|
| 15 | 7, 8, 9, 14 | oveq1 89 |
. . . 4
|
| 16 | 12, 10, 8, 15, 14 | oveq12 90 |
. . 3
|
| 17 | 7, 2, 9 | wov 64 |
. . . 4
|
| 18 | 9, 3 | weqi 68 |
. . . . . 6
|
| 19 | 18 | id 25 |
. . . . 5
|
| 20 | 7, 2, 9, 19 | oveq2 91 |
. . . 4
|
| 21 | 12, 17, 2, 20 | oveq1 89 |
. . 3
|
| 22 | 11, 2, 3, 16, 21 | ovl 107 |
. 2
|
| 23 | 4, 6, 22 | eqtri 85 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-an 118 df-im 119 |
| This theorem is referenced by: mpd 146 ex 148 |
| Copyright terms: Public domain | W3C validator |