ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.28h Unicode version

Theorem 19.28h 1494
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.28h.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
19.28h  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )

Proof of Theorem 19.28h
StepHypRef Expression
1 19.26 1410 . 2  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
2 19.28h.1 . . . 4  |-  ( ph  ->  A. x ph )
3219.3h 1485 . . 3  |-  ( A. x ph  <->  ph )
43anbi1i 445 . 2  |-  ( ( A. x ph  /\  A. x ps )  <->  ( ph  /\ 
A. x ps )
)
51, 4bitri 182 1  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  nfan1  1496  aaanh  1518  exan  1623  19.28v  1821
  Copyright terms: Public domain W3C validator