| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcriota | Unicode version | ||
| Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdcriota.bd |
|
| bdcriota.ex |
|
| Ref | Expression |
|---|---|
| bdcriota |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcriota.bd |
. . . . . . . . 9
| |
| 2 | 1 | ax-bdsb 10613 |
. . . . . . . 8
|
| 3 | ax-bdel 10612 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-bdim 10605 |
. . . . . . 7
|
| 5 | 4 | ax-bdal 10609 |
. . . . . 6
|
| 6 | df-ral 2353 |
. . . . . . . . 9
| |
| 7 | impexp 259 |
. . . . . . . . . . 11
| |
| 8 | 7 | bicomi 130 |
. . . . . . . . . 10
|
| 9 | 8 | albii 1399 |
. . . . . . . . 9
|
| 10 | 6, 9 | bitri 182 |
. . . . . . . 8
|
| 11 | sban 1870 |
. . . . . . . . . . . 12
| |
| 12 | clelsb3 2183 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | anbi1i 445 |
. . . . . . . . . . . 12
|
| 14 | 11, 13 | bitri 182 |
. . . . . . . . . . 11
|
| 15 | 14 | bicomi 130 |
. . . . . . . . . 10
|
| 16 | 15 | imbi1i 236 |
. . . . . . . . 9
|
| 17 | 16 | albii 1399 |
. . . . . . . 8
|
| 18 | 10, 17 | bitri 182 |
. . . . . . 7
|
| 19 | df-clab 2068 |
. . . . . . . . . 10
| |
| 20 | 19 | bicomi 130 |
. . . . . . . . 9
|
| 21 | 20 | imbi1i 236 |
. . . . . . . 8
|
| 22 | 21 | albii 1399 |
. . . . . . 7
|
| 23 | 18, 22 | bitri 182 |
. . . . . 6
|
| 24 | 5, 23 | bd0 10615 |
. . . . 5
|
| 25 | 24 | bdcab 10640 |
. . . 4
|
| 26 | df-int 3637 |
. . . 4
| |
| 27 | 25, 26 | bdceqir 10635 |
. . 3
|
| 28 | bdcriota.ex |
. . . . 5
| |
| 29 | df-reu 2355 |
. . . . 5
| |
| 30 | 28, 29 | mpbi 143 |
. . . 4
|
| 31 | iotaint 4900 |
. . . 4
| |
| 32 | 30, 31 | ax-mp 7 |
. . 3
|
| 33 | 27, 32 | bdceqir 10635 |
. 2
|
| 34 | df-riota 5488 |
. 2
| |
| 35 | 33, 34 | bdceqir 10635 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdim 10605 ax-bdal 10609 ax-bdel 10612 ax-bdsb 10613 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-iota 4887 df-riota 5488 df-bdc 10632 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |