| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ceq1 | GIF version | ||
| Description: Equality theorem for combination. |
| Ref | Expression |
|---|---|
| ceq12.1 | ⊢ F:(α → β) |
| ceq12.2 | ⊢ A:α |
| ceq12.3 | ⊢ R⊧[F = T] |
| Ref | Expression |
|---|---|
| ceq1 | ⊢ R⊧[(FA) = (TA)] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceq12.1 | . 2 ⊢ F:(α → β) | |
| 2 | ceq12.2 | . 2 ⊢ A:α | |
| 3 | ceq12.3 | . 2 ⊢ R⊧[F = T] | |
| 4 | 3 | ax-cb1 29 | . . 3 ⊢ R:∗ |
| 5 | 4, 2 | eqid 73 | . 2 ⊢ R⊧[A = A] |
| 6 | 1, 2, 3, 5 | ceq12 78 | 1 ⊢ R⊧[(FA) = (TA)] |
| Colors of variables: type var term |
| Syntax hints: → ht 2 kc 5 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: hbxfrf 97 ovl 107 alval 132 exval 133 euval 134 notval 135 ax4g 139 dfan2 144 eta 166 ac 184 ax14 204 axrep 207 axpow 208 axun 209 |
| Copyright terms: Public domain | W3C validator |