| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimfv | Unicode version | ||
| Description: Like dvelimf 1932 but with a distinct variable constraint on
|
| Ref | Expression |
|---|---|
| dvelimfv.1 |
|
| dvelimfv.2 |
|
| dvelimfv.3 |
|
| Ref | Expression |
|---|---|
| dvelimfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnae 1650 |
. . . 4
| |
| 2 | ax-i12 1438 |
. . . . . . . . 9
| |
| 3 | orcom 679 |
. . . . . . . . . 10
| |
| 4 | 3 | orbi2i 711 |
. . . . . . . . 9
|
| 5 | 2, 4 | mpbi 143 |
. . . . . . . 8
|
| 6 | orass 716 |
. . . . . . . 8
| |
| 7 | 5, 6 | mpbir 144 |
. . . . . . 7
|
| 8 | nfae 1647 |
. . . . . . . . . . 11
| |
| 9 | ax16ALT 1780 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | nfd 1456 |
. . . . . . . . . 10
|
| 11 | dvelimfv.1 |
. . . . . . . . . . . 12
| |
| 12 | 11 | nfi 1391 |
. . . . . . . . . . 11
|
| 13 | 12 | a1i 9 |
. . . . . . . . . 10
|
| 14 | 10, 13 | nfimd 1517 |
. . . . . . . . 9
|
| 15 | df-nf 1390 |
. . . . . . . . . 10
| |
| 16 | id 19 |
. . . . . . . . . . 11
| |
| 17 | 12 | a1i 9 |
. . . . . . . . . . 11
|
| 18 | 16, 17 | nfimd 1517 |
. . . . . . . . . 10
|
| 19 | 15, 18 | sylbir 133 |
. . . . . . . . 9
|
| 20 | 14, 19 | jaoi 668 |
. . . . . . . 8
|
| 21 | 20 | orim1i 709 |
. . . . . . 7
|
| 22 | 7, 21 | ax-mp 7 |
. . . . . 6
|
| 23 | orcom 679 |
. . . . . 6
| |
| 24 | 22, 23 | mpbi 143 |
. . . . 5
|
| 25 | 24 | ori 674 |
. . . 4
|
| 26 | 1, 25 | nfald 1683 |
. . 3
|
| 27 | dvelimfv.2 |
. . . . 5
| |
| 28 | dvelimfv.3 |
. . . . 5
| |
| 29 | 27, 28 | equsalh 1654 |
. . . 4
|
| 30 | 29 | nfbii 1402 |
. . 3
|
| 31 | 26, 30 | sylib 120 |
. 2
|
| 32 | 31 | nfrd 1453 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |