| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anandis | Unicode version | ||
| Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) |
| Ref | Expression |
|---|---|
| 3anandis.1 |
|
| Ref | Expression |
|---|---|
| 3anandis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. 2
| |
| 2 | simpr1 944 |
. 2
| |
| 3 | simpr2 945 |
. 2
| |
| 4 | simpr3 946 |
. 2
| |
| 5 | 3anandis.1 |
. 2
| |
| 6 | 1, 2, 1, 3, 1, 4, 5 | syl222anc 1185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |