| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alexeq | Unicode version | ||
| Description: Two ways to express
substitution of |
| Ref | Expression |
|---|---|
| alexeq.1 |
|
| Ref | Expression |
|---|---|
| alexeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexeq.1 |
. . 3
| |
| 2 | eqeq2 2090 |
. . . . 5
| |
| 3 | 2 | anbi1d 452 |
. . . 4
|
| 4 | 3 | exbidv 1746 |
. . 3
|
| 5 | 2 | imbi1d 229 |
. . . 4
|
| 6 | 5 | albidv 1745 |
. . 3
|
| 7 | sb56 1806 |
. . 3
| |
| 8 | 1, 4, 6, 7 | vtoclb 2656 |
. 2
|
| 9 | 8 | bicomi 130 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: ceqex 2722 |
| Copyright terms: Public domain | W3C validator |