ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-i12 Unicode version

Axiom ax-i12 1438
Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever  z is distinct from  x and  y, and  x  =  y is true, then  x  =  y quantified with  z is also true. In other words,  z is irrelevant to the truth of 
x  =  y. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom has been modified from the original ax-12 1442 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.)

Assertion
Ref Expression
ax-i12  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )

Detailed syntax breakdown of Axiom ax-i12
StepHypRef Expression
1 vz . . . 4  setvar  z
2 vx . . . 4  setvar  x
31, 2weq 1432 . . 3  wff  z  =  x
43, 1wal 1282 . 2  wff  A. z 
z  =  x
5 vy . . . . 5  setvar  y
61, 5weq 1432 . . . 4  wff  z  =  y
76, 1wal 1282 . . 3  wff  A. z 
z  =  y
82, 5weq 1432 . . . . 5  wff  x  =  y
98, 1wal 1282 . . . . 5  wff  A. z  x  =  y
108, 9wi 4 . . . 4  wff  ( x  =  y  ->  A. z  x  =  y )
1110, 1wal 1282 . . 3  wff  A. z
( x  =  y  ->  A. z  x  =  y )
127, 11wo 661 . 2  wff  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
)
134, 12wo 661 1  wff  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
Colors of variables: wff set class
This axiom is referenced by:  ax-12  1442  ax12or  1443  dveeq2  1736  dveeq2or  1737  dvelimALT  1927  dvelimfv  1928
  Copyright terms: Public domain W3C validator