![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-1 | Unicode version |
Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of ![]() ![]() ![]() The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph |
. 2
![]() ![]() | |
2 | wps |
. . 3
![]() ![]() | |
3 | 2, 1 | wi 4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | wi 4 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 47 jarr 96 pm2.86i 97 pm2.86d 98 pm5.1im 171 biimt 239 pm5.4 247 pm4.45im 327 pm2.51 613 pm4.8 655 pm2.53 673 imorri 700 jao1i 742 pm2.64 747 pm2.82 758 biort 771 condc 782 imorr 830 oibabs 833 pm5.12dc 849 pm5.14dc 850 peircedc 853 pm4.83dc 892 dedlem0a 909 oplem1 916 stdpc4 1698 sbequi 1760 sbidm 1772 eumo 1973 moimv 2007 euim 2009 alral 2409 r19.12 2466 r19.27av 2492 r19.37 2506 gencbval 2647 eqvinc 2718 eqvincg 2719 rr19.3v 2733 ralidm 3341 ralm 3345 class2seteq 3937 sotritric 4079 elnnnn0b 8332 zltnle 8397 iccneg 9011 qltnle 9255 frec2uzlt2d 9406 algcvgblem 10431 bj-findis 10774 |
Copyright terms: Public domain | W3C validator |