![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-bdsep | Unicode version |
Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 3896. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
ax-bdsep.1 |
![]() ![]() |
Ref | Expression |
---|---|
ax-bdsep |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx |
. . . . . 6
![]() ![]() | |
2 | vb |
. . . . . 6
![]() ![]() | |
3 | 1, 2 | wel 1434 |
. . . . 5
![]() ![]() ![]() ![]() |
4 | va |
. . . . . . 7
![]() ![]() | |
5 | 1, 4 | wel 1434 |
. . . . . 6
![]() ![]() ![]() ![]() |
6 | wph |
. . . . . 6
![]() ![]() | |
7 | 5, 6 | wa 102 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | wb 103 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8, 1 | wal 1282 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9, 2 | wex 1421 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10, 4 | wal 1282 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This axiom is referenced by: bdsep1 10676 |
Copyright terms: Public domain | W3C validator |