| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ceq12 | GIF version | ||
| Description: Equality theorem for combination. |
| Ref | Expression |
|---|---|
| ceq12.1 | ⊢ F:(α → β) |
| ceq12.2 | ⊢ A:α |
| ceq12.3 | ⊢ R⊧[F = T] |
| ceq12.4 | ⊢ R⊧[A = B] |
| Ref | Expression |
|---|---|
| ceq12 | ⊢ R⊧[(FA) = (TB)] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weq 38 | . 2 ⊢ = :(β → (β → ∗)) | |
| 2 | ceq12.1 | . . 3 ⊢ F:(α → β) | |
| 3 | ceq12.2 | . . 3 ⊢ A:α | |
| 4 | 2, 3 | wc 45 | . 2 ⊢ (FA):β |
| 5 | ceq12.3 | . . . 4 ⊢ R⊧[F = T] | |
| 6 | 2, 5 | eqtypi 69 | . . 3 ⊢ T:(α → β) |
| 7 | ceq12.4 | . . . 4 ⊢ R⊧[A = B] | |
| 8 | 3, 7 | eqtypi 69 | . . 3 ⊢ B:α |
| 9 | 6, 8 | wc 45 | . 2 ⊢ (TB):β |
| 10 | weq 38 | . . . 4 ⊢ = :((α → β) → ((α → β) → ∗)) | |
| 11 | 10, 2, 6, 5 | dfov1 66 | . . 3 ⊢ R⊧(( = F)T) |
| 12 | weq 38 | . . . 4 ⊢ = :(α → (α → ∗)) | |
| 13 | 12, 3, 8, 7 | dfov1 66 | . . 3 ⊢ R⊧(( = A)B) |
| 14 | 2, 6, 3, 8 | ax-ceq 46 | . . 3 ⊢ ((( = F)T), (( = A)B))⊧(( = (FA))(TB)) |
| 15 | 11, 13, 14 | syl2anc 19 | . 2 ⊢ R⊧(( = (FA))(TB)) |
| 16 | 1, 4, 9, 15 | dfov2 67 | 1 ⊢ R⊧[(FA) = (TB)] |
| Colors of variables: type var term |
| Syntax hints: → ht 2 kc 5 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: ceq1 79 ceq2 80 oveq123 88 hbc 100 ac 184 |
| Copyright terms: Public domain | W3C validator |